
Supplementary Information
Andrew Ghazi

6/21/2017

Contents
S1 - MPRA diagrams . 2
S2 - MPRA Activity Variance . 3
S3 - Activity Normality Assumption . 13
S4 - Power calculations . 24
S5 - Barcode design . 25
S6 - References . 26

The raw code for this RMarkdown document can be found at this link.

1

https://github.com/andrewGhazi/designMPRA/blob/master/Rmd/Supplement.Rmd

S1 - MPRA diagrams

S1.1 MPRA experimental diagram

2

S1.2 MPRA Design Tools Workflow

S1.3 MPRA Design Tools Sequence Element Layout

enzyme1 and enzyme2 default to KpnI and XbaI as in Melnikov et al., Nature Biotechnology 2012. The
forward and reverse primers default to ACTGGCCAG and CTCGGCGGCC respectively.

S2 - MPRA Activity Variance

Below is an analysis and visualization of the variance of MPRA activity measurements. We do this by
computing the activity of each barcode for an allele, then taking the standard deviation of those activities.
Repeating this for all alleles, we can see what the distribution of standard deviations is across alleles.

S2.1 - MPRA Activity Variance in Tewhey et al., Cell 2016

The study’s data were acquired through direct correspondence with the authors. We compute the activity
of each barcode in each transfection. Then, for every allele in every transfection, we compute the standard
deviation of the activities. We then produce a histogram of the standard deviations in each transfection.

Below is the complete code necessary to perform this analysis. First we read in the data, then we normalize
the counts according to sample depths, then we compute the barcode activity levels and their standard
deviations within each allele.
#library(tidyverse)
library(dplyr)
library(purrr)
library(readr)
library(ggplot2)
library(tidyr)
library(magrittr)
library(parallel)
library(knitr)
library(nortest)

dir = '/mnt/bigData2/andrew/MPRA/Tewhey/indivTags/'

file_names = list.files(dir,
pattern = '.expanded$')

3

getFileDepth = function(file){
function to get the total number of reads in a sample.
Used to normalize counts by sample depth.

read_tsv(paste0(dir, file),
col_names = c('allele', 'barcode', 'count')) %>%

.$count %>%
sum

}

#apply the above function to the sample files
fileDepths = data_frame(src = file_names,

fileDepth = mclapply(src,
getFileDepth,
mc.cores = 6) %>% unlist)

A few example DNA barcode counts by sample file:
dnaCounts = map(1:5, ~read_tsv(paste0(dir, file_names[.x]),

col_names = c('allele', 'barcode', 'count')) %>%
mutate(src = file_names[.x])) %>%

bind_rows

dnaCounts %>% # show a random sample of the counts
sample_n(5) %>%
kable

dnaCounts %<>%
left_join(fileDepths, by = 'src') %>%
mutate(depthAdjCount = 1e6*count/fileDepth)

depthAdjDNAmeanCount = dnaCounts %>%
group_by(barcode) %>%
summarise(allele = allele[1],

bcMean = mean(depthAdjCount)) %>%
ungroup

#grouping together the huge number of barcodes takes a while,
#so this is saved and loaded

save(dnaCounts,
file = '~/designMPRA/outputs/tewheyDNAcounts.RData')

save(depthAdjDNAmeanCount,
file = '~/designMPRA/outputs/tewheyDepthAdjDNAcounts.RData')

Allele Barcode Count Transfection File Name
rs116303217_altA CATGCTTCGTTAGGGTCGCC 7 Geuv_90K_ctrl.r4.tag.ct.indiv.expanded
rs55906525_RC_B GTCACGCTTAGCCAATGAGA 20 Geuv_90K_ctrl.r4.tag.ct.indiv.expanded
rs13228599_RC_B ACGAATCACAACAAATGTAT 19 Geuv_90K_ctrl.r5.tag.ct.indiv.expanded
rs9358930_A AGAACAAACGTTGTCCACCT 22 Geuv_90K_ctrl.r3.tag.ct.indiv.expanded
rs17721766_A CCATCGTACTAGGAAGTCGA 7 Geuv_90K_ctrl.r5.tag.ct.indiv.expanded

So to get the DNA normalization factor we simply take the mean of the DNA counts across the DNA
transfections. For example:

4

depthAdjDNAmeanCount %>%
head %>%
set_names(c('Barcode', 'Allele', 'Mean Depth Adjusted DNA Count')) %>%
kable

Barcode Allele Mean Depth Adjusted DNA Count
AAAAAAAAAAAACCAAGCGG rs116221068_B 0.0835755
AAAAAAAAAAAACGTACTTC rs9977746_B 0.0245955
AAAAAAAAAAAATGGCTCAC rs6051692_RC_A 0.0228665
AAAAAAAAAAAATTCCACGT rs2915876_RC_A 0.0628202
AAAAAAAAAAACAAAAGTCC rs2234161_B 0.2756719
AAAAAAAAAAACAGTGTTTT rs59955136_A 0.2367092

So for example the first barcode for allele rs116221068_B was counted 0.0835755 times on average across the
plasmid sequencing runs (after adjusting for depth). The depth adjustment is performed as follows:

106 ∗ count

sum of barcode counts in sequencing run

This normalizes each observed count according to how deeply the replicate was sequenced.

Tewhey et al., Cell 2016 had five plasmid replicates. Therefore the estimates of the mean DNA counts from
this study will likely be more precise than the counterparts in Ulirsch et al., Cell 2016 which had only two
plasmid replicates. This will in turn make the downstream activity measurements more stable and thus the
activity standard deviations in this paper will likely be lower.

We exclude barcodes that were not well represented in the DNA samples. Visual inspection of a (log-scale)
density plot of the mean depth-normalized count shows that .06 would be a reasonable cutoff (shown as a
dotted vertical line). This cuts out 4,221,460 out of 19,611,641 barcodes. The first few modes represents
failed barcodes with very low counts while the large mode represents well-performing barcodes (for further
example see Ulirsch et al., Cell 2016 Figure 1B):
depthAdjDNAmeanCount %>%

ggplot(aes(bcMean)) +
geom_density(adjust = 2) +
scale_x_log10() +
geom_vline(xintercept = .06,

lty = 2,
color = 'grey60') +

xlab('Depth Adjusted Mean Barcode Count in DNA samples') +
ggtitle('Density plot of depth-adjusted DNA count mean\nacross DNA replicates in Tewhey et al., 2016')

5

0.0

0.5

1.0

0.1 1.0 10.0

Depth Adjusted Mean Barcode Count in DNA samples

de
ns

ity
Density plot of depth−adjusted DNA count mean
across DNA replicates in Tewhey et al., 2016

Then, we compute the activity levels of each barcode by taking the depth adjusted count from an RNA
sequencing run, dividing through the depth adjusted mean count from the DNA runs, then taking the log:
library(parallel)
library(nortest) # for lillie.test()

For a given data file
computeTransfectionStatistics = function(fileNum){

Get the file's depth normalization factor
depthNum = fileDepths %>% filter(src == file_names[fileNum]) %>% .$fileDepth

Read in the counts
rnaCounts = read_tsv(paste0(dir, file_names[fileNum]),

col_names = c('allele', 'barcode', 'count')) %>%
mutate(depthAdjCount = 1e6*count/depthNum) #normalize them for depth

Then compute statistics for the file
alleleStatistics = depthAdjDNAmeanCount %>%

filter(bcMean > .06) %>% # this is where we introduce the cutoff
left_join(rnaCounts, by = c('allele', 'barcode')) %>% #join onto DNA counts
mutate(activity = log(depthAdjCount/bcMean)) %>% #compute activity
group_by(allele) %>% #for each allele
summarise(alleleMean = mean(activity, na.rm = TRUE), #compute statistics

alleleSD = sd(activity, na.rm = TRUE),
numBarcodes = sum(!is.na(count)),
lillieforsP = ifelse(numBarcodes > 4,

lillie.test(na.omit(activity))$p.value,

6

NA)) %>%
filter(numBarcodes > 1) %>% # take only alleles which had > 1 barcode
mutate(file = file_names[fileNum]) # and add on a file identifier

The filter removes alleles that only had zero or one barcodes show up in
the RNA, for which a standard deviation is not meaningful

return(alleleStatistics)
}

#apply the above function to the RNA data file_names
transfectionStatistics = mclapply(6:19,

computeTransfectionStatistics,
mc.cores = 6)

Join the results together and clean up the file names
allTransfectionsStats = transfectionStatistics %>%

reduce(bind_rows) %>%
mutate(file = gsub('Geuv_90K_', '', file) %>% gsub('.tag.ct.indiv.expanded', '', .))

save(allTransfectionsStats,
file = '~/designMPRA/outputs/tewheyAllTransfectionsStats.RData')

allTransfectionsStats %>%
ggplot(aes(alleleSD)) +
geom_histogram(bins = 100) +
facet_wrap('file') +
xlab('allele activity standard deviation') +
ggtitle('Allele activity standard deviation distributions by\ntransfection in Tewhey et al., 2016')

NA19239.r2 NA19239.r3

NA12878.r3 NA12878.r4 NA12878.r5 NA19239.r1

HepG2.r5 HepG2.r6 NA12878.r1 NA12878.r2

HepG2.r1 HepG2.r2 HepG2.r3 HepG2.r4

0 1 2 3 4 0 1 2 3 4

0 1 2 3 4 0 1 2 3 4

0
5000

10000
15000

0
5000

10000
15000

0
5000

10000
15000

0
5000

10000
15000

allele activity standard deviation

co
un

t

Allele activity standard deviation distributions by
transfection in Tewhey et al., 2016

There is variability in the distribution of allele activity standard deviations by transfection, but they are
commonly above 1 (the mean of every allele in every transfection in this study is .926). Because activity is a
log quantity, a standard deviation of 1 correpsonds to an average variability of exp(1) ≈ 2.7-fold more mRNA
molecules out per DNA molecule in within barcode replicates of the same allele.

We can look at the activity distribution of the two alleles for a single SNP tested. We take rs1674999 as an
example. A random sample of the raw counts:

7

counts = map(1:19, ~read_tsv(paste0(dir, file_names[.x]),
col_names = c('allele', 'barcode', 'count')) %>%
mutate(src = file_names[.x])) %>%
reduce(bind_rows)
#
rs1674999counts = counts %>% filter(grepl('rs1674999', allele))

load('~/designMPRA/outputs/tewheyrs1674999counts.RData')

rs1674999counts %>%
set_names(c('Allele', 'Barcode', 'Count', 'Transfection File Name')) %>%
sample_n(5) %>%
kable

Allele Barcode Count Transfection File Name
rs1674999_A TGACCTTTAGTATTTGATCT 6 Geuv_90K_ctrl.r1.tag.ct.indiv.expanded
rs1674999_B GATGAAGACATGTAGCCATA 7 Geuv_90K_ctrl.r4.tag.ct.indiv.expanded
rs1674999_B TGTGTCGCCCATGGTCGTGC 3 Geuv_90K_NA19239.r2.tag.ct.indiv.expanded
rs1674999_B TCGCGGTTGTACTAGGTGAC 34 Geuv_90K_NA12878.r5.tag.ct.indiv.expanded
rs1674999_A AAAAGGGAAAGGGATAGTTG 1 Geuv_90K_HepG2.r1.tag.ct.indiv.expanded

And a plot of the activity levels of all barcodes in all samples:
assureRNAandDNA = function(barcodeDat){

function for only including barcodes with DNA & RNA measurements
any(grepl('ctrl',

barcodeDat$src)) & any(grepl('HepG2|NA[0-9]{5}',
barcodeDat$src))

}

rs1674999counts %>%
group_by(barcode) %>%
nest %>%
filter(map_lgl(data, assureRNAandDNA)) %>%
unnest %>%
left_join(fileDepths, by = 'src') %>%
mutate(depthAdjCount = count*1e6/fileDepth) %>% #adjust count for sample depth
group_by(barcode) %>% nest %>%
mutate(ctrlMean = map_dbl(data, # take mean count of control samples

~filter(.x, grepl('ctrl', .x$src))$depthAdjCount %>% mean)) %>%
unnest %>%
filter(!grepl('ctrl', src)) %>%
mutate(activity = log(depthAdjCount / ctrlMean)) %>% #compute activity
mutate(replicate = gsub('Geuv_90K_', '', src) %>% gsub('.tag.ct.indiv.expanded', '', .),

allele = gsub('rs1674999_', '', allele)) %>%
ggplot(aes(allele, activity)) +
geom_jitter(height = 0, width = .25, size = .8) +
facet_wrap('replicate') +
ylab('barcode activity observations') +
ggtitle('Activity measurements of rs1674999\nin Tewhey et al., 2016 by sample')

8

NA19239.r2 NA19239.r3

NA12878.r3 NA12878.r4 NA12878.r5 NA19239.r1

HepG2.r5 HepG2.r6 NA12878.r1 NA12878.r2

HepG2.r1 HepG2.r2 HepG2.r3 HepG2.r4

A B A B

A B A B

−2
0
2

−2
0
2

−2
0
2

−2
0
2

allele

ba
rc

od
e

ac
tiv

ity
 o

bs
er

va
tio

ns
Activity measurements of rs1674999
in Tewhey et al., 2016 by sample

This SNP does not seem to have a large transcriptional shift between the alleles (i.e. both alleles have roughly
the same average activity), but one can see that this level of activity variance is large. The variance is close
to 1.0 in most transfections so this SNP is a reasonably representative example of the variances observed
throughout the experiment.

Detecting a low magnitude transcriptional shift (for example a 33% increase in mRNA per DNA corresponding
to a TS of log(1.33) = .285) at 90% power at the significance level required to overcome multiple corrections
would require aggregating an even larger number of data points than shown here. A power calculation with
pwr::pwr.t.test shows this:
library(pwr)

pwr.t.test(d = .285,
sig.level = .05/39479, # bonferroni correction for the number of pairs tested in the paper
power = .9)

##
Two-sample t test power calculation
##
n = 930.0622
d = 0.285
sig.level = 1.266496e-06
power = 0.9
alternative = two.sided
##
NOTE: n is number in *each* group

9

S2.2 - MPRA Activity Variance in Ulirsch et al., Cell 2016

Repeating the analysis with a different study. These data were acquired from the authors’ website. The code
differs slightly due to differences in how the data was provided by the authors, but the analysis is the same.

A few example barcode counts:
dir = "/mnt/labhome/andrew/MPRA/paper_data/"

UMPRA = read_delim(file = paste0(dir, "Raw/", "RBC_MPRA_minP_raw.txt"),
delim = "\t",
col_names = T,
col_types = cols(chr = "c"))

UMPRA %>% # show a few example counts
select(chr, pos, ref, alt, byallele, K562_minP_DNA1:K562_GATA1_minP_RNA4) %>%
gather(key = src, value = count, K562_minP_DNA1:K562_GATA1_minP_RNA4) %>%
sample_n(5) %>%
set_names(c('Chrom', 'Position', 'Reference',

'Alternate', 'Allele ID', 'Transfection', 'Count')) %>%
kable

Chrom Position Reference Alternate Allele ID Transfection Count
12 2474661 C T 12 2474661 1/2 Mut K562_GATA1_minP_RNA3 251
17 42294462 A G 17 42294462 1/2 Ref K562_CTRL_minP_RNA6 1
1 158628014 T G 1 158628014 1/2 Ref K562_CTRL_minP_RNA3 38
6 32612079 T C 6 32612079 1/3 Ref K562_GATA1_minP_RNA3 3
1 203650945 C T 1 203650945 1/3 Ref K562_CTRL_minP_RNA1 1

Here we’ll use a mean depth-normalized DNA count of .13:
depthNormalize = function(sampleCounts){

sampleCounts*1e6/sum(sampleCounts)
}

UMPRA %>%
mutate_at(vars(contains('K562')), depthNormalize) %>%
mutate(dnaMean = (K562_minP_DNA1 + K562_minP_DNA2)/2) %>%
ggplot(aes(dnaMean)) +
geom_density() +
scale_x_log10() +
geom_vline(xintercept = .13,

lty = 2,
color = 'grey60') +

ggtitle('Density plot of depth-adjusted DNA count mean\nacross DNA replicates in Ulirsch et al., 2016') +
xlab('Depth Adjusted Mean Barcode Count in DNA samples')

10

http://www.bloodgenes.org/RBC_MPRA/

0.0

0.2

0.4

0.6

1 100

Depth Adjusted Mean Barcode Count in DNA samples

de
ns

ity
Density plot of depth−adjusted DNA count mean
across DNA replicates in Ulirsch et al., 2016

And here are the distributions of allele activity standard deviations by sample:
activitySDs = UMPRA %>%

mutate_at(vars(contains('K562')), depthNormalize) %>%
mutate(dnaMean = (K562_minP_DNA1 + K562_minP_DNA2)/2) %>%
filter(dnaMean > .13) %>%
select(-K562_minP_DNA1, -K562_minP_DNA2) %>%
gather(sample, depthAdjCount, K562_CTRL_minP_RNA1:K562_GATA1_minP_RNA4) %>%
mutate(activity = log(depthAdjCount / dnaMean)) %>%
group_by(byallele, sample) %>%
summarise(alleleSD = sd(activity[is.finite(activity)], na.rm = TRUE)) %>%
ungroup

the use of is.finite() removes barcodes with 0 RNA counts (-Inf activity)

activitySDs %>%
ggplot(aes(alleleSD)) +
geom_histogram(bins = 50) +
facet_wrap('sample') +
xlab('Allele Activity Standard Deviation') +
ggtitle('Allele activity standard deviation distributions\nby transfection in Ulirsch et al., 2016')

11

K562_GATA1_minP_RNA3 K562_GATA1_minP_RNA4

K562_CTRL_minP_RNA5 K562_CTRL_minP_RNA6 K562_GATA1_minP_RNA1 K562_GATA1_minP_RNA2

K562_CTRL_minP_RNA1 K562_CTRL_minP_RNA2 K562_CTRL_minP_RNA3 K562_CTRL_minP_RNA4

0 1 2 3 4 5 0 1 2 3 4 5

0 1 2 3 4 5 0 1 2 3 4 5

0
500

1000
1500
2000

0
500

1000
1500
2000

0
500

1000
1500
2000

Allele Activity Standard Deviation

co
un

t
Allele activity standard deviation distributions
by transfection in Ulirsch et al., 2016

Again, this plot shows that for a randomly chosen single allele, the standard deviation of its activity
measurements are commonly around or above 1. The mean activity standard deviation across all samples in
this study was 1.1221643.

If we combine both studies, we can see the typical range of activity standard deviations. The third output
exponentiates the standard deviations, showing the corresponding standard fold-change in mRNA out to
DNA in.
bothStudies = c(allTransfectionsStats$alleleSD, #Tewhey et al.

activitySDs$alleleSD) #Ulirsch et al.

Mean activity standard deviation in both studies:
bothStudies %>%

mean(na.rm = TRUE)

[1] 0.9523771
Exponentiated
bothStudies %>%

mean(na.rm = TRUE) %>%
exp

[1] 2.591864
Central 95% interval of activity standard deviations in both studies:
bothStudies %>%

na.omit %>%
quantile(c(.025, .975))

2.5% 97.5%
0.4531956 1.5874324
Exponentiated
bothStudies %>%

na.omit %>%
quantile(c(.025, .975)) %>%
exp

2.5% 97.5%
1.573332 4.891174

12

S3 - Activity Normality Assumption

The “Power” tab of the application uses a t-test to estimate the power to detect functional variants with given
activity variance across a range of transcriptional shifts. Therefore the validity of the underlying normality is
an important consideration. We performed a number of analyses including normal Q-Q plots, Lilliefors tests,
and Monte Carlo simulations to examine the impact of the normality assumption on our power calculations.
In this section we show that a t-test is a reasonable approximation for modelling MPRA data.

S3.1 - Normal Q-Q plots

We can use a normal QQ plot to visually inspect the normality of allele activity levels.

S3.1.1 - Normal Q-Q plots of randomly chosen alleles

We will do this for a set of randomly chosen alleles from each sample in Tewhey et al., 2016.
get_random_allele = function(fileNum){

dir = '/mnt/bigData2/andrew/MPRA/Tewhey/indivTags/'

Get the file's depth normalization factor
depthNum = fileDepths %>% filter(src == file_names[fileNum]) %>% .$fileDepth

Read in the counts
rnaCounts = read_tsv(paste0(dir, file_names[fileNum]),

col_names = c('allele', 'barcode', 'count')) %>%
mutate(depthAdjCount = 1e6*count/depthNum) #normalize them for depth

return a data_frame with the activity measurements for one allele
depthAdjDNAmeanCount %>%

filter(bcMean > .06) %>% # this is where we introduce the cutoff
left_join(rnaCounts, by = c('allele', 'barcode')) %>% #join onto DNA counts
na.omit %>%
filter(allele == sample(.$allele, 1)) %>%
mutate(activity = log(depthAdjCount/bcMean),

file_name = file_names[fileNum]) # and add on a file identifier
}

set.seed(123456)

random_alleles = mclapply(6:19, get_random_allele, mc.cores = 6) %>%
reduce(rbind) %>%
as_tibble %>%
mutate(file_name = gsub('Geuv_90K_', '', file_name) %>% gsub('.tag.ct.indiv.expanded', '', .)) %>%
unite(allele_sample, allele, file_name, sep = '\n')

qq_lines = random_alleles %>% # http://mgimond.github.io/ES218/Week06a.html
group_by(allele_sample) %>%
summarise(act25 = quantile(activity,.25),

act75 = quantile(activity, .75),
norm25 = qnorm(.25),
norm75 = qnorm(.75),
qq_slope = (act25 - act75) / (norm25 - norm75),
qq_int = act25 - qq_slope * norm25)

13

random_alleles %>%
ggplot() +
stat_qq(aes(sample = activity)) +
facet_wrap('allele_sample') +
geom_abline(aes(slope = qq_slope, intercept = qq_int),

data = qq_lines,
color = 'grey60', lty = 2)

rs72674866_A
HepG2.r1

rs798751_RC_B
HepG2.r6

rs4749125_altA
HepG2.r2

rs56036624_RC_B
NA19239.r2

rs62057112_B
HepG2.r4

rs6960865_B
NA12878.r5

rs117377479_B
NA12878.r4

rs138940893_RC_B
NA19239.r3

rs2307014_RC_A
HepG2.r3

rs35394192_RC_B
NA12878.r3

chr19:5789039:I_RC_altB
NA12878.r1

rs111833570_altB
NA12878.r2

rs115546344_A
HepG2.r5

rs11571340_A
NA19239.r1

−3 −2 −1 0 1 2 3−3 −2 −1 0 1 2 3

−3 −2 −1 0 1 2 3−3 −2 −1 0 1 2 3

−4
−2

0
2
4

−4
−2

0
2
4

−4
−2

0
2
4

−4
−2

0
2
4

theoretical

sa
m

pl
e

S3.1.2 Normal Q-Q plots of highly non-normal alleles

We can also do this to inspect the most non-normal alleles (see S3.2 to see how we define non-normality in
terms of low Lilliefors test p-values) from each sample.
get_nonnormal_allele = function(file_allele_list){

dir = '/mnt/bigData2/andrew/MPRA/Tewhey/indivTags/'

file_name = file_allele_list[['file_name']]
file_name_str = file_name
nonnormal_allele = file_allele_list[['allele']]

depthNum = fileDepths %>% filter(src == paste0('Geuv_90K_', file_name, '.tag.ct.indiv.expanded')) %>% .$fileDepth

rnaCounts = read_tsv(paste0(dir, 'Geuv_90K_', file_name, '.tag.ct.indiv.expanded'),
col_names = c('allele', 'barcode', 'count')) %>%

mutate(depthAdjCount = 1e6*count/depthNum) #normalize them for depth

14

return a data_frame with the activity measurements for one allele
depthAdjDNAmeanCount %>%

filter(bcMean > .06) %>% # this is where we introduce the cutoff
left_join(rnaCounts, by = c('allele', 'barcode')) %>% #join onto DNA counts
na.omit %>%
filter(allele == nonnormal_allele) %>%
mutate(activity = log(depthAdjCount/bcMean),

file_name = file_name_str) # and add on a file identifier
The filter removes alleles that only had zero or one barcodes show up in
the RNA, for which a standard deviation is not meaningful

}

nonnormal_alleles = allTransfectionsStats %>%
arrange(lillieforsP) %>%
filter(!duplicated(file)) %$%
map2(file, allele, ~list(file_name = .x, allele = .y)) %>%
mclapply(get_nonnormal_allele, mc.cores = 6) %>%
reduce(rbind) %>%
as_tibble %>%
mutate(file_name = gsub('Geuv_90K_', '', file_name) %>% gsub('.tag.ct.indiv.expanded', '', .)) %>%
unite(allele_sample, allele, file_name, sep = '\n')

qq_lines = nonnormal_alleles %>% # http://mgimond.github.io/ES218/Week06a.html
group_by(allele_sample) %>%
summarise(act25 = quantile(activity,.25),

act75 = quantile(activity, .75),
norm25 = qnorm(.25),
norm75 = qnorm(.75),
qq_slope = (act25 - act75) / (norm25 - norm75),
qq_int = act25 - qq_slope * norm25)

nonnormal_alleles %>%
ggplot() +
stat_qq(aes(sample = activity)) +
facet_wrap('allele_sample') +
geom_abline(aes(slope = qq_slope, intercept = qq_int), data = qq_lines, color = 'grey60', lty = 2) +
ggtitle('Normal QQ plots of the most highly non-normal\nalleles in each sample of Tewhey et al., 2016')

15

rs28519456_RC_altB
NA19239.r3

rs72842946_A
NA12878.r3

rs28519456_RC_altB
NA12878.r4

rs28519456_RC_altB
NA12878.r5

rs28519456_RC_altB
NA19239.r1

rs28519456_RC_altB
NA19239.r2

rs28519456_RC_altB
HepG2.r4

rs28519456_RC_altB
HepG2.r5

rs28519456_RC_altB
HepG2.r6

rs28519456_RC_altB
NA12878.r1

rs12639938_B
NA12878.r2

rs28519456_RC_altB
HepG2.r1

rs28519456_RC_altB
HepG2.r2

rs28519456_RC_altB
HepG2.r3

−3 −2 −1 0 1 2 3 −3 −2 −1 0 1 2 3

−3 −2 −1 0 1 2 3 −3 −2 −1 0 1 2 3

−2.5
0.0
2.5
5.0
7.5

−2.5
0.0
2.5
5.0
7.5

−2.5
0.0
2.5
5.0
7.5

−2.5
0.0
2.5
5.0
7.5

theoretical

sa
m

pl
e

Normal QQ plots of the most highly non−normal
alleles in each sample of Tewhey et al., 2016

These plots show that the most highly non-normal alleles generally feature heavy tails on the left side of the
distribution. We noticed that the most highly non-normal allele in each sample is usually rs28519456_RC_altB
so we repeat this process while filtering out any duplicate alleles:
nonnormal_alleles = allTransfectionsStats %>%

arrange(lillieforsP) %>%
filter(!duplicated(allele)) %>%
filter(!duplicated(file)) %$%
map2(file, allele, ~list(file_name = .x, allele = .y)) %>%
mclapply(get_nonnormal_allele, mc.cores = 6) %>%
reduce(rbind) %>%
as_tibble %>%
mutate(file_name = gsub('Geuv_90K_', '', file_name) %>% gsub('.tag.ct.indiv.expanded', '', .)) %>%
unite(allele_sample, allele, file_name, sep = '\n')

qq_lines = nonnormal_alleles %>% # http://mgimond.github.io/ES218/Week06a.html
group_by(allele_sample) %>%
summarise(act25 = quantile(activity,.25),

act75 = quantile(activity, .75),
norm25 = qnorm(.25),
norm75 = qnorm(.75),
qq_slope = (act25 - act75) / (norm25 - norm75),
qq_int = act25 - qq_slope * norm25)

nonnormal_alleles %>%
ggplot() +
stat_qq(aes(sample = activity)) +

16

facet_wrap('allele_sample') +
geom_abline(aes(slope = qq_slope, intercept = qq_int), data = qq_lines, color = 'grey60', lty = 2)

rs72842946_A
NA12878.r3

rs8102037_A
HepG2.r2

rs28519456_RC_altB
HepG2.r5

rs6697160_B
NA12878.r5

rs6700034_RC_B
NA19239.r2

rs6880209_RC_A
NA19239.r3

rs2351011_B
HepG2.r6

rs28384491_A
NA19239.r1

rs28519456_RC_A
HepG2.r4

rs28519456_RC_altA
HepG2.r1

rs10813951_B
NA12878.r1

rs113191295_RC_B
NA12878.r4

rs11631183_B
HepG2.r3

rs12639938_B
NA12878.r2

−2 0 2 −2 0 2

−2 0 2 −2 0 2

−5.0
−2.5

0.0
2.5
5.0
7.5

−5.0
−2.5

0.0
2.5
5.0
7.5

−5.0
−2.5

0.0
2.5
5.0
7.5

−5.0
−2.5

0.0
2.5
5.0
7.5

theoretical

sa
m

pl
e

Generally the most highly non-normal alleles show most of their data falling in a roughly normal pattern and
the rest going into a heavy negative tail. This pattern is also apparent in most of the highly non-normal
alleles from Ulirsch et al., 2016 (analysis not shown), however it is less obvious given that study’s lower
number of barcodes per allele. See section S3.3 for a monte carlo simulation that examines the effect of this
pattern on the results of a t-test.

S3.2 - Lilliefors tests

We can test every allele in a systematic, quantitative way through the use of Lilliefors tests.

In the earlier section S2.1 that describes the activity variance in MPRA assays we also calculated the p-value
of a Lilliefors test for each allele. A Lilliefors test is a modified Kolmogorov-Smirnov test that tests if the
data come from a normal distribution with unspecified mean and variance. A low p-value from a Lilliefors
test suggests that the data come from a non-normal distribution.

S3.2.1 - Lilliefors p-value distribution

Looking at the distribution of these p-values will tell us how commonly the normality assumption of our t-test
holds. If all samples come from normal distributions, the p-values should follow a Unif(0, 1) distribution
(shown here scaled to this number of allele observations as a grey horizontal line).
segment = data_frame(x1 = 0,

x2 = 1,
y1 = nrow(allTransfectionsStats) / 30,

17

y2 = nrow(allTransfectionsStats) / 30)

allTransfectionsStats %>%
na.omit() %>% #we returned NA for alleles with <4 observations
ggplot(aes(lillieforsP)) +
geom_histogram(breaks = seq(0,1,length.out = 30)) +
xlab('Lilliefors Test P-value') +
geom_segment(aes(x = x1,

xend = x2,
y = y1,
yend = y2),

data = segment,
lty = 2,
color = 'grey60') +

ggtitle('Lilliefors Normality Test P-values of allele\nactivity measurements in Tewhey et al., 2016')

0

25000

50000

75000

0.00 0.25 0.50 0.75 1.00

Lilliefors Test P−value

co
un

t

Lilliefors Normality Test P−values of allele
activity measurements in Tewhey et al., 2016

While a subset of the variants from Tewhey et al. clearly skew from the Unif(0, 1) distribution one would
expect from normally distributed samples, the fraction of alleles that defy the expected pattern is relatively
small. This suggests that a t-test should usually provide a reasonable approximation of the true power.

S3.2.2 - Lilliefors p-value and Transcriptional Shift relationship

There is no indication that SNPs with large transcriptional shifts (i.e. those one aims to detect with the assay)
systematically defy the normality assumption. The following plot shows this with the observed transcriptional
shift on the x-axis and p-value of a Lilliefors test on the activity measurements of the second allele on the
y-axis (the plot for the first allele looks very similar). If SNPs with large transcriptional effects systematically
defied the normality assumptions, the SNPs on the left and right sides would show the lowest p-values, which
is not observed:
shiftNonNormality = allTransfectionsStats %>%

separate(allele,
into = c('SNP', 'allele'),
sep = '_(?=[AB]$)|_(?=alt[AB]$)') %>%

separate(allele,
into = c('alt', 'allele'),
sep = '(?=[AB]$)') %>%

18

unite(SNP, SNP:alt) %>%
mutate(SNP = gsub('_$', '', SNP)) %>%
unite(SNPfile, SNP, file) %>%
group_by(SNPfile) %>%
summarise(numAlleles = n(),

TS = ifelse(numAlleles == 2, alleleMean[2] - alleleMean[1], NA),
allele1Lilliefors = lillieforsP[1],
allele2lilliefors = lillieforsP[2])

shiftNonNormality %>%
ggplot(aes(TS, allele2lilliefors)) +
geom_point(alpha = .1) +
scale_y_log10() +
xlab('SNP transcriptional shift') +
ylab('allele 2 Lilliefors P-value') +
ggtitle('SNP transcriptional shift vs. allele 2 Lilliefors\nNormality Test P-value in Tewhey et al., 2016') +
geom_smooth()

19

S3.3 Monte Carlo t-test simulation

S3.3.1 Non-normal allele

Given the common shape of the highly non-normal alleles seen in S3.1, we show here through Monte Carlo
simulation that this non-normality does not significantly impact the outcome of a t-test. First we look at
the activity measurements of the most highly non-normal allele in the entirety of Tewhey et al., 2016: allele
rs28519456_RC_altB in the sample HepG2.r5.
library(pwr)
library(parallel)

worst = list(allele = 'rs28519456_RC_altB', file_name = 'HepG2.r5') %>%
get_nonnormal_allele()

worst %>%
ggplot(aes(x = activity)) +
geom_histogram(aes(y = ..density..), bins = 30) +
ggtitle('rs28519456_RC_altB in sample HepG2.r5\nThe most highly non-normal allele in Tewhey et al., 2016')

0.0

0.1

0.2

0.3

0.4

−2.5 0.0 2.5 5.0 7.5

activity

de
ns

ity

rs28519456_RC_altB in sample HepG2.r5
The most highly non−normal allele in Tewhey et al., 2016

By re-sampling from this distribution, we can compute Monte Carlo simulations of the average power of a
t-test to detect a difference between this distribution and a “typical” reference allele (we use samples from a
normal distribution with a standard deviation of .926) at α = 10−5. We can compare the simulated power to
the theoretical power of the situation where both alleles were drawn from normal distributions.
worst_mean = mean(worst$activity)

used to calculate effect size
pooled_SD = sqrt(((nrow(worst) - 1)*sd(worst$activity)**2 + (nrow(worst) - 1)*.926**2) /

20

(nrow(worst)*2 - 2))

simulate_power = function(transcription_shift, sig_level = .05, n_sim = 10000){

#simulate a t-test many times
monte_carlo_p_values = sapply(1:n_sim, function(x){

randomly sample the most non-normal allele
non_normal_samples = sample(worst$activity, size = nrow(worst), replace = TRUE)

randomly sample a "typical" allele of the same size
normal_samples = rnorm(nrow(worst),

mean = worst_mean - transcription_shift,
sd = .926) # using the average SD from Ulirsch and Tewhey together

compute the p-value of a t-test
t.test(non_normal_samples, normal_samples)$p.value

})

return the fraction that pass the input significance level
sum(monte_carlo_p_values < sig_level) / n_sim

}

sim_power = data_frame(transcription_shift = seq(-1.1, 1.1, length.out = 50),
theoretical_power = pwr.t.test(n = nrow(worst),

d = abs(transcription_shift) / pooled_SD,
type = 'two.sample',
alternative = 'two.sided',
sig.level = 1e-5)$power,

monte_carlo_power = mclapply(transcription_shift,
simulate_power,
mc.cores = 6,
sig_level = 1e-5, n_sim = 3e6) %>% unlist)

load('~/designMPRA/outputs/sim_power_p_1e-5_n_3e6.RData')

sim_power %>%
gather(power_type, power, -transcription_shift) %>%
ggplot(aes(transcription_shift, power, color = power_type)) +
geom_path() +
scale_y_continuous(breaks = seq(0, 1, by = .25),

limits = c(0, 1)) +
ggtitle('Monte Carlo simulation comparing non-normal allele\nt-test results and theoretical results')

21

0.00

0.25

0.50

0.75

1.00

−1.0 −0.5 0.0 0.5 1.0

transcription_shift

po
w

er

power_type

monte_carlo_power

theoretical_power

Monte Carlo simulation comparing non−normal allele
t−test results and theoretical results

The two curves are very close, showing a maximum absolute difference between theoretical and simulated
power of 0.0400.

S3.3.2 Normal allele

For the sake of comparison, we repeated the process using an allele from the same transfection whose activity
levels looked convincingly normally distributed: rs12942988_altB. We chose this allele because it had the
same number of barcode allele measurements as rs28519456_RC_altB and it’s Lilliefors test p-value was
0.782.
good = list(allele = 'rs12942988_altB', file_name = 'HepG2.r5') %>%

get_nonnormal_allele()

good %>%
ggplot(aes(activity)) +
geom_histogram(bins = 30) +
geom_rug() +
labs(title = 'rs12942988_altB in sample HepG2.r5,\nan example of a roughly normally distributed allele')

22

0

10

20

−2 0 2

activity

co
un

t
rs12942988_altB in sample HepG2.r5,
an example of a roughly normally distributed allele

good_mean = mean(good$activity)

used to calculate effect size
pooled_SD = sqrt(((nrow(good) - 1)*sd(good$activity)**2 + (nrow(good) - 1)*.926**2) /

(nrow(good)*2 - 2))

sim_power = data_frame(transcription_shift = seq(-1.1, 1.1, length.out = 50),
theoretical_power = pwr.t.test(n = nrow(good),

d = abs(transcription_shift) / pooled_SD,
type = 'two.sample',
alternative = 'two.sided',
sig.level = 1e-5)$power,

monte_carlo_power = mclapply(transcription_shift,
simulate_power,
mc.cores = 6,
sig_level = 1e-5, n_sim = 3e6) %>% unlist)

load('~/designMPRA/outputs/sim_power_rs12942988_altB.RData')
sim_power %>%

gather(power_type, power, -transcription_shift) %>%
ggplot(aes(transcription_shift, power, color = power_type)) +
geom_path(aes(lty = power_type), lwd = .75) +
scale_y_continuous(breaks = seq(0, 1, by = .25),

limits = c(0, 1)) +
ggtitle('Monte Carlo simulation comparing normal allele\nt-test results and theoretical results')

23

0.00

0.25

0.50

0.75

1.00

−1.0 −0.5 0.0 0.5 1.0

transcription_shift

po
w

er

power_type

monte_carlo_power

theoretical_power

Monte Carlo simulation comparing normal allele
t−test results and theoretical results

As expected, the simulated power almost exactly matches the theoretical power, showing a maximum absolute
difference of 0.00341.

S3.4 Activity Normality Assumption - Conclusions

• The distributions of a majority of alleles are indistinguishable from normal distributions (S3.1 and
S3.2).

• Those that are highly non-normal are non-normal in a way that does not significantly impact the
outcome of the t-test in terms of statistical power (S3.3).

• Non-normality does not correlate with high transcriptional shift, meaning that the rare violations of the
normality assumption would only be impactful on SNPs that are uninteresting in the first place (S3.2).

Furthermore we must remember that t-tests are generally considered robust against minor violations of the
normality assumption (Lehmann 1986).

All of this together suggests it would be reasonable to have a t-test underlie the power calculations. Researchers
cannot know the activity variance their experimental setups will achieve nor the true transcriptional shifts of
their variants a priori in any case. The “Power” tab of the application is meant to use a few assumptions
in order to provide approximate power estimates that researchers can use as rough guidelines for their
experiments.

S4 - Power calculations

The power calculations are done with pwr.t.test from the R pwr package using the following R code:

24

tibble::data_frame(meanDiff = seq(0,5, by = .05),
pwr = pwr.t.test(n = input$nbarcode*input$nBlock,

d = meanDiff / input$sigma,
sig.level = input$alpha / input$nsnp)$power)

This returns the power to detect a transcriptional shift across a range from zero to five using user inputs
(denoted input$inputName) on:
* the number of barcodes per allele
* the number of transfection replicates (blocks)
* the number of variants being tested (used for correcting the significance level to account for multiple testing)
* the desired significance level
* the assumed variance of activity measurements

This data frame is then plotted.

S5 - Barcode design

We generated the set of all possible DNA 12-mers then screened these according to the design parameters in
Melnikov et al., Nature Biotechnology 2012 intended to assure that the barcodes are inert. These involve the
following parameters:
* each nucleotide occurs at least once
* no runs of single nucleotides greater than length 3
* do not contain restriction sites for KpnI/XbaI
+ do not start with TCT (this creates a restriction site with XbaI with the preceding sequence)
* they do not match any human miR seed sequences

This was done with the generate12mers.R script in the package (copied below; not run in the generation of
this document).
library(tcR)
library(Biostrings)
nucruns = vector(mode = 'character', length = 4) %>% DNAStringSet
ni = 1
for (i in 4) {

for (j in c('A', 'G', 'T', 'C')) {
nucruns[ni] = rep(j, i) %>% paste(collapse = '') %>% DNAStringSet
ni = ni + 1

}
}

twelvemers = generate.kmers(12) %>% DNAStringSet
cat(paste0('done generating 12mers at ', Sys.time()))

#tmp = twelvemers[sample.int(length(twelvemers), size = 10)]

#Each nucleotide occurs at least one
missingone = apply(alphabetFrequency(twelvemers)[,1:4], 1, function(x){any(x == 0)})
twelvemers = twelvemers[!missingone]
cat(paste0('done removing twelvemers missing a nucleotide at ', Sys.time()))

#Cut out those with nucleotide runs of 4 or more in a row
hasnucruns = vcountPDict(nucruns, twelvemers) %>% colSums
hasnucruns = hasnucruns > 0

25

twelvemers = twelvemers[!hasnucruns]
cat(paste0('done removing 12mers with runs of 4 or more at ', Sys.time()))

#Cut out those that start with TCT (creates an alternative digestion site for XbaI)
tctStart = subseq(twelvemers, 1, 3) == DNAString('TCT')
twelvemers = twelvemers[!tctStart]
cat(paste0('done removing 12mers starting with TCT at ', Sys.time()))

#Cut out those that match the miRNA seed sequences
#For now let's just use the human ones since there are fewer and it won't take as long
#isolated species names with cat mature.fa | grep '>' | cut -f 3,4 -d \ > mirBaseSpecies.txt
species = read.table('~/plateletMPRA/mirBaseSpecies.txt') %>%

as.tbl %>%
transmute(name = paste(V1 %>% as.character, V2 %>% as.character)) #%>%
#filter(!duplicated(name))

human = grepl('Homo sapiens', species$name)

allSeeds = readRNAStringSet('~/plateletMPRA/mature.fa')

seedSeqs = allSeeds %>% subseq(2,7) %>% DNAStringSet #%>% unique
humanSeedSeqs = seedSeqs[human] %>% unique
seedSeqs = allSeeds %>% subseq(2,7) %>% DNAStringSet %>% unique

haveSeedlist = vwhichPDict(humanSeedSeqs, twelvemers) #this takes ~40 minutes. All seeds takes ~1h45m
save(list = c('twelvemers', 'haveSeedlist', 'humanSeedSeqs'),

file = '~/designMPRA/outputs/haveHumanRNAiSeeds.RData')
haveSeed = sapply(haveSeedlist, function(x){length(x) > 0})

twelvemers = twelvemers[!haveSeed]
cat(paste0('done removing those with mirSeeds at ', Sys.time()))

print(length(twelvemers))
save(twelvemers, file = '~/designMPRA/outputs/inertTwelveMers.RData')

S6 - References

1. Melnikov, A., Murugan, A., Zhang, X., Tesileanu, T., Wang, L., Rogov, P., . . . Mik-kelsen, T. S. (2012).
Systematic dissection and optimization of inducible enhancers in human cells using a massively parallel
reporter assay. Nature Bio-technology, 30(3), 271–7.

2. Tewhey, R., Kotliar, D., Park, D. S., Liu, B., Winnicki, S., Reilly, S. K., . . . Sabeti, P. C. (2016).
Direct Identification of Hundreds of Expression-Modulating Variants using a Multiplexed Reporter
Assay. Cell, 165(6), 1519–1529.

3. Ulirsch, J. C., Nandakumar, S. K., Wang, L., Giani, F. C., Zhang, X., Rogov, P., . . . Sankaran, V.
G. (2016). Systematic Functional Dissection of Common Genetic Variation Affecting Red Blood Cell
Traits. Cell, 165(6), 1530–1545.

4. Lehmann, E. L. (1986). Unbiasedness: Applications to Normal Distributions; Confidence Intervals. In
Testing Statistical Hypotheses (2nd ed., pp. 203-206). Wiley.

26

	S1 - MPRA diagrams
	S2 - MPRA Activity Variance
	S3 - Activity Normality Assumption
	S4 - Power calculations
	S5 - Barcode design
	S6 - References

