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Relative and absolute library sizes. Let ygj be the raw read counts
of gene g in sample j. If we denote the relative library size of sample j after
sequencing by nj =

∑D
g=1 ygj , with D the number of genes, the parts of the

read count composition are

xgj =
ygj
nj

. (1)

Note that the nj have only a technical, not a biological meaning. There are also
absolute counts Kagj that may be thought of as the (average) number of mRNAs
from a given gene in the cells before sequencing. (Here we put the constant K
to indicate that all we usually need are counts agj that are proportional to
these counts, not the exact number of mRNAs.) This interpretation would
only be true if each mRNA molecule produced the same number of reads. We
have, however, the additional complication that longer mRNAs result in more
sequencing reads, so the absolute counts Kagj are in fact a product of the
number of mRNAs and the number of reads produced per gene-specific mRNA
molecule. We can now express the parts xgj also in terms of the unknown
absolute counts:

xgj =
agj∑D
g=1 agj

. (2)

The (unknown) denominator we call the effective library size. Equating (1) and
(2) relates the observed counts to the unknown absolute counts.

Size factors, normalization factors, and offsets. Comparisons between
two or more samples require a transformation to a common scale. There are
two strategies to achieve this. First, the CoDA strategy bases between-sample
comparisons on ratios obtained from within the samples. Second, the normal-
ization strategy attempts to transform to the common-scale counts agj . For
this, we can define size factors sj that are proportional to the ratio of relative
and absolute library sizes:

sj =
nj∑
g agj

(3)

Note that dividing the raw counts ygj by the size factors sj , we obtain the
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common-scale counts agj :

ygj
sj

=
njxgj

∑
g agj

nj
= agj . (4)

Taking the log of this, we see that the logged raw counts are offset by the log of
the size factor (i.e., log(ygj) − log(sj)). In the next sections, we show how size
factors can be estimated. First, we consider another approach that estimates

normalization factors f
(r)
j based on the ratio between absolute library sizes

f
(r)
j =

∑
g agj∑
g agr

. (5)

Here, the sample r serves as a reference sample. Multiplying the ratio of parts
between samples with these normalization factors, we get absolute count ratios:

xgj

xgr
f
(r)
j =

agj
agr

. (6)

Again, taking the log of this equation shows that the logratio of parts is offset

by the log of the normalization factor (i.e., log(xgj/xgr) + log(f
(r)
j )).

Unchanged genes normalize. Before we show how normalization and
size factors can be estimated, let us first say a few words about reference genes
u that have constant absolute counts. If known, they can be used to determine
size factors

yuj = njxuj =
njconst.∑

g agj
= const.sj (7)

and normalization factors

xuj

xur
=

const.∑
g agj

∑
g agr

const.
=

∑
g agr∑
g agj

=
1

f
(r)
j

. (8)

We can also see that the alr transformation using an unchanged gene in the
denominator results in a normalization of the data. The per-gene components
of an alr-transformed sample using an unchanged reference u evaluate to

alr(u)g (xj) = log
xgj

xuj
= log

xgj

∑
g′ ag′j

const.
= log agj − log const. (9)

DeSeq and edgeR normalizations. The normalization strategies that we
discuss now try to estimate unchanged references by pooling information from
many genes, where the underlying assumption is that the majority of genes do
not change across samples. Let us denote the number of samples by N . In
DeSeq [1], size factors are estimated by a median

sj = medg
ygj(∏N

j′=1 ygj′
) 1

N

, (10)
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while in edgeR [2], normalization factors are determined via the trimmed mean
of M-values (TMM)

log2

1

f
(r)
j

=
∑
g∈G∗

ω
(r)
gj log2

xgj

xgr
. (11)

Here, G∗ is the bulk set of genes that remains after ranking them both according
to their log ratios and according to their expression levels, and then discarding
pre-specified percentages of the highest and lowest ranked genes in both rank-

ings. The ω
(r)
gj are precision weights that insure higher contributions of more

reliable genes. The log-ratios that are summed over are known as M-values.

Relation to clr transformation. To see the connection to the clr trans-
formation of both these normalization procedures, we specify the per-gene com-
ponents of a clr-transformed sample by

clrg(xj) = log
xgj(∏D

g′=1 xg′j

) 1
D

. (12)

Starting with the DeSeq size factors, we replace the median in (10) by the
(mathematically more tractable) geometric mean:

sj =

 D∏
g=1

ygj(∏N
j′=1 ygj′

) 1
N


1
D

= C−1

(
D∏

g=1

ygj

) 1
D

, (13)

where the constant C evaluates to

C =

 N∏
j=1

D∏
g=1

ygj

 1
ND

. (14)

We can now calculate the log of the common-scale counts using (4):

log agj = log
ygj
sj

= log

 ygj(∏D
g′=1 yg′j

) 1
D

C

 = log

 njxgj

nj

(∏D
g′=1 xg′j

) 1
D

C


= clrg(xj) + log C. (15)

Thus, if we replace the median with the geometric mean in the size-factor es-
timate, for the log of the common-scale counts we recover the clr-transformed
parts (12) plus a constant. Let us now come to the TMM normalization. If in
(11) we do without trimming and weighting we obtain

−log2f
(r)
j =

1

D

∑
g

log2

xgj

xgr
= log2

(∏
g

xgj

xgr

) 1
D

. (16)
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Thus, using (6), the untrimmed and unweighted mean results in an absolute
log-ratio estimate

log
agj
agr

= log

(
xgj

xgr
f
(r)
j

)
= log

xgj

xgr
− log

(∏
g

xgj

xgr

) 1
D

= clrg(xj) − clrg(xr).

(17)
Comparison. Comparing the last equation with (15), we see that we would

get exactly the same expression using the modified DeSeq normalization. The
median, trimmed mean and geometric mean lead thus to quite similar proce-
dures, making it clear that the clr transformation can be used as a normalization.
The iqlr transformation [3] as used in ALDEx2 would be even more in spirit
of the trimmed mean used in edgeR. For a comparison of effective library size
normalization methods, see [4]. It should be emphasized, however, that the
focus in CoDA is not on scaling parts to become common-scale quantities that
are comparable on absolute terms. Rather, when the within-sample ratios are
compared between samples, the denominators in them have to be taken for what
they are when interpreting results.

A word on RPKM and TPM. While effective library-size normalizations
are specifically designed for compositional data, neither RPKM [5] nor TPM [6]
are suitable for this data type under general conditions. RPKMs of a gene (or
transcript) g in sample j are proportional to xgj/lg, where lg is the length of
the gene. TPMs are proportional to

xgj/lg∑
g′ xg′j/lg′

. (18)

While TPM is now preferred to RPKM as it sums to the same number in
each sample (and thus avoids some problems with inter-sample comparisons
[6]), it still was designed with absolute data in mind. The definition would
be compatible with compositional data if we replaced the xgj by agj , but for
this, we would have to use one of the normalization strategies described above.
Otherwise, we assume read counts for samples are already on a common scale.
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Supplemental Figure 1

Figure 1: This figure shows a mock example of feature abundance (y-axis) for
four subjects (x-axis). The top panel shows absolute feature abundance for four
features (e.g., genes) as colors. The bottom panel shows relative feature abun-
dance for the same four features. Absolute abundances and relative abundances
differ. For example, although Feature 1 is equally expressed in all samples
absolutely, it appears to have decreased abundance in some when measured
relatively.
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Supplemental Figure 2

Figure 2: This figure shows another mock example of feature abundance (y-
axis) for four subjects (x-axis). The top panel shows absolute feature abun-
dance for 1000 features (simulated based on a negative binomial distribution).
The bottom panel shows relative feature abundance for the same 1000 features.
Absolute abundances and relative abundances differ. In absolute terms, 900
features have increased abundance in Subjects C and D and 100 features have
equal abundance across all Subjects. Yet, some features in Subjects C and D
appear to have decreased abundance when measured relatively.
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Supplemental Figure 3

Figure 3: This figure shows another mock example of three variables measured
across 100 subjects (as points) belonging to one of two groups (as colors). The
left panel shows absolute abundance visualized with a 3D scatter plot. The right
panel shows relative abundance visualized with a ternary diagram. Although
the two groups are linearly separable in absolute space (left), the boundary is
blurred in relative space (right).
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