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1 Length distributions of AMP and non-AMP partitions
Sequence length distributions are shown for the training (top), evaluation (middle), and
testing (bottom) partitions in Figure S1.

Figure S1: Sequence length distributions over AMPs are shown in blue (left), and over
non-AMPs are shown in red (right).
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2 Impact of Data Set Size on Model Performance
To assess the impact of data set size on our model performance, we use scikit-learn
(vr.0.18.1) to construct learning curves (see learning_curve function page for details)
using 10-fold CV for the entire data set. The curves are shown in Figure S2. The
training (red) and testing (green) lines show that our model performance is not strongly
dependent on data set size after roughly 700 observations are included (as the lines stay
relatively flat from there on). Accordingly, this also suggests that simply adding more
data to the model will not likely provide significant gains in recognition performance.

Figure S2: Learning curves using 10-fold CV for the entire data set are shown here.
Training and testing lines are in red and green, respectively.
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3 Impact of Balanced versus Unbalanced Testing Parti-
tions on Model Performance

To see if our model performs differently on an unbalanced testing set, Table S1 shows
evaluation results using 2262 additional decoy sequences selected by the same method-
ology described in the main article. Training is performed using the original balanced
data set (712 AMPs, 712 Non-AMPs) while the new testing set (712 AMPs, 2974
Non-AMPs) has approximately a 1:4 AMP-to-decoy ratio.

Table S1: Model performance with unbalanced testing set
Model Testing Set Version No. AMPs No. Non-AMPs SENS(%) SPEC(%) ACC(%) MCC

Our DNN

Balanced 712 712

86.95 (5.2) 94.54 (3.4) 90.75 (1.8) 0.8196 (0.03)

AntiBP2 87.91 90.80 89.37 0.7876

CAMP ANN 82.98 85.09 84.04 0.6809

CAMP DA 87.08 80.76 83.92 0.6797

CAMP RF 92.70 82.44 87.57 0.7554

CAMP SVM 88.90 79.92 84.41 0.6910

iAMP-2L 83.99 85.86 84.90 0.6983

iAMPpred 89.33 87.22 88.27 0.7656

Our DNN

Unbalanced 712 2974

86.22 (5.4) 96.88 (2.2) 93.49 (1.3) 0.8463 (0.03)

AntiBP2 87.91 89.01 88.81 0.6903

CAMP ANN 82.98 84.73 84.40 0.5930

CAMP DA 87.08 83.25 83.99 0.6040

CAMP RF 92.70 85.47 86.87 0.6759

CAMP SVM 88.90 83.49 84.54 0.6208

iAMP-2L 86.24 85.71 85.81 0.6313

iAMPpred 89.33 88.20 88.42 0.6912

Column 1 in Table S1 lists the prediction method and other top-performing servers,
while Column 2 lists the testing set version (balanced versus unbalanced). Columns 3
and 4 list the respective number of AMPs and Non-AMPs tested. Columns 5-8 show the
classification performance in terms of SENS, SPEC, ACC, and MCC with the largest
value in each column highlighted in bold. Our DNN model is evaluated in terms of 10-
fold CV (SD listed in parentheses). We note that a new run of our (non-deterministic)
model is shown for the balanced data set, thus numbers differ slightly from those in
Table 3. The other methods are run using default settings for AntiBP2 (full sequence
composition, SVM Threshold:0; note 371 of the unbalanced decoys are skipped due
to server length restrictions) (Lata et al., 2010), all CAMP predictors (Thomas et al.,
2009), iAMP-2L (Xiao et al., 2013), and iAMPpred (Meher et al., 2017). Overall,
our method shows similar performance in both the balanced and unbalanced settings.
Compared to results with the balanced set, ACC on the unbalanced set increases slightly
for all methods except for AntiBP2 and CAMP RF. MCC increases on the unbalanced
set for our method but decreases for the others.

3



4 Impact of Natural Termini and Length on Non-AMP
Sequences

Table S2: Model performance using non-AMPs with original N- and C-termini
Testing Set Non-AMP Type SENS(%) SPEC(%) ACC(%) MCC

Original testing set non-AMP fragments 86.95 (5.2) 94.54 (3.4) 90.75 (1.8) 0.8196 (0.03)

Non-AMP fragments of same length but natural N- and C-termini 88.13 (3.7) 93.31 (3.4) 90.72 (2.2) 0.8166 (0.04)

Full-length non-AMP sequences 85.85 (5.3) 96.72 (2.2) 93.40 (1.3) 0.8444 (0.03)

Table S2 shows average 10-fold CV results (SD in parentheses) after testing to see
if the proposed DNN model performs differently using non-AMPs containing natural
N- and C-terminal AA, rather than the randomly-selected peptide fragments from our
original data set. Column 1 in Table S2 lists the type of non-AMPs considered for
both the training and testing models. Columns 2−5 show performance results in terms
of SENS, SPEC, ACC, and MCC, respectively. Row 2 lists results from the original
non-AMP fragments (the balanced set in Table S1 above). Row 3 shows results using
non-AMPs of the same length as the original non-AMPs; however, these are constructed
using the original N- and C-termini AAs for each half of the peptide (those with an odd
number of residues contain one additional N-terminal AA). Row 4 contains results
using the original full-length non-AMPs downloaded from UniProt. With a difference
in ACC less than 0.1%, there appears to be little difference to our DNN model between
“natural” termini and randomly-selected ones for the non-AMP fragments. Results for
the full-length non-AMPs suggest the model is able to slightly better discriminate AMPs
(∼ +3% ACC) when longer non-AMPs are considered.
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5 Comparison with Other Data Sets

Table S3: AMP recognition performance on other data sets
Method Data Set No. AMPs (Overlap) No. Non-AMPs (Overlap) ACC(%) MCC

Our DNN

Lata et al. 2010 999 (75%) 999 (0%)

92.95 0.860

AntiBP2 91.64 0.831

CAMP ANN 81.03 0.624

CAMP DA 84.28 0.690

CAMP RF 87.09 0.752

CAMP SVM 86.69 0.739

iAMP-2L 86.34 0.735

iAMPpred 92.84 0.858

Our DNN

Fernandes et al. 2012 115 (62%) 116 (0%)

90.93 0.827

AntiBP2 85.30 0.706

CAMP ANN 77.06 0.553

CAMP DA 77.06 0.572

CAMP RF 79.65 0.640

CAMP SVM 77.06 0.584

iAMP-2L 87.90 0.759

iAMPpred 84.00 0.691

Our DNN

Xiao et al. 2013 Train Set: 878 (77%) Train Set: 2368† (0.3%)

97.42 0.949

AntiBP2 89.10 0.781

CAMP ANN 80.00 0.610

CAMP DA
Test Set: 920 (62%) Test Set: 920 (0%)

71.79 0.487

CAMP RF 65.27 0.396

CAMP SVM 67.77 0.429

iAMP-2L 92.23 0.845

iAMPpred 72.99 0.509

†37 sequences were removed from the original data set to remove duplicates or peptides containing fragments identical to known AMPs as in Veltri (2015).

Table S3 above shows classification performance on additional data sets for our DNN
and seven other AMP classification servers, as listed in Column 1. The additional data
sets used for evaluation come from Lata et al. (2010), Fernandes et al. (2012), and Xiao
et al. (2013), as listed in Column 2. Columns 3 and 4 list the respective number of
AMPs and non-AMPs in the set with the percentage of sequences found in our own
data set given in parentheses. Columns 5 and 6 list classification performance in terms
of ACC and MCC, respectively (highest value for each data set per column in bold).
We note that our method was evaluated using 10-fold CV when a single data set was
provided, and was trained and evaluated on respective training and testing partitions
when available. Results for classifiers and data sets from the same source are listed as
shown in their respective publications (i.e. iAMP-2L for Xiao et al. (2013) and AntiBP2
for Lata et al. (2010)).
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Table S4: Bayesian sign-rank test results for mean difference in AMP classifier
performance ACC (region of practical equivalence [−1,+1]%)

Classifier 1 Classifier 2 C1�C2 (%) C1=C2 (%) C1�C2 (%)

Our DNN AntiBP2 0 7.701 92.299

Our DNN CAMP ANN 0 0.228 99.772

Our DNN CAMP DA 0 0.207 99.793

Our DNN CAMP RF 0 0.226 99.774

Our DNN CAMP SVM 0 0.232 99.768

Our DNN iAMP-2L 0 0.248 99.752

Our DNN iAMPpred 0 4.955 95.045

AntiBP2 CAMP ANN 0 0.245 99.755

AntiBP2 CAMP DA 0 0.250 99.750

AntiBP2 CAMP RF 0 1.088 98.912

AntiBP2 CAMP SVM 0 0.233 99.767

AntiBP2 iAMP-2L 33.482 5.594 60.924

AntiBP2 iAMPpred 0 32.750 67.250

CAMP ANN CAMP DA 25.443 35.783 38.774

CAMP ANN CAMP RF 68.380 0.483 31.137

CAMP ANN CAMP SVM 25.416 36.050 38.534

CAMP ANN iAMP-2L 95.036 4.964 0

CAMP ANN iAMPpred 86.064 0.986 12.950

CAMP DA CAMP RF 68.645 0.489 30.866

CAMP DA CAMP SVM 27.139 45.875 26.986

CAMP DA iAMP-2L 95.229 4.771 0

CAMP DA iAMPpred 98.911 1.089 0

CAMP RF CAMP SVM 17.731 19.597 62.672

CAMP RF iAMP-2L 79.584 8.042 12.374

CAMP RF iAMPpred 95.183 4.817 0

CAMP SVM iAMP-2L 72.850 27.150 0

CAMP SVM iAMPpred 99.796 0.204 0

iAMP-2L iAMPpred 42.500 1.237 56.263

Results in Table S4 above show Bayesian sign-rank tests for pairs of AMP classifiers
using the ACC results on our own (balanced) set listed in Table S1 plus the three data sets
listed in Table S3. Tests are performed following the approach outlined in Benavoli et al.
(2014, 2017) using their accompanying R code (https://github.com/BayesianTestsML/tutorial/;
Accessed: Jan. 21, 2018) with100000Markov chain Monte Carlo samplings and default
Dirichlet prior parameters (s= 0.5, z0 = 0). We set the region of practical equivalence
to ±1% - in other words we consider two classifiers "equivalent" if their mean differ-
ence in ACC is within ±1% of each other (Kruschke and Liddell, 2015). For each row
in Table S4, the ACCs for the classifiers listed in Columns 1 and 2 are compared and
three posterior probabilities calculated. Column 3 gives the probability that Classifier
1 performs worse than Classifier 2 (the mean difference in ACC between Classifier 1
and 2 is < 1%). Column 4 gives the probability that the performance of both classifiers
is essentially equal (the mean absolute difference in ACC between Classifier 1 and 2 is
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≤ 1%). Column 5 gives the probability that Classifier 1 performs better than Classifier
2 (the mean difference in ACC between Classifier 1 and 2 is> 1%). Comparisons to our
DNN method in Rows 2-8 show that the probability of our method performing better
is > 92% in all cases. The highest probability of equal performance to our method is
seen with AntiBP2 at 8%.

6 Misclassified AMPs

Table S5: AMPs classified by production model as false negatives
APD Identifier Sequence
AP00399 HVDKKVADKVLLLKQLRIMRLLTRL
AP00612 AAEFPDFYDSEEQMGPHQEAEDEKDRADQRVLTEEEKKELENLAAMDLELQKIAEKFSQR
AP00749 EADEPLWLYKGDNIERAPTTADHPILPSIIDDVKLDPNRRYA
AP00787 GWRLLLKKAEVKTVGKLALKHYL
AP00812 FAEPLPSEEEGESYSKEPPEMEKRYGGFM
AP01234 FSKYERQKDKRPYSERKNQYTGPQFLYPPERIPPQKVIKWNEEGLPIYEIPGEGGHAEPAAA
AP01283 MRKEFHNVLSSGQLLADKRPARDYNRK
AP01339 FLSFPTTKTYFPHFDLSHGSAQVKGHGAK
AP01343 TESYFVFSVGM
AP01372 SKCKCSRKGPKIRYSDVKKLEMKPKYPHCEEKMVIITTKSVSRYRGQEHCLHPKLQSTKRFIKWYNAWNEKRRVYEE
AP01522 TYMPVEEGEYIVNISYADQPKKNSPFTAKKQPGPKVDLSGVKAYGPG
AP01624 HAEHKVKIGVEQKYGQFPQGTEVTYTCSGNYFLM
AP01918 IGVIKLSLCEEERNADEEKRRDDPDEMDVEVEKR
AP01919 FTLKKSQLLLFFLGTINFSLCEEERNAEEERRDYPEEKDVEVEKR
AP01974 YGQSTHAVIYAQGYTYSSDWR
AP02030 MQIFVKTLTGKTITLEVEPSDTIENVKAKIQDKEGIPPDQQRLIFAGKQLEDGRTLSDYNIQKESTLHLVLRLR
AP02053 GLSQGVEPDIGQTYFEESRINQD
AP02081 FPMFKRGRCLCIGPGVKAVKVADIEKASIMYPSNNCDKIEVIITLKENKGQRCLNPKSKQARLIIKKVERKNF
AP02169 AKISGPEETSELPEVVSEERVPATATEPMADLRHGVTREPISPASKDSLRDKFKEKLDKWFHRPNLLSKRD
AP02193 YSKSLPLSVLNP
AP02352 YPGPQAKEDSEGPSQGPASREK
AP02353 LPVNSPMNKGDTEVMKCIVEVISDTLSKPSPMPVSKECFETLRGDERILSILRHQNLLKELQDLALQGAKERTHQQ
AP02405 GGYKNFYGSALRKGFYEGEAGRAIRR
AP02407 SDYLNNNPLFPRYDIGNVELSTAYRSFANQKAPGRLNQNWALTADYTYR
AP02533 SDKPDVKEVESFDKSKLKKVETQEKNPLPTKETIEQEKKG
AP02712 MNSSSVLFVCILGACSVWTVHGRNLKVNDDDQEGAELDISVEARKLPGLCWVCKWSLNKVKKLLGRNTTAESVKEKLMRVCNEI

GLLKSLCKKFVKGHLGELIEELTTSDDVRTICVNLKACKPKELSELDFESDEDAHTEMNDLLFE
AP02767 APKGVQGPNG
AP02791 ARTKQTARKSTGGKAPRKQLAT
AP02804 MSGRGKGGKVKGKSKSRSSRAGLQFPVGRIHRLLRKGNYAERVGAGAPVYLAAVMEYLAAEVLELAGNAARDNKKTRIVPRHLQ

LAIRNDEELNKLLSGVTIAQGGVLPNIQAVLLPKKTEKK
AP02809 MARTKQTARKSTGGKAPRKQLATKAARKSAPATGGVKKPHRYRPGTVALREIRRYQKSTELLIRKLPFQRLVREIAQDFKTDLRFQS

SAVMALQEACEAYLVGLFEDTNLCAIHAKRVTIMPKDIQLARRIRGERA
AP02813 ILELAGNAARDNKKTRIIPRHLQL
AP02879 LTAEDKKLIQQAWEKAASHQEEFGAEALTRMFTTYPQTKTY
AP02886 LLNQELLLNPTHQIYPV
AP02895 SMATPHVAGAAALILSKHPTWTNAQVRDRLESTATYLGNSFYYGK
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7 K-means Analysis and DNN-reduced Alphabet

Figure S3: Sum of squared distances from k-means cluster centers are shown using
various k (1−19) for the 20 naturally-occurring AAs. The bend or “elbow” (Thorndike,
1953) at k = 8 is selected as the cluster size before restoring the padding character ‘X’
as its own cluster. Accordingly, 9 clusters are used to build the DNN-reduced alphabet.
The representative character for each cluster is listed in Table S6.

Table S6: DNN-reduced AA alphabet for AMPs
Original Letter Mapping Letter

X X
ED E

QST Q
NH N

PYRK P
VAF V
LMI L
GW G
C C
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Table S7: DNN-reduced AA alphabet performance various sizes of k
k ACC(%) MCC
3 77.94 (±0.5) 0.5688 (±0.01)
5 87.09 (±1.1) 0.7450 (±0.02)
9 89.57 (±0.9) 0.7938 (±0.02)
15 90.54 (±1.0) 0.8137 (±0.02)

Table S7 shows average DNN performance values on the testing set using reduced AA
alphabets constructed using various sizes of k, as described in Section 2.6 in the main
article. Column 1 shows the value of k, while Columns 2 and 3 respectively show the
average ACC and MCC over 100 trials with SD shown in parentheses. We note results
in Row 4 are the same as Row 11 in Table 2 from Section 3.3 in the main article. As
the value of k increases, both metrics increase in an approximately logarithmic fashion.
The k-means clustering error for the values in Column 1 can be seen above in Figure
S3.

8 Data set Availability
Data sets are available in FASTA format from the AMP Scanner web server:
http://www.ampscanner.com.

References
Benavoli, A., Corani, G., Mangili, F., Zaffalon, M., and Ruggeri, F. (2014). A bayesian wilcoxon signed-rank test based on

the dirichlet process. In International Conference on Machine Learning, pages 1026–1034.

Benavoli, A., Corani, G., Demšar, J., and Zaffalon, M. (2017). Time for a change: a tutorial for comparing multiple classifiers
through bayesian analysis. Journal of Machine Learning Research, 18(77), 1–36.

Fernandes, F. C., Rigden, D. J., and Franco, O. L. (2012). Prediction of antimicrobial peptides based on the adaptive
neuro-fuzzy inference system application. Peptide Science, 98(4), 280–287.

Kruschke, J. K. and Liddell, T. M. (2015). The bayesian new statistics: two historical trends converge. SSRN Electronic
Journal.

Lata, S., Mishra, N. K., and Raghava, G. P. (2010). AntiBP2: improved version of antibacterial peptide prediction. BMC
Bioinformatics, 11(Suppl 1), S1–S19.

Meher, P. K., Sahu, T. K., Saini, V., and Rao, A. R. (2017). Predicting antimicrobial peptides with improved accuracy by
incorporating the compositional, physico-chemical and structural features into Chou’s general PseAAC. Scientific Reports,
7(42362).

Thomas, S., Karnik, S., Barai, R. S., Jayaraman, V. K., and Thomas, S. I. (2009). CAMP: a useful resource for research on
antimicrobial peptides. Nucl. Acids Res., 38(Suppl 1), D774–D780.

Thorndike, R. L. (1953). Who belongs in the family? Psychometrika, 18(4), 267–276.

Veltri, D. (2015). A Computatioanl and Statistical Framework for Screening Novel Antimicrobial Peptides. PhD dissertation,
George Mason University.

Xiao, X., Wang, P., Lin, W.-Z., Jia, J.-H., and Chou, K.-C. (2013). iAMP-2L: A two-level multi-label classifier for identifying
antimicrobial peptides and their functional types. Analytical biochemistry.

9

http://www.ampscanner.com

	Length distributions of AMP and non-AMP partitions
	Impact of Data Set Size on Model Performance
	Impact of Balanced versus Unbalanced Testing Partitions on Model Performance
	Impact of Natural Termini and Length on Non-AMP Sequences
	Comparison with Other Data Sets
	Misclassified AMPs
	K-means Analysis and DNN-reduced Alphabet
	Data set Availability

