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Table 1. Available tools for family-based sequence data analysis. 

 
Name 1 2 3 4 5 6 7 8 9 10 11 12 Reference 

Olorin  √  √         Morris et al. (2012) 

VAR-MD  √           Sincan et al. (2012) 

PEDCMC         √    Zhu and Xiong (2012) 

Mendel √ √ √   √  √ √    Lange et al. (2013) 

famBT/famSKAT         √    Chen et al. (2013) 

FB-SKAT         √    Ionita-Laza et al. (2013) 

PEDGENE         √    Schaid et al. (2013) 

FARVAT         √    Choi et al. (2014) 

MendelScan  √    √ √      Koboldt et al. (2014) 

FamAnn  √           Yao et al. (2014) 

pVAAST  √      √ √    Hu et al. (2014) 

rvTDT         √    Jiang et al. (2014) 

RarePedSim √            Li et al. (2015) 

PBAP  √ √          Nato et al. (2015) 

F-SKAT         √    Yan et al. (2015) 

SEQLINAKGE        √     Wang et al. (2015) 

FamPipe  √     √      Chung et al. (2016) 

FCVPP  √    √       Forsti et al. (2016) 

RVTESTS  √       √ √   Zhan et al. (2016) 

RV-GDT/RV-PDT         √    He et al. (2017) 
              Merlin           √  Burdick et al. (2006) 

GIGI           √  Cheung et al. (2013) 

PedBLIMP           √  Chen et al. (2014) 

PRIMAL           √  Livine et al. (2015) 

GIGI-Quick           √  Kunji et al. (2018) 
1: design/simulation, 2: variant QC/filtering/ranking/annotation, 3: pedigree description/summary, 4: pedigree 
plot, 5: familial aggregation, 6: segregation, 7: IBD mapping, 8: linkage, 9: association (genotype), 10: meta-
analysis, 11: family-based imputation, 12: association (dosage) 

 
  



Table 2. Analyses available in ONETOOL. 
 

Main Sub-category Detail Reference and software 

InfoQC 
analysis 

Variant Information FST, Ts/Tv ratio, MAF, HWE, PCA  

Sample Information Het, Het/Hom  

Pedigree Information Description and summary, plot, relative pairs 
S.A.G.E. (2016) – PEDINFO 
Sinnwell et al. (2014) – kinship2 
Song and Elston (2013) – PEDWIZ 

Error Detection Mendelian error   

Relatedness matrix Kinship, IBS, GRM Balding and Nichols (1995) 

Trait 
Analysis 

Familial Aggregation Correlation S.A.G.E. (2016) - FCOR 

Heritability Based on Kinship, IBS, GRM  

Segregation Analysis Mode of inheritance S.A.G.E. (2016) - SEGREG 

Linkage 
Analysis 

Model-based Two-point, utilizing segregation analysis S.A.G.E. (2016) - LODLINK 

Model-free Multipoint, modeling LD Abecasis et al (2002) - MERLIN 

Association 
Analysis 

Single variant 

Generalized Score test, regression+, Fisher’s exact test+  

Transmission disequilibrium test – TDT, SDT Spielman et al. (1993) 
Spielman and Ewens (1998) 

Likelihood ratio test – MQLS, FQLS, E(xtendedF)QLS 
Thornton and McPeek (2007) 
Park et al. (2015) 
Won et al. (2015) 

Linear mixed model method  - GEMMA Zhou and Stephens (2012) 

Gene-based  

CMC - no weight (default) Collapsing Li and Leal (2008) 
Morris and Zeggini (2010) 

Burden test – PEDCMC, wSum+, aSum+ 
Madsen and Browning (2009) 
Han and Pan (2010) 
Zhu and Xiong (2012) 

Variable threshold method – famVT, VT+ Price et al. (2010) 

Kernel method – FARVAT, KBAC+, SKAT+, SKATO+ 

Liu and Leal (2010) 
Wu et al. (2011) 
Lee et al. (2012) 
Choi et al. (2014) 
Wang et al. (2016) 
Choi et al. (2016) 

Burden & Kernel - PEDGENE Schaid etal. (2013) 

 Epistasis+ MDR+, GMDR+  

FST: fixation index, Ts/Tv: transition and transversion ratio, MAF: minor allele frequency, HWE: Hardy–Weinberg 
Equilibrium, PCA: principle component analysis, Het/Hom: heterozygote and homozygote ratio, IBS: identity by 
state, GRM: genetic relation matrix, LD: linkage disequilibrium   

 
Note: 
 

1. Both binary and quantitative variables can be analyzed in trait analysis and linkage 
analysis, both as main traits and as covariates. For heritability estimation of binary variable, 
ONETOOL first estimates the heritability by assuming the binary trait is a quantitative trait 
and then the heritability of its liability is estimated on the logistic scale (Lee et al., 2011). 
Therefore, the estimated heritability of a dichotomized existing quantitative variable 
should be understood as being measured on the logistic scale. 

2. The additional association analysis methods available for the independent samples are 
marked with +. 

 
  



Table 3. The variable type and covariate support in association analyses 
in ONETOOL. 
 
 

  
Trait type 

Covariate 
Family 
data 

structure 
Note 

 binary continuous 

Single 
variant 
analysis 
(suitable 

for 
common 

SNPs) 

Score test* N Y Y general 
pedigree 

usually efficient for randomly 
selected samples 

TDT Y N N trio parental genotype need to be 
known but not used 

SDT Y N N nuclear 
family 

need the genotype data of 
unaffected sibs 

MQLS Y N N general 
pedigree efficient for ascertained families 

FQLS Y Y N general 
pedigree efficient for ascertained families 

GEMMA* N Y Y general 
pedigree 

usually efficient for randomly 
selected samples 

EQLS* Y Y Y general 
pedigree efficient for ascertained families 

Gene-
based 

analysis 
(suitable 
for rare 

variants) 

CMC* Y Y N general 
pedigree 

efficient when effects of rare 
variants are homogeneous 

PEDCMC* Y N N general 
pedigree 

efficient when effects of rare 
variants are homogeneous 

FAMVT* N Y N general 
pedigree 

efficient if rarer variants have 
stronger effect on disease 

FARVAT* Y Y Y general 
pedigree 

robust to the heterogeneity of 
effects of rare variants 

PEDGENE* Y Y Y general 
pedigree 

conditioning on phenotypes, 
treating the genotype data 

random, for pedigrees sampled 
because of multiple affected 

members 

FBSKAT Y N N general 
pedigree 

efficient if rare variants with 
both positive and negative 

effect on disease are grouped to 
a single set 

RVTDT Y N N trio 

efficient if rare variants with 
both positive and negative 

effect on disease are grouped to 
a single set 

 
 
Note: 
 
The association analysis methods marked with * can utilize the dosage data. 



Table 4. Recommended association analysis method for different types 
of data. 
 

Trait Type 
Heritability 

Small or zero (<0.3) Large(>0.3) 

Continuous trait 

• Random sample 
- Logistic regression with/without PC scores 

depending on the presence of population 
structure 

• Family-based sample 
- GEMMA 

• Random sample 
- GEMMA 

• Family-based sample 
- GEMMA 

Prevalence 
of binary 

trait 

Small 

• Random sample 
- Logistic regression with/without PC scores 

depending on the population substructures 
• Family-based sample 

- FARVAT/MQLS/FQLS 

• ascertained family / trio 
- TDT/SDT 

• ascertained family / general 
pedigree 
- FARVAT/MQLS/FQLS 

Large • Independent sample 
- survival analysis / age-of-onset analysis 

• Ascertained family / trio 
- Age-of-onset analysis 

 
  



Text 1. Input and Output 
ONETOOL supports two different sets of input files, a PLINK set and a VCF set. The PLINK set 
consists of three files (i.e., .fam, .bed, and .bim) that are used to run PLINK, and the VCF set 
consist of a plink format family file (.fam) and a Variant Call Format (.vcf). The additional 
phenotypes and covariates are supported through an optional input file (.pheno) for both sets of 
input files. ONETOOL also support two different ways to specify the desired analysis options, 
through a command line and a script file. Each method in ONETOOL outputs the result file with 
the appropriate extension, so that the user can recognize it easily. It has the familiar user interface 
and the same or similar analysis option names as the existing tools, so no, or only a minimal, 
learning curve is needed. 

  



Text 2. Imputation 

ONETOOL provides an option to impute the missing genotypes for typed genotypes. Expected 
missing genotypes for typed variants are imputed based on the familial relationship, and if 
phenotypes of any subjects with missing genotypes are available, genotypes imputed with family 
members’ genotypes can improve statistical power. Let 𝑚𝑚𝑖𝑖 and 𝑚𝑚𝑖𝑖

′ be the vector of subjects with 
observed genotypes and missing genotypes for the ith variant, respectively. Then the observed 
genotypes of the ith variant 𝐺𝐺𝑖𝑖𝑖𝑖 can be estimated using the equation 𝐺𝐺𝑖𝑖𝑖𝑖 = Φ𝑖𝑖𝑖𝑖′Φ𝑖𝑖′𝑖𝑖′

−1 (𝐺𝐺𝑖𝑖𝑖𝑖′ −
2𝑓𝑓𝑖𝑖) + 2𝑓𝑓𝑖𝑖 , where Φ𝑖𝑖𝑖𝑖′  and Φ𝑖𝑖′𝑖𝑖′   denote the relationship matrices between subjects with 
observed and missing genotypes, respectively, and 𝑓𝑓𝑖𝑖  denotes minor allele frequency of the ith 
variant. 

The efficiency of the proposed method was evaluated with simulated data. We considered 
the pedigree that consists of 97 subjects (see Figure 1). Genotypes were selected from 1000 
Genome Project and 100,000 variants were randomly selected. Then, MAFs for those 100,000 
variants were calculated and founders’ genotypes were randomly generated from binomial 
distribution under Hardy-Weinberg equilibrium. We assume there is no de novo mutation and non-
founders’ genotypes were randomly chosen with Mendelian transmission. Genotypes of all 
variants for 1%, 2%, 5%, 10% and 20% family members were randomly masked and then their 
genotypes were imputed using their relatives’ genotypes. The dosage of the imputed genotypes 
shown in Figure 2 shows the accuracy of the imputed genotypes according to the MAF. Results 
show that the accuracy of imputed genotypes is up to 99% for rare variants, and imputed genotypes 
are reasonably accurate even with a substantial amount of missing data. 

 
Figure 1. Pedigree used for simulations. This pedigree was randomly chosen from GAW19 data 
(Blangero et al., 2016). 
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Figure 2. Boxplots of imputed dosages. Results were provided for various missing rates: (A) 
missing rate: 1%, (B) missing rate: 2%, (C) missing rate: 5%, (D) missing rate: 10%, (E) missing 
rate: 15%, and (F) missing rate:20%. In each plot, three boxplots of imputed dosage for AA 
(homozygote major), Aa (heterozygote), and aa (homozygote recessive) are provided. 
 

 
  



Text 3. Association analysis with imputed genotypes 

ONETOOL can take the dosage and genotype probability files from several popular imputation 
tools available for population data (Table 5).  The list of statistical analyses which can utilize the 
dosage data is marked by * in Table 1 above. 
 
Table 5. Dosage and genotype probability formats that are supported in ONETOOL. 
 

File type Impute toolset Extension 

Genotype probability formats 

IMPTUE2 .impute2 

Beagle .bgl.gprobs 

minimac3 .vcf (version 4.3) 

Dosage formats 

MACH (minimac2) .mldose 

Beagle .bgl.dose 

minimac3 .vcf (version 4.3) 

   

 

   

  



Text 4. Performance Evaluation 

ONETOOL is implemented in C++ to provide the best performance.  It uses an R plugin for the 
pedigree plot functionality.  A multi-thread option is available for various analyses with the ‘--
thread’ option.  In Table 5 and 6, we show the performance of ONETOOL. 

First, we compared the performance of ONETOOL to RVTESTS (Zhan et al., 2016) to evaluate 
speed.  Though RVTESTS is not specifically designed for family-based data, it provides different 
association analysis methods that can accommodate both unrelated and related data, thus making 
a good comparison case for the performance of ONETOOL’s association module. 

For the dataset, we used chromosome 21 of GAW19 simulation dataset (Blangero et al., 2016).  It 
contains 464 subjects with 191,664 variants.  For the comparison of the gene-based analysis 
methods, we used the refFlat gene table for hg19 reference downloaded from their website.  It 
provided the analysis of 302 genes consisting of 78,791 low-frequency variants.  All analyses were 
conducted in a Linux workstation with four Intel E7-4850 CPUs and 1T RAM.  For each method, 
the computation time was averaged over ten runs. 

Table 6 shows the average time each analysis method took in ONETOOL and RVTESTS. 
ONETOOL consistently took less time to finish the analysis than RVTESTS, with up to around 
200x acceleration folds, except for Balding-Nichols empirical kinship calculation. 
 
Table 6. Performance comparison between ONETOOL and RVTESTS. 
 

              RVTESTS           ONETOOL         Acceleration Folds 

Univariate test 
Wald test 75 33 2.27 
Fisher’s Exact 
Test 89 22 4.05 

Gene-level test 

CMC 34 15 2.27 

Collapsing test 34 15 2.27 

SKAT 2,160 640 3.38 

SKAT-o 87,981 404 217.77 

KBAC 254 70 3.63 

VT 356 270 1.32 

Relatedness computation 
GRM 45 95 0.47 

IBS 82 42 1.95 
(Unit: seconds, times) 

 
Second, we evaluated the time to run several analyses in ONETOOL in two different family data 
sets.  The first set (Data1) is the example data set available in our website.  It consists of 10 
simulated nuclear families and 100 variants.  Each family contains 2 parents and 6 offsprings, so 
total 100 individuals.  It is a complete data set, so genotyping rate is 100%.  We ran ONETOOL 
analyzing the default binary trait included in .fam file.  The second set (Data2) again is GAW19 
real dataset. We analyzed a subset of families without any loops, so it contains 800 people from 
12 pedigrees of size range 27 to 97.  The total number of individuals is 800.  We analyzed 
chromosome 21 again 12,842 SNPs and the genotyping rate is 66.94%.  All analyses were 
conducted in a Linux server with four Intel Intel(R) Xeon(R) CPUs and 16G RAM.  For each 



method, the computation time was averaged over five runs.  The run time each analysis took is 
shown in Table 7.  Note that the last column indicates which analyses are included into the results 
shown in Table 2 of the main manuscript. 

Table 7. Run time of each analysis in ONETOOL (in second). 
 

Type Method Data1 Data2 Evaluated 

InfoQC analysis 

freq 0.245 2.069 + 
hwe 0.192 2.191 + 
pca 5 0.219 3.678 + 
het 0.153 2.175 + 

hethom 0.208 2.136 + 
mendel 0.223 2.25 + 
pedinfo 0.099 0.224 + 
relpair 0.256 1.063 + 

 famuniq 0.165 0.304 + 

Trait Analysis 

fcor 0.301 39.289 + 
heritability 0.151 0.452 + 
makecor 0.275 2.447 + 
segreg 7.714 42.522   

Linkage Analysis 
lodlink 27.613 12711.080   
merlin 0.196 *   

Single variant 
association 

analysis 

scoretest NA 7.129   
tdt 0.367 NA   
sdt 0.209 NA   

mqls 0.230 NA   
fqls 0.501 7.809   

gemma NA 11.905   
multifqls 0.195 2.908 + 

Gene-based 
association 

analysis 

collapsing 3.319 2.873   
pedcmc 0.259 NA   
famvt NA 35.354   
farvat 0.234 3.365 + 

pedgene 0.368 5.183   
fbskat 0.421 NA   
rvtdt 16.163 NA   

NA: Not applicable, *:  were too big to run by Merlin, +: included in the run time evaluation 

  



Text 5. Discussion 
The advantages of family-based genetic studies have been emphasized by the ample amount of 
literatures and researchers (Ott et al., 2011, Clerget-Darpoux and Elston, 2007; Stein and Elston, 
2009, Bailey-Wilson and Wilson, 2011; Wijsman, 2012).  The importance of family-based designs 
has been repeatedly stressed for analyses with sequence data because of the genetic homogeneity 
between family members (Laird and Lange, 2006).  Family study designs provide not only the 
enrichment of genetic loci containing rare variants, but also methods to control for genetic 
heterogeneity and population stratification. 

As next generation sequence (NGS) data become more and more readily available for genetic and 
genomic analyses, the need for tools to integrate the various sources and analyze the vast amount 
of data is inevitable. This need has led to a plethora of such tools already developed and used, as 
reported in Pabinger et al. (2014).  They surveyed 205 such tools for whole-genome/whole-exome 
sequencing data analysis and reported 32 selected tools.  However, most of them are designed for 
analyzing population-based NGS data, not for family-based data. 
 
We developed a novel tool, ONETOOL, to fill that gap and pipeline the genetic analysis process 
for pedigree data.  It is designed to be as convenient as PLINK, as versatile as S.A.G.E., and as 
fast as Merlin.  Input files for ONETOOL have the most popularly used format, so users familiar 
with how to use PLINK can easily use ONETOOL without much of a learning curve. Also, the 
outputs from the S.A.G.E. and Merlin modules are in the same as the original formats, which 
makes the comparison and the interpretation of results much easier for the many users who are 
already familiar with those tools.  As pointed out by Eu-Ahsunthornwattana et al. (2014), the 
choice of analysis tool is often made on the basis of speed and convenience, given the strong 
concordance between the results from the different approaches and implementations in the 
different tools.  In that respect, ONETOOL stands out among other tools as it is specifically 
designed to provide speed and convenience. 
 
More time took to calculate GRM by ONETOOL than by RVTESTS.  This seems to be due to the 
different approach each program is taking to process the genotype data while reading in a VCF 
file.  In ONETOOL, all genotypes are pre-loaded before any analysis begins while RVTESTS 
reads in the VCF file sequentially, line by line for each variant, and processes to calculate the 
GRM.   The sequential approach has less I/O burden, so provides the faster calculation for the 
GRM itself compare to the pre-load approach.  However, the sequential approach has the major 
disadvantages in the down-road analyses.  First, it is very limited for any sample-wise analyses.  
Second, it is computationally very inefficient for any gene-level analyses because the I/O pattern 
becomes random.  The pre-load approach in ONETOOL provides the computational efficiency 
and the superiority in the rare-variant analysis. 
 
Currently, ONETOOL can be used to analyze the genetic data with bi-allelic variants for the 
association analyses.  For the loci with more than 2 variants will be automatically filtered and 
reported in the log file it automatically generates for every run. 
 
Though this initial version of ONETOOL implements many different analysis methods for 
analyzing family data, there are many more. With a modular design, each analysis module within 
ONETOOL is independent of the others, so it is very easy to extend and add more tools. 
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