
Reactome Pengine : Supplementary Information

S.R. Neaves, S.Tsoka, L.A.C. Millard

March 31, 2018

1 Reactome Pengine data flows

Figure 1 illustrates the flow of data between the users computer and Reactome
Pengine, which could occur either directly or through SWISH. To use Reactome
Pengine directly (shown as yellow/dashed arrows in Figure 1) the user writes a
local Prolog program containing a subroutine that sends a query or program to
Reactome Pengine. Reactome Pengine executes the program and returns data
back to the local calling program to finish its execution.

To use SWISH to interact with Reactome Pengine (shown as grey/solid
arrows in Figure 1) the user writes a program (program A in Figure 1) for
SWISH, that will itself contain a query or program (program B in Figure 1)
to be processed on Reactome Pengine. When SWISH executes program A,
the constituent program B is forwarded to Reactome Pengine. Upon receiving
program B Reactome Pengine executes it and sends the results back to SWISH.
SWISH continues program A and then displays the results in the user’s browser.

An example SWISH notebook that uses Reactome Pengine can be found at:
https://apps.nms.kcl.ac.uk/reactome-pengine/. An example local Prolog
script that uses Reactome Pengine is given in Supplementary Section S3.

2 Comparison of Reactome Pengine to existing
data access options

This section compares the use of Reactome Pengine to: 1) downloading the
entire dataset directly from Reactome and 2) downloading subsets of the data
using the existing Reactome Application Programming Interfaces (APIs). We
compare 1) the amount of data exchanged between the user’s computer and
Reactome Pengine, and 2) the degree of flexibility of querying the data.

2.1 Amount of data exchanged

We compare the amount of data exchanged between the user’s machine and
Reactome Pengine in contrast with downloading the complete dataset from

1

https://apps.nms.kcl.ac.uk/reactome-pengine/

Figure 1: Diagram of Reactome Pengine. Thick arrows: data sent to Reactome
Pengine; thin arrows: data returned from Reactome Pengine. Yellow, dashed:
Direct interaction with Reactome Pengine; grey, solid: Interaction with Reac-
tome Pengine via SWISH

Reactome and working with a local copy of the data. Reactome Pengine is
built on the biopax RDF file (Homo sapiens.owl) available at reactome http:

//www.reactome.org/pages/download-data/. Therefore, when not using Re-
actome Pengine the amount of data transferred when downloading this data
to the user’s machine is just the size of this file, which is 136.6 MB. It is also
possible to download the dataset in different formats, such as CSV files, an SQL
database or a Neo4J graph database, each with there own storage requirements.

The amount of data transferred when using Reactome Pengine is dependent
on the query or program that the user submits. As Reactome Pengine is de-
signed for non-trivial but not intensive use of the Reactome data, typically short
programs will be sent to server. We give an example program in Code Block 1.
This program is able to find paths of reactions in the reactome, which is a more
complex query than the REST API can complete, but one that can easily be
performed without downloading the whole Reactome dataset, using Reactome
Pengine. The size of the data exchanged using this query is in the order of
kilobytes.

As described in the main paper, Reactome Pengine is intended as a pioneer-
ing application that demonstrates how pengine technology is useful for bioin-
formatics research. While downloading the Reactome dataset in its entirety is
currently feasible, biological datasets will only increase in size, such that efficient
and flexible data querying approaches, such as pengines, will be imperative for
future analysis involving the integration of omics data.

2

http://www.reactome.org/pages/download-data/
http://www.reactome.org/pages/download-data/

Code Block 1

1 :-use_module(library(pengines)).
2 reactome_server("https://apps.nms.kcl.ac.uk/reactome-pengine").
3 path_program(Program):-
4 Program=[
5 (:- meta_predicate path(2,?,?,?)),
6 (:- meta_predicate path(2,?,?,?,+)),
7 (graph_path_from_to(P_2,Path,From,To):-
8 path(P_2,Path,From,To)),
9 (path(R_2, [X0|Ys], X0,X):-

10 path(R_2, Ys, X0,X, [X0])),
11 (path(_R_2, [], X,X, _)),
12 (path(R_2, [X1|Ys], X0,X, Xs) :-
13 call(R_2, X0,X1),
14 non_member(X1, Xs),
15 path(R_2, Ys, X1,X, [X1|Xs])),
16 (non_member(_E, [])),
17 (non_member(E, [X|Xs]) :-
18 dif(E,X),non_member(E, Xs)),
19 (e(R1,R2):-
20 ridReaction_ridLink_type_ridReaction(R1,_,_,R2)
21)
22].
23 path_from_to(Path,From,To):-
24 reactome_server(Server),
25 path_program(Program),
26 pengine_rpc(Server,
27 graph_path_from_to(e,Path,From,To),
28 [src_list(Program)]).

Figure 2: Adapted from Stack Overflow definition of a path/trail/walk.
Accessed: 2017-10-21. https://stackoverflow.com/questions/30328433/

definition-of-a-path-trail-walk/30595271#30595271 .

2.2 Flexibility of querying

In this section we discuss the increased flexibility of using Reactome Pengine
compared to existing data access options.

2.2.1 Reactome Pengine versus existing Reactome APIs

We compare Reactome Pengine with 1) the REST API and 2) the SPARQL API.
First, the REST API is limited to a number of queries designed by the Reac-
tome maintainers (see documentation here http://www.reactome.org/pages/

documentation/developer-guide/restful-service/#API). Any query that
can be performed using the REST API, can also be performed using Reactome
Pengine. For example, the REST service can be used to find the subpathways of
‘Apoptosis’, and an equivalent query using Reactome Pengine is given in Code
Block 2. We invoke the query with:

?-pathwayName_subpathway(’Apoptosis’,Subpathway).

In contrast to the REST API we can build upon this query to create com-
posite queries. For example, we could add further constraints to the query to
find sub-pathways with particular properties.

3

https://stackoverflow.com/questions/30328433/definition-of-a-path-trail-walk/30595271#30595271
https://stackoverflow.com/questions/30328433/definition-of-a-path-trail-walk/30595271#30595271
http://www.reactome.org/pages/documentation/developer-guide/restful-service/#API
http://www.reactome.org/pages/documentation/developer-guide/restful-service/#API

Code Block 2

1 :-use_module(library(pengines)).
2 reactome_server(’https://apps.nms.kcl.ac.uk/reactome-pengine’).
3

4 my_program(P):-
5 P=[
6 (
7 pathwayName_subpathway(PName,SubName):-
8 rid_name(RidPathway,PName),
9 ridPathway_component(RidPathway,RidComponent),

10 rid_type_iri(RidComponent,’Pathway’,_),
11 rid_name(RidComponent,SubName)
12)
13

14].
15

16 pathwayName_subpathway(PName,SubName):-
17 reactome_server(S),
18 my_program(P),
19 pengine_rpc(S,pathwayName_subpathway(PName,SubName),[src_list(P)]).

Any SPARQL query can be performed using Reactome Pengine. For example
the SPARQL documentation from Reactome gives an example query that finds
pathways that have entities in the cellular membrane (https://www.ebi.ac.
uk/rdf/documentation/reactome/). The Prolog program in Code Block 3
uses Reactome Pengine to perform this query.

The Reactome SPARQL API is more flexible than the REST API for two key
reasons. First, SPARQL can be used to specify SQL like queries over the data,
rather than a predefined subset specified by an API. Second, SPARQL can be
used to interrogate several datasets in a single query (called a federated query).
For example, a bioinformatician could query both Reactome and Uniprot to
integrate data from these disparate sources.

While SPARQL is more flexible than a REST API, it is less flexible than
Reactome Pengine because it is not a full programming language. This means
that typically developers using SPARQL will have a two language setup, for
example, SPARQL might be embedded in Java. This can be problematic due
to the paradigm mismatch, where SPARQL is relational and Java is object
oriented. This is not the case for Prolog which has a relational paradigm itself,
and is a full programming language. Therefore, using Reactome Pengine from
within a Prolog program means that the data can be queried and manipulated
within a single program.

The Reactome Pengine Prolog API allows for simpler and more flexible fed-
erated queries than using SPARQL. Complex federated queries are simpler to
compose in the Reactome Pengine due to its ability to build composite queries,
as discussed above. Furthermore, because we can make use of standard Prolog
libraries within the query sent to the Reactome Pengine, we can also include
queries to other data services, including REST, SPARQL, HTML and other
pengine services. An example of this is given in the accompanying SWISH
notebook (example 9).

4

https://www.ebi.ac.uk/rdf/documentation/reactome/
https://www.ebi.ac.uk/rdf/documentation/reactome/

Code Block 3

1 :-use_module(library(pengines)).
2 reactome_server(’https://apps.nms.kcl.ac.uk/reactome-pengine’).
3

4 program(P):-
5 P=[
6 (
7 pathway_acrossmembrane(Pathwayname):-
8 Location = "plasma membrane",
9 rid_type_iri(RidPathway,’Pathway’,_Iri),

10 rid_name(RidPathway,Pathwayname),
11 ridPathway_component(RidPathway,RidReaction),
12 ridReaction_input(RidReaction,RidEntity),
13 rid_location(RidEntity,Location)
14)
15].
16

17 pathway_acrossmembrane(PathwayName):-
18 reactome_server(S),
19 program(P),
20 pengine_rpc(S,pathway_acrossmembrane(PathwayName),[src_list(P)]).

2.2.2 Reactome Pengines data access predicates

In addition to providing the data available from Reactome, Reactome Pengine
also includes over 30 public predicate definitions which offer intuitive and fast
access to elements of the data. Full details of these predicates are available in
the online documentation https://apps.nms.kcl.ac.uk/reactome-pengine/

documentation. Furthermore, as Reactome Pengine is monitored, commonly
used predicates can be added to Reactome Pengine.

2.2.3 Reactome Pengines querying language

It is also possible to have the web-logic query embeded in another language that
supports http requests. For example a shell script, java script or python. Code
Block 4 gives an example of a node js program that uses the pengines npm
module https://www.npmjs.com/package/pengines.

Code Block 4

1 pengines = require(’pengines’);
2

3 peng = pengines({
4 server: "https://apps.nms.kcl.ac.uk/reactome-pengine/pengine",
5 sourceText: ’small_pathway(P):- ridPathway_links(P,L), length(L,S), S<35.’,
6 ask: "small_pathway(X)",
7 chunk: 100,
8 }
9).on(’success’, handleSuccess).on(’error’, handleError);

10 function handleSuccess(result) {
11 console.log(result)
12 }
13 function handleError(result) {
14 console.error(result)
15 }

This feature is useful when introducing Reactome Pengine to existing code
pipe lines that might not be written in Prolog. However building Prolog pipelines
and using Prolog as the ’glue’ language is very powerfull as we have illustrated
throughout this work. Notablly the abililty to ’name and reuse’ queries (exam-

5

https://apps.nms.kcl.ac.uk/reactome-pengine/documentation
https://apps.nms.kcl.ac.uk/reactome-pengine/documentation
https://www.npmjs.com/package/pengines

ple 5 in the accompanying notebook https://swish.swi-prolog.org/?code=

https://raw.githubusercontent.com/samwalrus/reactome_notebook/master/

reactome_pengine.swinb) and the fact that Prolog is a Homoiconic language
(where data and code use the same syntax) means that Prolog pipe lines are
very effective for bioinformatic work - especially for queries across multiple data
end points (sometimes known as fedderated queries).

2.2.4 Reactome Pengines data output format

It is possible to change the format of replies from the Reactome Pengine from
Prolog terms to either CSV or JSON file formats. For an example of a shell script
that queries a pengine for a csv file see: https://github.com/SWI-Prolog/

swish/blob/master/client/swish-ask.sh

3 Example Prolog script for UNIX pipeline

As discussed in the main paper, Reactome Pengine can be used directly in a
Prolog program on a local machine (Tested on SWI-Prolog version 7.7). An
example Prolog script is given in Code Block 5, which can be used in a general
UNIX pipeline (see for example Code Block 6). This script takes a file with
a Reactome protein identifier on each line and outputs the affymetrix probe
identifiers for each protein. In order to execute this script the user will need to
make the script executable using the UNIX command ‘chmod’.

6

https://swish.swi-prolog.org/?code=https://raw.githubusercontent.com/samwalrus/reactome_notebook/master/reactome_pengine.swinb
https://swish.swi-prolog.org/?code=https://raw.githubusercontent.com/samwalrus/reactome_notebook/master/reactome_pengine.swinb
https://swish.swi-prolog.org/?code=https://raw.githubusercontent.com/samwalrus/reactome_notebook/master/reactome_pengine.swinb
https://github.com/SWI-Prolog/swish/blob/master/client/swish-ask.sh
https://github.com/SWI-Prolog/swish/blob/master/client/swish-ask.sh

Code Block 5

1 #!/usr/bin/env swipl
2

3 :- use_module(library(pengines)).
4 :- initialization main.
5

6 server(S):-S="https://apps.nms.kcl.ac.uk/reactome-pengine".
7

8 main :-
9 catch(readloop, E, (print_message(error, E), fail)),

10 halt.
11 main :-
12 halt(1).
13

14

15 readloop:-
16 read_line_to_string(user_input,String),
17 string_test(String).
18

19 string_test(String):-
20 dif(String,end_of_file),
21 atom_string(Atom,String),
22 ridProtein_probelist(Atom,Animal),
23 writeln(Animal),
24 readloop.
25

26 string_test(Term):-
27 Term = end_of_file,
28 fail.
29

30

31 ridProtein_probelist(R,P):-
32 server(S),
33 pengine_rpc(S,ridProtein_probelist(R,P),[]).
34

Example File: proteins.txt

1 Protein56
2 Protein17
3 Protein34

:

Code Block 6: Example UNIX pipeline

1 ./codeblock5.pl < proteins.txt | grep 1565484_x_at

7

	Reactome Pengine data flows
	Comparison of Reactome Pengine to existing data access options
	Amount of data exchanged
	Flexibility of querying
	Reactome Pengine versus existing Reactome APIs
	Reactome Pengines data access predicates
	Reactome Pengines querying language
	Reactome Pengines data output format

	Example Prolog script for UNIX pipeline

