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1 The variational EM algorithm

E-step

Let θ =
{
α,b, σ2, ω

}
be the collection of model parameters. The logarithm of the marginal likelihood

is

log Pr (p|Z,A;θ) = log
∑

γ

∑
η

�
Pr
(
p,γ, β̃,η|Z,A;θ

)
dβ̃.

Using the sigmoid function denoted as S (x) = 1
1+e−x , the complete-data likelihood can be written

as

Pr
(
p,γ, β̃,η|Z,A;θ

)
= Pr (p|γ;α) Pr

(
γ|Z,A, β̃,η; b

)
Pr
(
β̃,η|σ2, ω

)
,

.where
∗Correspondence should be addressed to Can Yang (macyang@ust.hk) and Jin Liu (jin.liu@duke-nus.edu.sg)
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Pr (p|γ;α) =
M∏
j=1

Pr (pj |γj ;α) =
M∏
j=1

(
αpα−1

j

)γj
,

Pr
(
γ|Z,A, β̃,η; b

)
=

M∏
j=1

Pr
(
γj |Zj ,Aj , β̃,η; b

)
=

M∏
j=1

eγj(Zjb+
∑

k
Ajkηkβ̃k)S

(
−Zjb−

∑
k

Ajkηkβ̃k

)
,

Pr
(
β̃,η|σ2, ω

)
=

K∏
k=1

Pr
(
β̃k, ηk|σ2, ω

)
=

K∏
k=1

N
(
β̃k|0, σ2)ωηk (1− ω)1−ηk .

We can use JJ bound (Jaakkola and Jordan, 2000) to get the tractable lower bound of Pr
(
γ|Z,A, β̃,η; b

)
which is denoted by h

(
γ|Z,A, β̃,η; b, ξ

)
:

Pr
(
γj |Zj ,Aj , β̃,η; b

)
= eγj(Zjb+

∑
k
Ajkηkβ̃k)S

(
−Zjb−

∑
k

Ajkηkβ̃k

)

≥ eγj(Zjb+
∑

k
Ajkηkβ̃k)S (ξj) exp

−λ (ξj)

(Zjb +
∑
k

Ajkηkβ̃k

)2

− ξ2
j

− Zjb +
∑
k Ajkηkβ̃k + ξj

2


= h

(
γj |Zj ,Aj , β̃,η; b, ξj

)
,

where

λ (ξj) = 1
2ξj

(
S (ξj)−

1
2

)
.

Let Θ =
{
α,b, ξ, σ2, ω

}
. Then

f
(
p,γ, β̃,η|Z,A; Θ

)
= Pr (p|γ;α)h

(
γ|Z,A, β̃,η; b, ξ

)
Pr
(
β̃,η|σ2, ω

)
is a lower bound of complete-data likelihood.

Next, let q
(
γ, β̃,η

)
be an approximation of the posterior Pr

(
γ, β̃,η|p,Z,A;θ

)
. Then we can

obtain a lower bound of the logarithm of the marginal likelihood:
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log Pr (p|Z,A;θ)

= log
∑

γ

∑
η

�
Pr
(
p,γ, β̃,η|Z,A;θ

)
dβ̃

≥ log
∑

γ

∑
η

�
f
(
p,γ, β̃,η|Z,A; Θ

)
dβ̃

≥
∑

γ

∑
η

�
q
(
γ, β̃,η

)
log

f
(
p,γ, β̃,η|Z,A; Θ

)
q
(
γ, β̃,η

) dβ̃

= Eq

[
log f

(
p,γ, β̃,η|Z,A; Θ

)
− log q

(
γ, β̃,η

)]
, L (q) ,

where L(q) is the lower bound. The second inequality follows Jensen’s inequality. And

log Pr (p|γ, α)

=
M∑
j=1

(γj (logα+ (α− 1) log pj)) ,

log h
(
γ|Z,A, β̃,η,b, ξ

)
=

M∑
j=1

(
γj

(
Zjb +

∑
k

Ajkηkβ̃k

)
+ logS (ξj)

)

+
M∑
j=1

−λ (ξj)

(Zjb +
∑
k

Ajkηkβ̃k

)2

− ξ2
j

−(Zjb +
∑
k

Ajkηkβ̃k + ξj

)
/2

 ,

log Pr
(
β̃,η|σ2, ω

)
= − 1

2σ2

K∑
k=1

β̃2
k −

K

2 log
(
2πσ2)+

K∑
k=1

ηk logω +
K∑
k=1

(1− ηk) log (1− ω) .

To make it feasible to evaluate the lower bound, we assume that q
(
γ, β̃,η

)
can be factorized as

q
(
γ, β̃,η

)
=
(

K∏
k=1

q
(
β̃k, ηk

)) M∏
j=1

q (γj)

 ,

where q
(
β̃k, ηk

)
= q

(
β̃k|ηk

)
q (ηk),q (γj = 1) = πj , q (ηk = 1) = ωk.

We can obtain an approximation according to the mean-field method:
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log q
(
β̃i, ηi

)
= Ek 6=iEγ

[
log f

(
p,γ, β̃,η|Z,A; Θ

)]
=

− 1
2σ2 −

M∑
j=1

λ (ξj)A2
jiη

2
i

 β̃2
i

+
M∑
j=1

(πj − 1
2 − 2λ (ξj) Zjb

)
Aji − 2λ (ξj)Aji

∑
k 6=i

AjkEk

[
ηkβ̃k

] ηiβ̃i

+ηi logω + (1− ηi) log (1− ω) + const,

where the expectation is taken under the distribution q (γ) and q
(
β̃−i, η−i

)
=
∏
k 6=i q

(
β̃k, ηk

)
.

When ηi = 1, we have

log q
(
β̃i|ηi = 1

)
=

− 1
2σ2 −

M∑
j=1

λ (ξj)A2
ji

 β̃2
i

+
M∑
j=1

(πj − 1
2 − 2λ (ξj) Zjb

)
Aji − 2λ (ξj)Aji

∑
k 6=i

AjkEk

[
ηkβ̃k

] β̃i + const,

where Ek denotes the expectation under q
(
β̃k, ηk

)
, and the constant doesn’t depend on β̃i. Because

log q
(
β̃i|ηi = 1

)
is a quadratic form,

q
(
β̃i|ηi = 1

)
= N

(
µi, s

2
i

)
,

where

µi = s2
i

M∑
j=1

πj − 1
2 − 2λ (ξj)

Zjb +
∑
k 6=i

AjkEk

[
ηkβ̃k

]Aji

 ,

s2
i = σ2

1 + 2σ2∑M
j=1 λ (ξj)A2

ji

.

When ηi = 0, we have

log q
(
β̃i|ηi = 0

)
= − 1

2σ2 β̃
2
i + const.

So

q
(
β̃i|ηi = 0

)
= N

(
0, σ2) .
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Therefore we have

q
(
β̃i, ηi

)
=
[
ωiN

(
µi, s

2
i

)]ηi
[
(1− ωi)N

(
0, σ2)]1−ηi

.

Now we evaluate the variational lower bound L (q).

Eq [log Pr (p|γ, α)]

=
M∑
j=1

(πj (logα+ (α− 1) log pj)) ,

Eq

[
log h

(
γ|Z,A, β̃,η,b, ξ

)]
=

M∑
j=1

πj (Zjb +
∑
k

Ajkωkµk

)
+ logS (ξj)− λ (ξj)

(Zjb +
∑
k

Ajkωkµk

)2

− ξ2
j


+

M∑
j=1

(
−

(
Zjb +

∑
k

Ajkωkµk + ξj

)
/2 + λ (ξj)

∑
k

A2
jkω

2
kµ

2
k − λ (ξj)

∑
k

A2
jkωk

(
s2
k + µ2

k

))
,

Eq

[
log Pr

(
β̃,η|σ2, ω

)]
= − 1

2σ2

K∑
k=1

(
ωk
(
s2
k + µ2

k

)
+ (1− ωk)σ2)− K

2 log
(
2πσ2)+

K∑
k=1

ωk logω +
K∑
k=1

(1− ωk) log (1− ω) ,

−Eq

[
log q

(
γ, β̃,η

)]
=

K∑
k=1

(
1
2ωk

(
log s2

k − log σ2)− ωk logωk − (1− ωk) log (1− ωk)
)

+ K

2 log σ2 + K

2 + K

2 log (2π)

−
M∑
j=1

(πj log πj + (1− πj) log (1− πj)) .

We set the partial derivative of the lower bound L(q) w.r.t to ωk, πj and ξj be 0 to get the
variational parameters ωk, πj and ξj :

ωk = 1
1 + exp (−uk) , where uk = log ω

1− ω + 1
2 log s

2
k

σ2 + µ2
k

2s2
k

,

vj = logα+ (α− 1) log pj + Zjb +
K∑
k=1

Ajkωkµk,

ξ2
j =

(
Zjb +

∑
k

Ajkωkµk

)2

+
∑
k

A2
jk

(
ωk
(
s2
k + µ2

k

)
− ω2

kµ
2
k

)
.

The variational lower bound L(q) is
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L(q)

=
M∑
j=1

(πj (logα+ (α− 1) log pj))

+
M∑
j=1

πj (Zjb +
∑
k

Ajkωkµk

)
+ logS (ξj)− λ (ξj)

(β0 +
∑
k

Ajkωkµk

)2

− ξ2
j


+

M∑
j=1

(
−

(
Zjb +

∑
k

Ajkωkµk + ξj

)
/2 + λ (ξj)

∑
k

A2
jkω

2
kµ

2
k − λ (ξj)

∑
k

A2
jkωk

(
s2
k + µ2

k

))

− 1
2σ2

K∑
k=1

(
ωk
(
s2
k + µ2

k

)
− ωkσ2)+

K∑
k=1

ωk logω +
K∑
k=1

(1− ωk) log (1− ω)

+
K∑
k=1

(
1
2ωk

(
log s2

k − log σ2)− ωk logωk − (1− ωk) log (1− ωk)
)

−
M∑
j=1

(πj log πj + (1− πj) log (1− πj)) .

M-step

Now we update α, b, σ2, ω. We set the partial derivative of L(q) w.r.t the parameters to be 0 and
get

α = −
∑M
j=1 πj∑M

j=1 πj log pj
,

σ2 =
∑K
k=1 ωk

(
s2
k + µ2

k

)∑K
k=1 ωk

,

ω = 1
K

K∑
k=1

ωk,

and use Newton’s method to update b:

b = bold −H−1g,

where

g =
M∑
j=1

ZTj

(
πj − 2λ (ξj)

(
Zjb +

∑
k

Ajkωkµk

)
− 1

2

)
,

H = −2ZTj λ (ξj) Zj .

Implementation

• Initialize α, σ2, ω, b, {ωk, µk}k=1,...K , {ξj , πj}j=1,...,M . Let ỹ =
∑
k Ajkωkµk.
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• E-step: For i = 1, ...,K, first obtain ỹi = ỹ − Ajiωiµi, and then update µi, s2
i , ωi and ỹ as

follows

s2
i = σ2

1 + 2σ2∑M
j=1 λ (ξj)A2

ji

,

µi = s2
i

M∑
j=1

((
πj −

1
2 − 2λ (ξj) (Zjb + ỹi)

)
Aji

)
,

ωi = 1
1 + exp (−ui)

, where ui = log ω

1− ω + 1
2 log s

2
i

σ2 + µ2
i

2s2
i

,

ỹ = ỹi +Ajiωiµi.

Then for j = 1, ...,M , update πj , ξj as follows

πj = 1
1 + exp (−vj)

, where vj = logα+ (α− 1) log pj + Zjb + ỹ,

ξ2
j = (Zjb + ỹ)2 +

∑
k

A2
jk

(
ωk
(
s2
k + µ2

k

)
− ω2

kµ
2
k

)
.

Calculate L (q):

L(q)

=
M∑
j=1

πj (logα+ (α− 1) log pj)−
M∑
j=1

(πj log πj + (1− πj) log (1− πj))

+
M∑
j=1

(
πj (Zjb + ỹ) + logS (ξj)−

Zjb + ỹ + ξj
2

)

− 1
2σ2

K∑
k=1

(
ωk
(
s2
k + µ2

k

)
− ωkσ2)+

K∑
k=1

ωk logω +
K∑
k=1

(1− ωk) log (1− ω)

+
K∑
k=1

(
1
2ωk

(
log s2

k − log σ2)− ωk logωk − (1− ωk) log (1− ωk)
)
.

• M-step
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α = −
∑M
j=1 πj∑M

j=1 πj log pj
,

σ2 =
∑K
k=1 ωk

(
s2
k + µ2

k

)∑K
k=1 ωk

,

ω = 1
K

K∑
k=1

ωk,

g = −
M∑
j=1

ZTj
(
πj − 2λ (ξj) (Zjb + ỹ)− 1

2

)
,

H = 2
M∑
j=1

λ (ξj) ZTj Zj ,

b = bold −H−1g.

• Evaluate L(q) to track the convergence of the algorithm.
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2 Details of the proposed algorithm

Stage 1: Two-groups model (TGM)

Suppose we have the p-values of M SNPs for a given phenotype. Let γj be the latent variables
indicating whether the j-th SNP is associated with this phenotype. Here γj = 0 means unassociated
and γj = 1 means associated. Then we have the following two-groups model:

pj ∼

U [0, 1] , γj = 0,

Beta (α, 1) , γj = 1,

where p ∈ RM are the p-values, 0 < α < 1 and Pr (γj = 1) = π1.
We can use EM algorithm to compute the posterior and parameter estimation.
Let θ = {α, π1} be the collection of model parameters. The logarithm of the marginal likelihood

is
log Pr (p|θ) = log

∑
γ

Pr (p,γ|θ) = log
∑

γ

Pr (p|γ;α) Pr (γ|π1) ,

where

Pr (p|γ;α) =
M∏
j=1

Pr (pj |γj ;α) =
M∏
j=1

(
αpα−1

j

)γj
,

Pr (γ|π1) =
M∏
j=1

π
γj

1 (1− π1)1−γj .

In the E step, we compute the posterior:

γ̃j = q (γj = 1) =
π1αp

α−1
j

π1αp
α−1
j + 1− π1

,

and get the Q function:

Q = Eq [log Pr (p|γ;α) + log Pr (γ|π1)]

=
M∑
j=1

γ̃j (logα+ (α− 1) log pj + log π1) +
M∑
j=1

(1− γ̃j) log (1− π1) .

The incomplete log likelihood can be evaluated as:

L =
M∑
j=1

γ̃j (logα+ (α− 1) log pj + log π1 − log γ̃j) +
M∑
j=1

(1− γ̃j) (log (1− π1)− log (1− γ̃j)) .

In the M step, we update α and π1 by maximizing the Q function. We have
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α = −
∑M
j=1 γ̃j∑M

j=1 γ̃j log pj
,

π1 = 1
M

M∑
j=1

γ̃j .

Algorithm:

Input: p, Initialize: α = 0.1, π1 = 0.1, Output: α, π1, {γ̃j}j=1,...,M .

• Initialize α = 0.1, π1 = 0.1.

• E-step: For j = 1, ...,M , calculate γ̃j as follows

γ̃j =
π1αp

α−1
j

π1αp
α−1
j + 1− π1

.

Calculate L:

L =
M∑
j=1

γ̃j (logα+ (α− 1) log pj + log π1 − log γ̃j) +
M∑
j=1

(1− γ̃j) (log (1− π1)− log (1− γ̃j)) .

• M-step:

α = −
∑M
j=1 γ̃j∑M

j=1 γ̃j log pj
,

π1 = 1
M

M∑
j=1

γ̃j .

• Check convergence.

Stage 2: Latent fixed-effect model (LFM)

Suppose we have the p-values of M SNPs for a given phenotype. Similarly, we assume

pj ∼

U [0, 1] , γj = 0,

Beta (α, 1) , γj = 1,

where p ∈ RM are the p-values, γj = 1 indicates the j-th is associated with this phenotype and
γj = 0 otherwise, and 0 < α < 1.

To integrate more information, we consider the logistic fixed-effect model:

log Pr (γj = 1|Zj)
Pr (γj = 0|Zj)

= Zjb,
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where Z ∈ RM×(L+1) and b = [b0, b1, b2, ..., bL]T is an unknown vector of fixed effects, L is the
number of covariates.

We can use EM algorithm to compute the posterior and parameter estimation.
Let θ = {α,b} be the collection of model parameters. The complete data likelihood can be

written as
Pr (p,γ|Z;θ) = Pr (p|γ;α) Pr (γ|Z; b) ,

where

Pr (p|γ;α) =
M∏
j=1

Pr (pj |γj ;α) =
M∏
j=1

(
αpα−1

j

)γj
,

Pr (γ|Z; b) =
M∏
j=1

eγjZjbS (−Zjb) .

In the E step, we compute the posterior:

γ̃j = q (γj = 1) =
eZjbαpα−1

j

eZjbαpα−1
j + 1

,

and get the Q function:

Q =
M∑
j=1

γ̃j (logα+ (α− 1) log pj + Zjb) +
M∑
j=1

logS (−Zjb) .

The incomplete log likelihood can be evaluated as:

L =
M∑
j=1

γ̃j (logα+ (α− 1) log pj + Zjb− log γ̃j)−
M∑
j=1

(1− γ̃j) log (1− γ̃j) +
M∑
j=1

logS (−Zjb) .

In the M step, we update α by maximizing the Q function. We have

α = −
∑M
j=1 γ̃j∑M

j=1 γ̃j log pj
.

We use Newton’s method to update b:

b = bold −H−1g,

where

g =
M∑
j=1

(−γ̃j + S (Zjb)) Zj ,

H =
M∑
j=1

S (Zjb)S (−Zjb) ZTj Zj .
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Algorithm:

Input: p, Z, α, b0 = log π1
1−π1

, Output: α, b, {γ̃j}j=1,...,M .

• Initialize α, b = (b0, 0, ..., 0)T .

• E-step: For j = 1, ...,M , calculate γ̃j as follows

γ̃j = q (γj = 1) =
eZjbαpα−1

j

eZjbαpα−1
j + 1

.

Calculate L:

L =
M∑
j=1

γ̃j (logα+ (α− 1) log pj + Zjb− log γ̃j)−
M∑
j=1

(1− γ̃j) log (1− γ̃j) +
M∑
j=1

logS (−Zjb) .

• M-step

α = −
∑M
j=1 πj∑M

j=1 πj log pj
,

g =
M∑
j=1

(−γ̃j + S (Zjb)) Zj ,

H =
M∑
j=1

S (Zjb)S (−Zjb) ZTj Zj ,

b = bold −H−1g.

• Check convergence.

Stage 3: Logistic sparse mixed model

Suppose we know the latent states γ of M SNPs for a given phenotype is given. We consider a
logistic mixed model:

log Pr (γj = 1|Zj ,Aj)
Pr (γj = 0|Zj ,Aj)

= Zjb + Ajβ =
L∑
l=0

Zjlbl +
K∑
k=1

Ajkβk,

where Z ∈ RM×(L+1), A ∈ RM×K , b = [b0, b1, b2, ..., bL]T is an unknown vector of fixed effects,
β = [β1, β2, ..., βK ]T is an unknown vector of random effects with a spike-slab prior:

βk ∼

N
(
0, σ2) , ηk = 1,

δ0, ηk = 0,

where ηk is another latent variable with Pr (ηk = 1) = ω. Here ηk = 1 means the k-th annotation is
relevant to this phenotype and ηk = 0 otherwise.
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To handle the Dirac function, we reparemetrize the spike-slab prior as β̃k ∼ N
(
0, σ2) , then

βk = ηkβ̃k.

We can use variational EM algorithm to compute the posterior and parameter estimation.
Let θ =

{
α,b, σ2, ω

}
be the collection of model parameters. Using the sigmoid function denoted

as S (x) = 1
1+e−x , the complete data likelihood can be written as

Pr
(
γ, β̃,η|Z,A;θ

)
= Pr

(
γ|Z,A, β̃,η; b

)
Pr
(
β̃,η|σ2, ω

)
,

where

Pr
(
γ|Z,A, β̃,η; b

)
=

M∏
j=1

Pr
(
γj |Zj ,Aj , β̃,η; b

)
=

M∏
j=1

eγj(Zjb+
∑

k
Ajkηkβ̃k)S

(
−Zjb−

∑
k

Ajkηkβ̃k

)
,

Pr
(
β̃,η|σ2, ω

)
=

K∏
k=1

Pr
(
β̃k, ηk|σ2, ω

)
=

K∏
k=1

N
(
β̃k|0, σ2)ωηk (1− ω)1−ηk .

We can use JJ bound (Jaakkola and Jordan, 2000) to bound the sigmoid function by

S (x) ≥ S (ξ) exp
{

(x− ξ) /2− λ (ξ)
(
x2 − ξ2)} ,

where λ (ξ) = 1
2ξ
[
S (ξ)− 1

2
]
. Using this bound, we have a tractable lower bound of Pr

(
γ|Z,A, β̃,η; b

)
which is denoted by h

(
γ|Z,A, β̃,η; b, ξ

)
:

h
(
γj |Zj ,Aj , β̃,η; b, ξj

)
= eγj(Zjb+

∑
k
Ajkηkβ̃k)S (ξj) exp

−λ (ξj)

(Zjb +
∑
k

Ajkηkβ̃k

)2

− ξ2
j

− Zjb +
∑
k Ajkηkβ̃k + ξj

2

 .

Next, Let q
(
β̃,η

)
be an approximation of the posterior Pr

(
β̃,η|Z,A;θ

)
. Then we can obtain a

lower bound of the logarithm of the marginal likelihood:
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log Pr (γ|Z,A;θ)

= log
∑

η

�
Pr
(
γ, β̃,η|Z,A;θ

)
dβ̃

= log
∑

η

�
Pr
(
γ|Z,A, β̃,η; b

)
Pr
(
β̃,η|σ2, ω

)
dβ̃

≥ log
∑

η

�
h
(
γ|Z,A, β̃,η; b, ξ

)
Pr
(
β̃,η|σ2, ω

)
dβ̃

≥
∑

η

�
q
(
β̃,η

)
log

h
(
γ|Z,A, β̃,η; b, ξ

)
Pr
(
β̃,η|σ2, ω

)
q
(
β̃,η

) dβ̃

= Eq

[
log h

(
γ|Z,A, β̃,η; b, ξ

)
+ log Pr

(
β̃,η|σ2, ω

)
− log q

(
β̃,η

)]
, L (q) ,

where L(q) is the lower bound. The second inequality follows Jensen’s inequality. We can maximize
L(q) instead of the marginal likelihood to get parameter estimations. To make it feasible to evaluate
the lower bound, we assume that q

(
β̃,η

)
can be factorized as

q
(
β̃, η

)
=

K∏
k=1

q
(
β̃k, ηk

)
=

K∏
k=1

q
(
β̃k|ηk

)
q (ηk) ,

where q (ηk = 1) = ωk.
We can obtain an approximation according to the mean-field method:

log q
(
β̃i, ηi

)
= Ek 6=i

[
log h

(
γ|Z,A, β̃,η,b, ξ

)
+ log Pr

(
β̃,η|σ2, ω

)]
,

where the expectation is taken under the distribution q
(
β̃−i, η−i

)
=
∏
k 6=i q

(
β̃k, ηk

)
. Then we have

q
(
β̃i, ηi

)
=
[
ωiN

(
µi, s

2
i

)]ηi
[
(1− ωi)N

(
0, σ2)]1−ηi

,

where

µi = s2
i

M∑
j=1

πj − 1
2 − 2λ (ξj)

Zjb +
∑
k 6=i

AjkEk

[
ηkβ̃k

]Aji,

s2
i = σ2

1 + 2σ2∑M
j=1 λ (ξj)A2

ji

.

Then we maximize L (q) with respect to ωk and ξj and get

14



ωk = 1
1 + exp (−uk) , where uk = log ω

1− ω + 1
2 log s

2
k

σ2 + µ2
k

2s2
k

,

ξ2
j =

(
Zjb +

∑
k

Ajkωkµk

)2

+
∑
k

A2
jk

(
ωk
(
s2
k + µ2

k

)
− ω2

kµ
2
k

)
.

Now we have evaluate L(q):

L(q)

=
M∑
j=1

γj (Zjb +
∑
k

Ajkωkµk

)
+ logS (ξj)− λ (ξj)

(Zjb +
∑
k

Ajkωkµk

)2

− ξ2
j


+

M∑
j=1

(
−

(
Zjb +

∑
k

Ajkωkµk + ξj

)
/2 + λ (ξj)

∑
k

A2
jkω

2
kµ

2
k − λ (ξj)

∑
k

A2
jkωk

(
s2
k + µ2

k

))

− 1
2σ2

K∑
k=1

(
ωk
(
s2
k + µ2

k

)
− ωkσ2)+

K∑
k=1

ωk logω +
K∑
k=1

(1− ωk) log (1− ω)

+
K∑
k=1

(
1
2ωk

(
log s2

k − log σ2)− ωk logωk − (1− ωk) log (1− ωk)
)
.

With q
(
γ, β̃,η

)
obtained, we can evaluate the lower bound and then update the model param-

eters by maximizing L(q).
In the M step, we update σ2 and ω by maximizing L(q). We have

σ2 =
∑K
k=1 ωk

(
s2
k + µ2

k

)∑K
k=1 ωk

,

ω = 1
K

K∑
k=1

ωk.

We use Newton’s method to update b:

b = bold −H−1g,

where

g = −
M∑
j=1

ZTj

(
γj − 2λ (ξj)

(
Zjb +

∑
k

Ajkωkµk

)
− 1

2

)
,

H = 2
M∑
j=1

λ (ξj) ZTj Zj .
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Algorithm:

Input: Z, A, {γj = γ̃j}j=1,...,M , b, Initialize: σ2 = 1, ω = 0.5, {ωk = 0, µk = 0}k=1,...K , ξ = Zb,
Output: b, ξ, σ2, ω, {ωk, µk}k=1,...K .

• Initialize b, ξ = Zb, σ2 = 1, ω = 0.5, {ωk = 0, µk = 0}k=1,...K . Let ỹ =
∑
k Ajkωkµk.

• E-step: For i = 1, ...,K, first obtain ỹi = ỹ − Ajiωiµi, and then update µi, s2
i , ωi and ỹ as

follows

s2
i = σ2

1 + 2σ2∑M
j=1 λ (ξj)A2

ji

,

µi = s2
i

M∑
j=1

((
γj −

1
2 − 2λ (ξj) (Zjb + ỹi)

)
Aji

)
,

ωi = 1
1 + exp (−ui)

, where ui = log ω

1− ω + 1
2 log s

2
i

σ2 + µ2
i

2s2
i

,

ỹ = ỹi +Ajiωiµi.

Then for j = 1, ...,M , update ξj as follows

ξ2
j = (Zjb + ỹ)2 +

∑
k

A2
jk

(
ωk
(
s2
k + µ2

k

)
− ω2

kµ
2
k

)
.

Calculate L (q):

L(q)

=
M∑
j=1

(
γj (Zjb + ỹ) + logS (ξj)−

Zjb + ỹ + ξj
2

)

− 1
2σ2

K∑
k=1

(
ωk
(
s2
k + µ2

k

)
− ωkσ2)+

K∑
k=1

ωk logω +
K∑
k=1

(1− ωk) log (1− ω)

+
K∑
k=1

(
1
2ωk

(
log s2

k − log σ2)− ωk logωk − (1− ωk) log (1− ωk)
)
.

• M-step

16



g = −
M∑
j=1

ZTj
(
πj − 2λ (ξj) (Zjb + ỹ)− 1

2

)
,

H = 2
M∑
j=1

λ (ξj) ZTj Zj ,

b = bold −H−1g,

σ2 =
∑K
k=1 ωk

(
s2
k + µ2

k

)∑K
k=1 ωk

,

ω = 1
K

K∑
k=1

ωk.

• Check convergence.

Stage 4: LSMM

Input: p, Z, A, α,b, ξ, σ2, ω, {ωk, µk}k=1,...K , Initialize: {πj = γ̃j}j=1,...,M , Output: α,b, σ2, ω,
{ωk, βk = µkωk}k=1,...K , {πj}j=1,...,M

Algorithm:

• Initialize α, σ2, ω, b, {ωk, µk}k=1,...K , {ξj , πj}j=1,...,M . Let ỹ =
∑
k Ajkωkµk.

• E-step: For i = 1, ...,K, first obtain ỹi = ỹ − Ajiωiµi, and then update µi, s2
i , ωi and ỹ as

follows

s2
i = σ2

1 + 2σ2∑M
j=1 λ (ξj)A2

ji

,

µi = s2
i

M∑
j=1

((
πj −

1
2 − 2λ (ξj) (Zjb + ỹi)

)
Aji

)
,

ωi = 1
1 + exp (−ui)

, where ui = log ω

1− ω + 1
2 log s

2
i

σ2 + µ2
i

2s2
i

,

ỹ = ỹi +Ajiωiµi.

Then for j = 1, ...,M , update πj , ξj as follows

πj = 1
1 + exp (−vj)

, where vj = logα+ (α− 1) log pj + Zjb + ỹ,

ξ2
j = (Zjb + ỹ)2 +

∑
k

A2
jk

(
ωk
(
s2
k + µ2

k

)
− ω2

kµ
2
k

)
.

Calculate L (q):
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L(q)

=
M∑
j=1

πj (logα+ (α− 1) log pj)−
M∑
j=1

(πj log πj + (1− πj) log (1− πj))

+
M∑
j=1

(
πj (Zjb + ỹ) + logS (ξj)−

Zjb + ỹ + ξj
2

)

− 1
2σ2

K∑
k=1

(
ωk
(
s2
k + µ2

k

)
− ωkσ2)+

K∑
k=1

ωk logω +
K∑
k=1

(1− ωk) log (1− ω)

+
K∑
k=1

(
1
2ωk

(
log s2

k − log σ2)− ωk logωk − (1− ωk) log (1− ωk)
)
.

• M-step

α = −
∑M
j=1 πj∑M

j=1 πj log pj
,

σ2 =
∑K
k=1 ωk

(
s2
k + µ2

k

)∑K
k=1 ωk

,

ω = 1
K

K∑
k=1

ωk,

g = −
M∑
j=1

ZTj
(
πj − 2λ (ξj) (Zjb + ỹ)− 1

2

)
,

H = 2
M∑
j=1

λ (ξj) ZTj Zj ,

b = bold −H−1g.

• Evaluate L(q) to track the convergence of the algorithm.
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3 More simulation results

3.1 Performance in identification of risk SNPs
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Figure S1: FDR, power, AUC and partial AUC of LSMM, LFM and TGM for identification of risk
SNPs with α = 0.2 and K = 100. We controlled global FDR at 0.1 to evaluate empirical FDR and
power. The results are summarized from 50 replications.
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Figure S2: FDR, power, AUC and partial AUC of LSMM, LFM and TGM for identification of risk
SNPs with α = 0.2 and K = 1000. We controlled global FDR at 0.1 to evaluate empirical FDR and
power. The results are summarized from 50 replications.
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Figure S3: FDR, power, AUC and partial AUC of LSMM, LFM and TGM for identification of risk
SNPs with α = 0.4 and K = 100. We controlled global FDR at 0.1 to evaluate empirical FDR and
power. The results are summarized from 50 replications.
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Figure S4: FDR, power, AUC and partial AUC of LSMM, LFM and TGM for identification of risk
SNPs with α = 0.4 and K = 500. We controlled global FDR at 0.1 to evaluate empirical FDR and
power. The results are summarized from 50 replications.
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Figure S5: FDR, power, AUC and partial AUC of LSMM, LFM and TGM for identification of risk
SNPs with α = 0.4 and K = 1000. We controlled global FDR at 0.1 to evaluate empirical FDR and
power. The results are summarized from 50 replications.
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Figure S6: FDR, power, AUC and partial AUC of LSMM, LFM and TGM for identification of risk
SNPs with α = 0.6 and K = 100. We controlled global FDR at 0.1 to evaluate empirical FDR and
power. The results are summarized from 50 replications.
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Figure S7: FDR, power, AUC and partial AUC of LSMM, LFM and TGM for identification of risk
SNPs with α = 0.6 and K = 500. We controlled global FDR at 0.1 to evaluate empirical FDR and
power. The results are summarized from 50 replications.
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Figure S8: FDR, power, AUC and partial AUC of LSMM, LFM and TGM for identification of risk
SNPs with α = 0.6 and K = 1000. We controlled global FDR at 0.1 to evaluate empirical FDR and
power. The results are summarized from 50 replications.
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3.2 Performance in identification of risk SNPs if treat the effects of all
covariates as fixed effects
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LSMM LSMM(treat all annotations as fixed effects)

FDR

Figure S9: FDR of LSMM and LSMM (treat the effects of all covariates as fixed effects) for identi-
fication of risk SNPs with K = 500. We controlled global FDR at 0.1 to evaluate empirical FDR.
The results are summarized from 50 replications.
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3.3 Performance in identification of relevant annotations

● ●

●

●

●

●

0.0

0.1

0.2

0.3

0.01 0.05 0.1 0.2
omega

FDR

●●●●●●●●●●●

●

0.00

0.25

0.50

0.75

1.00

0.01 0.05 0.1 0.2
omega

Power

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.7

0.8

0.9

1.0

0.01 0.05 0.1 0.2
omega

AUC

●

●

●

●

●

●

0.00

0.05

0.10

0.15

0.20

0.01 0.05 0.1 0.2
omega

Partial AUC (FPR < 0.2)

Figure S10: FDR, power, AUC and partial AUC of LSMM for detection of relevant annotations
with α = 0.2 and K = 100. We controlled global FDR at 0.1 to evaluate empirical FDR and power.
The results are summarized from 50 replications.
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Figure S11: FDR, power, AUC and partial AUC of LSMM for detection of relevant annotations with
α = 0.2 and K = 1000. We controlled global FDR at 0.1 to evaluate empirical FDR and power.
The results are summarized from 50 replications.
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Figure S12: FDR, power, AUC and partial AUC of LSMM for detection of relevant annotations
with α = 0.4 and K = 100. We controlled global FDR at 0.1 to evaluate empirical FDR and power.
The results are summarized from 50 replications.
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Figure S13: FDR, power, AUC and partial AUC of LSMM for detection of relevant annotations
with α = 0.4 and K = 500. We controlled global FDR at 0.1 to evaluate empirical FDR and power.
The results are summarized from 50 replications.
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Figure S14: FDR, power, AUC and partial AUC of LSMM for detection of relevant annotations with
α = 0.4 and K = 1000. We controlled global FDR at 0.1 to evaluate empirical FDR and power.
The results are summarized from 50 replications.
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Figure S15: FDR, power, AUC and partial AUC of LSMM for detection of relevant annotations
with α = 0.6 and K = 100. We controlled global FDR at 0.1 to evaluate empirical FDR and power.
The results are summarized from 50 replications.
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Figure S16: FDR, power, AUC and partial AUC of LSMM for detection of relevant annotations
with α = 0.6 and K = 500. We controlled global FDR at 0.1 to evaluate empirical FDR and power.
The results are summarized from 50 replications.
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Figure S17: FDR, power, AUC and partial AUC of LSMM for detection of relevant annotations with
α = 0.6 and K = 1000. We controlled global FDR at 0.1 to evaluate empirical FDR and power.
The results are summarized from 50 replications.
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3.4 Performance in identification of relevant annotations when the num-
ber of SNPs is large
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Figure S18: FDR, power, AUC and partial AUC of LSMM for detection of relevant annotations
with α = 0.2 and K = 100. We controlled global FDR at 0.1 to evaluate empirical FDR and power.
The results are summarized from 50 replications.
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Figure S19: FDR, power, AUC and partial AUC of LSMM for detection of relevant annotations
with α = 0.4 and K = 100. We controlled global FDR at 0.1 to evaluate empirical FDR and power.
The results are summarized from 50 replications.
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Figure S20: FDR, power, AUC and partial AUC of LSMM for detection of relevant annotations
with α = 0.6 and K = 100. We controlled global FDR at 0.1 to evaluate empirical FDR and power.
The results are summarized from 50 replications.

26



3.5 Performance of LSMM when the number of SNPs is small

We conducted simulations with the number of SNPs M varied from 1,000 to 100,000 to evaluate the
performance of LSMM. In the simulation, we set L = 10, K = 100, α = 0.2 and ω = 0.2. To easily
control signal-noise ratio, we used the probit model:

yj = Zjb + Ajβ + ej , (S1)

where ej ∼ N
(
0, σ2

e

)
. And we set γj = 1 if yj > 0, γj = 0 if yj ≤ 0. The first entry of the coefficients

of fixed effects b, i.e. the intercept term, was fixed at −1 and other entries were generated from
N (0, 1) and fixed during multiple replications. We varied the signal-noise ratio r = var(Zb+Aβ)

var(e) =
{4 : 1, 1 : 1, 1 : 4}. The results are given in Figures S21 and S22. As the number of SNPs becomes
smaller, the performance of LSMM for both identification of risk SNPs and detection of relevant
annotations become worse, as indicated by power, AUC and partial AUC. With a large signal-noise
ratio, the performance of LSMM becomes better, especially when the number of SNPs is small. In
order to obtain reliable results using LSMM, the number of SNPs should not be very small. To
summarize, LSMM could be applied to a subset of SNPs when the number of SNPs is not too small
and signals from annotations are not too weak.
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Figure S21: FDR, power, AUC and partial AUC of LSMM for identification of risk SNPs based on
probit model. We controlled global FDR at 0.1 to evaluate empirical FDR and power. The results
are summarized from 50 replications.
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Figure S22: FDR, power, AUC and partial AUC of LSMM for detection of relevant annotations
based on probit model. We controlled global FDR at 0.1 to evaluate empirical FDR and power. The
results are summarized from 50 replications.
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3.6 Performance in identification of relevant annotations when the anno-
tations in design matrix of fixed effects and random effects are not
independent

We simulated a case that 10 genic category annotations and first 50 cell-type specific annotations
are correlated with correlation coefficient varied at at {0, 0.2, 0.4, 0.6, 0.8} and the remaining annota-
tions are generated independently. To simulate the design matrices for genic category and cell-type
specific annotations, we first simulated M samples from a multivariate normal distribution with the
correlation matrix among annotations and then made a cutoff so that 10% of the entries would be
1 and the others be 0.
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Figure S23: FDR of LSMM and LSMM without fixed effects for detection of relevant annotations
with α = 0.2 and K = 100. We controlled global FDR at 0.1 to evaluate empirical FDR. The results
are summarized from 50 replications.
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3.7 Simulations to investigate the sensitivity of LSMM to initial param-
eter specification

The parameters which need initialization in LSMM are only α and π1 in the first stage (Two-group
model, in short, TGM), and their estimates naturally give the starting point of the second stage.
Here we used the TGM to generate data such that we can evaluate whether the estimates converge
to their true values. In the simulation, we set the numbers of SNPs M = 100, 000 and varied the
true value of π1 ∈ {0.01, 0.05, 0.1, 0.15, 0.2}. To check whether LSMM could give accurate estimates
when using different initial values, we considered two cases, default setting and random setting.
In the default setting, both α and π1 are initialized at 0.1. In the random setting, we randomly
generated the initial values of α from U [0.1, 0.6] and the initial values of π1 from U [0, 0.3].

The results of the estimation π̂1 using LSMM (default setting and random setting) are shown in
the upper panel of Figure S24. The true values are indicated by dotted lines with different colors.
Comparing the performance of difference initial value settings, default setting and random setting,
we note that LSMM is not sensitive to initial parameter specification in most situations except when
the true proportion of risk SNPs is small and the signal of GWAS data is weak (e.g., π1 = 0.01 for
α = 0.6). However, LSMM can still provide a valid FDR control which is shown in the lower panel
of Figure S24. In the context of GWAS, the proportion of risk variants is not very small due to
the polygenic effect. Therefore, we believe LSMM with default setting will work well in practice,
without suffering much from initialization.
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Figure S24: Upper panel: parameter estimation (π̂1 v.s. true π1) using LSMM (default setting and
random setting). Lower panel: FDR for identification of risk SNPs using LSMM (default setting
and random setting). We controlled global FDR at 0.1 to evaluate empirical FDR. The results are
summarized from 50 replications.
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3.8 Estimation of parameters

3.8.1 Estimation of α

We evaluate the performance of LSMM in estimation of parameter α in the beta distribution. We
compare LSMM with the other three methods, TGM (without fixed effects and random effects),
LFM (with only fixed effects) and LSMM without fixed effects. We varied ω at {0, 0.25, 0.5, 0.75, 1}.
Figures S25-S27 show the comparison among these methods with α = 0.2, 0.4 and 0.6 respectively.
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Figure S25: Performance in estimation of parameter α when the true α = 0.2.
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Figure S26: Performance in estimation of parameter α when the true α = 0.4.
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Figure S27: Performance in estimation of parameter α when the true α = 0.6.
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3.8.2 Estimation of b

We evaluate the performance of LSMM in estimation of parameter b0 and b. We varied ω at
{0, 0.25, 0.5, 0.75, 1}. Figures S28-S38 show the comparison between LSMM and LFM (with only
fixed effects) with α = 0.2, 0.4 and 0.6.

K = 100 K = 500 K = 1000

alpha =
 0.2

alpha =
 0.4

alpha =
 0.6

0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1

−4

−2

0

−4

−2

0

−4

−2

0

omega

 E
st

im
at

io
n 

of
 b

0

LSMM LFM

Figure S28: Performance in estimation of parameter b0.
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Figure S29: Performance in estimation of parameter b1.
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Figure S30: Performance in estimation of parameter b2.
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Figure S31: Performance in estimation of parameter b3.
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Figure S32: Performance in estimation of parameter b4.
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Figure S33: Performance in estimation of parameter b5.
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Figure S34: Performance in estimation of parameter b6.

38



K = 100 K = 500 K = 1000

alpha =
 0.2

alpha =
 0.4

alpha =
 0.6

0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1

0.00

0.25

0.50

0.75

0.00

0.25

0.50

0.75

0.00

0.25

0.50

0.75

omega

 E
st

im
at

io
n 

of
 b

7

LSMM LFM

Figure S35: Performance in estimation of parameter b7.

39



K = 100 K = 500 K = 1000

alpha =
 0.2

alpha =
 0.4

alpha =
 0.6

0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

omega

 E
st

im
at

io
n 

of
 b

8

LSMM LFM

Figure S36: Performance in estimation of parameter b8.
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Figure S37: Performance in estimation of parameter b9.
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Figure S38: Performance in estimation of parameter b10.
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3.8.3 Estimation of ω

We evaluate the performance of LSMM in estimation of parameter ω which measures the proportion
of relevant annotations. We varied ω at {0, 0.25, 0.5, 0.75, 1}. Figure S39 shows the results with
α = 0.2, 0.4 and 0.6.
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Figure S39: Performance in estimation of parameter ω.
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3.9 Estimation of α using individual-level data

To provide a reference for the relationship between heritability and α, here we conducted simulations
when the p-values for SNPs are obtained from individual-level data instead of directly simulating from
the generative model (1). The simulation data was generated as follows. To simulate the genotype
matrix X for N individuals with M independent SNPs, we first draw the minor allele frequencies
(MAFs) of these SNPs from U [0, 1]. Based on the MAFs, the entries in the genotype matrix X,
which were encoded by {0, 1, 2}, were generated according to the Hardy-Weinberg principle. Given
γ, which was simulated as what we described in the paper, the corresponding nonzero entries of effect
sizes βSNP were simulated from N (0, 1). The noise level σ2

e was specified to control heritability
h2 = var(XβSNP )

var(XβSNP )+σ2
e
at given levels. The phenotype data y was generated based on y = XβSNP +e,

where ei ∼ N(0, σ2
e) for i = 1, ..., N . Then we conducted univariate linear regression to obtain the

summary statistics (p-value) for each SNP.
In the simulation, we set M = 20, 000, L = 10, K = 100 and ω = 0.1. We varied heritability

h2 ∈ {0.2, 0.4, 0.6, 0.8} and the sample size N ∈{10,000, 5,000}. Figure S40 shows the estimation of
α using LSMM, indicating that the value of α is determined by both heritability and sample size.
When N = 10, 000, heritability h2 = 0.6 and h2 = 0.2 are approximately corresponding to α = 0.4
and α = 0.6, respectively. When the sample size reduces to N = 5, 000, the corresponding estimation
of α becomes larger. To conclude, given fixed sample sizes and nonzero proportion, smaller alpha
corresponds to larger heritability. Hence, we used alpha to indicate the strength of GWAS in our
paper.
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Figure S40: The estimation of parameter α using individual-level data.
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3.10 Simulations if p-values are not from beta distribution

In the model setting of the LSMM, we assume that p-values are from the mixture of uniform and
Beta distributions. To check the robustness of our method, we conducted simulations as follows.
We first generated z-scores and then converted them to p-values. Here z-values from the null group
follow the standard normal distribution and z-values from the non-null group follow the alternative
distributions in Table S1. In these simulations, the p-values in non-null group converted from z-scores
will not from Beta distribution. Instead of using generative model (2), we conducted simulations
based on probit model:

yj = Zjb + Ajβ + ej , (S2)

where ej ∼ N
(
0, σ2

e

)
. And we set γj = 1 if yj > 0, γj = 0 if yj ≤ 0. The first entry of the coefficients

of fixed effects b, i.e. the intercept term, was fixed at −1 and other entries were generated from
N (0, 1) and fixed during multiple replications. We set α = 0.2, ω = 0.2 and varied the signal-noise
ratio r = {4 : 1, 1 : 1, 1 : 4}. The empirical FDRs are shown in Figures S41-S43.

Scenario Distribution

spiky 0.4N
(

0, 0.252
)

+ 0.2N
(

0, 0.52
)

+ 0.2N
(

0, 12
)

+ 0.2N
(

0, 22
)

near normal 2
3 N
(

0, 12
)

+ 1
3 N
(

0, 22
)

skew 1
4 N
(

−2, 22
)

+ 1
4 N
(

−1, 1.52
)

+ 1
3 N
(

0, 12
)

+ 1
6 N
(

1, 12
)

big-normal N
(

0, 42
)

Table S1: Alternative distributions for z-scores.
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Figure S41: FDR of LSMM, LFM and TGM with K = 100. We controlled global FDR at 0.1 to
evaluate empirical FDR. The results are summarized from 50 replications.

45



●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

● ●●

●

●
●

●●

●

●

●
●

●

●

●

●
●

●

spiky near normal skew big normal

0.25 1 4 0.25 1 4 0.25 1 4 0.25 1 4

0.025

0.050

0.075

0.100

r

F
D

R

LSMM LFM TGM

Figure S42: FDR of LSMM, LFM and TGM with K = 500. We controlled global FDR at 0.1 to
evaluate empirical FDR. The results are summarized from 50 replications.
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Figure S43: FDR of LSMM, LFM and TGM with K = 1000. We controlled global FDR at 0.1 to
evaluate empirical FDR. The results are summarized from 50 replications.
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3.11 Simulation study for evaluating the LD effects on LSMM

To study the influence of LD effects on our LSMM, we used the observed genotype data (1,500
individuals from the 1958 British Birth Cohort (58C)) from WTCCC (The Wellcome Trust Case
Control Consortium, 2007). For simplicity, we only consider 23874 SNPs in chromosome 1 after
quality control. We simulated a risk SNP every 1000 SNPs. So we had 24 risk SNPs. We assumed
the 24 risk SNPs can explain 5% phenotypic variance. We used GCTA to simulation phenotypes
and used PLINK to get p-values for SNPs. Then we applied LSMM and detect risk SNPs.

As the presence of LD effects, SNPs in a local genomic region would be correlated and detection
of risk SNPs would be difficult. We are just expected to identify the region which contains the risk
SNPs. Here we used different distance threshold to define the region around true risk SNPs. The
identified risk SNPs which in the region of true risk SNPs were considered as true positive.

We considered four cases. The first case, no effects, means we only used the p-values and didn’t
use fixed effects and random effects. In the second case, fixed effects, we only add 10 fixed effects.
In the fixed effects, SNPs within 1Mb of true risk SNPs are annotated with a probability of 0.6.
In the third case, fixed + random effects, we further add 100 random effects in which SNPs are
annotated randomly. In the fourth case, fixed + relevant random effects, we assume 20% of random
effects are relevant to the phenotype and SNPs within 1Mb of true risk SNPs are annotated with
a probability of 0.6 in the relevant random effects. The results of observed FDR were shown in
Figure S44 based on 50 simulations. In the first case, when we used no effects, the observed FDR
was quite stable at 0.1. When we added fixed effects and random effects, the observed FDR was
just inflated a little with the smallest distance threshold and became conservative as the distance
threshold increased. As a result, we believe that LSMM can provide a satisfactory FDR control in
detecting a local genomic region of risk SNPs.
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3.12 Performance of LSMM when the proportion of risk SNPs π1 was
extremely small

Here we used the TGM to generate data such that we can evaluate whether the estimates converge
to their true values. In the simulation, we set the numbers of SNPsM = 100, 000 and varied the true
value of π1 ∈ {0.001, 0.005, 0.01, 0.05, 0.1, 0.15, 0.2}. We also used Higher Criticism to estimate the
proportion of non-null effects as a comparison. The software for Higher Criticism was downloaded
from http://www.stat.cmu.edu/ jiashun/Research/software/NullandProp/.

The results of the estimation π̂1 using LSMM and Higher Criticism are shown in the upper
panel of Figure S45. The true values are indicated by dotted lines with different colors. When
the true proportion of risk SNPs is extremely small (e.g., π1 ≤ 0.001 for α = 0.4) and the signal
of GWAS data is weak (e.g., π1 ≤ 0.01 for α = 0.6), the estimation using LSMM is not very
accurate. However, LSMM can still provide a valid FDR control (See lower panel of Figure S45).
The performance of Higher Criticism is quite opposite. Although it can provide stable estimation
when the true proportion of risk SNPs is small (π1 ≤ 0.01), its performance for larger π1 is not as
well as LSMM when π1 is relatively large, e.g., π1 ≥ 0.05. In the context of GWAS, the proportion
of risk variants is not very small due to the polygenic effect. Therefore, we believe LSMM will work
well in practice.
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Figure S45: Upper panel: parameter estimation (π̂1 v.s. true π1) using LSMM and Higher Criticism.
Lower panel: FDR for identification of risk SNPs using LSMM. We controlled global FDR at 0.1 to
evaluate empirical FDR. The results are summarized from 50 replications.
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3.13 Simulations based on probit model

To test the robustness of LSMM, instead of using generative model (2), we conducted simulations
based on probit model:

yj = Zjb + Ajβ + ej , (S3)

where ej ∼ N
(
0, σ2

e

)
. And we set γj = 1 if yj > 0, γj = 0 if yj ≤ 0. The first entry of the coefficients

of fixed effects b, i.e. the intercept term, was fixed at −1 and other entries were generated from
N (0, 1) and fixed during multiple replications. We set α = 0.2 and varied the signal-noise ratio
r = {4 : 1, 1 : 1, 1 : 4}. The performance in identification of risk SNPs is provided in Figures S36-
S38. The performance of LSMM in the detection of relevant functional annotations is provided in
Figures S46-S51.
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Figure S46: FDR, power, AUC and partial AUC of LSMM, LFM and TGM for identification of risk
SNPs based on probit model with K = 100. We controlled global FDR at 0.1 to evaluate empirical
FDR and power. The results are summarized from 50 replications.
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Figure S47: FDR, power, AUC and partial AUC of LSMM, LFM and TGM for identification of risk
SNPs based on probit model with K = 500. We controlled global FDR at 0.1 to evaluate empirical
FDR and power. The results are summarized from 50 replications.
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Figure S48: FDR, power, AUC and partial AUC of LSMM, LFM and TGM for identification of risk
SNPs based on probit model with K = 1000. We controlled global FDR at 0.1 to evaluate empirical
FDR and power. The results are summarized from 50 replications.
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Figure S49: FDR, power, AUC and partial AUC of LSMM, LFM and TGM for detection of relevant
annotations based on probit model with K = 100. We controlled global FDR at 0.1 to evaluate
empirical FDR and power. The results are summarized from 50 replications.
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Figure S50: FDR, power, AUC and partial AUC of LSMM, LFM and TGM for detection of relevant
annotations based on probit model with K = 500. We controlled global FDR at 0.1 to evaluate
empirical FDR and power. The results are summarized from 50 replications.
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Figure S51: FDR, power, AUC and partial AUC of LSMM, LFM and TGM for detection of relevant
annotations based on probit model with K = 1000. We controlled global FDR at 0.1 to evaluate
empirical FDR and power. The results are summarized from 50 replications.
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3.14 Performance of LSMM when the random effects are correlated

We generated β from a multivariate normal distributionMVN (0,Σ), where Σ is an autocorrelation
matrix with ρ varied at {0, 0.2, 0.4, 0.6, 0.8}. Here we set ω = 0.2. The results are shown in Figure
S52 and Figure S53.

●

●

●

●

●

●

●

●

●

●

●

●

0.09

0.10

0.11

0 0.2 0.4 0.6 0.8
rho

LSMM LFM TGM

FDR

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

● ●

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8
rho

LSMM LFM TGM

Power

●
●

●

●

●
●

●●

●

0.86

0.90

0.94

0 0.2 0.4 0.6 0.8
rho

LSMM LFM TGM

AUC

●

●

●

●

●

●●●

●

●0.12

0.14

0.16

0 0.2 0.4 0.6 0.8
rho

LSMM LFM TGM

Partial AUC (FPR < 0.2)

Figure S52: FDR, power, AUC and partial AUC of LSMM, LFM and TGM for identification of risk
SNPs when random effects are correlated with α = 0.2 and K = 500. We controlled global FDR at
0.1 to evaluate empirical FDR and power. The results are summarized from 50 replications.
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Figure S53: FDR, power, AUC and partial AUC of LSMM for detection of relevant annotations
when random effects are correlated with α = 0.2 and K = 500. We controlled global FDR at 0.1 to
evaluate empirical FDR and power. The results are summarized from 50 replications.
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3.15 Performance of LSMM when the random effects don’t share the
same variance
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Figure S54: FDR, power, AUC and partial AUC of LSMM, LFM and TGM for identification of
risk SNPs when the variance of random effects are from U [1, 10] with α = 0.2 and K = 500. We
controlled global FDR at 0.1 to evaluate empirical FDR and power. The results are summarized
from 50 replications.
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Figure S55: FDR, power, AUC and partial AUC of LSMM for detection of relevant annotations
when the variance of random effects are from U [1, 10] with α = 0.2 and K = 500. We controlled
global FDR at 0.1 to evaluate empirical FDR and power. The results are summarized from 50
replications.
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3.16 Comparison between LSMM and GPA (Chung et al., 2014)

To check the influence of correlated functional annotations, we simulated a case that the first 10
functional annotations were correlated and all the others were independent. We set α = 0.2 and
varied the correlation among annotations corr at {0, 0.2, 0.4, 0.6, 0.8}. To simulate the design matri-
ces for correlated functional annotations, we first simulated M samples from a multivariate normal
distribution with the correlation matrix among annotations and then made a cutoff so that 10% of
the entries would be 1 and the others be 0.
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Figure S56: FDR, power, AUC and partial AUC of LSMM, LSMM without fixed effects and GPA
for identification of risk SNPs with K = 500. We controlled global FDR at 0.1 to evaluate empirical
FDR and power. The results are summarized from 50 replications.
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Figure S57: FDR, power, AUC and partial AUC of LSMM, LSMM without fixed effects and GPA
for identification of risk SNPs with K = 100. We controlled global FDR at 0.1 to evaluate empirical
FDR and power. The results are summarized from 50 replications.
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Figure S58: FDR, power, AUC and partial AUC of LSMM, LSMM without fixed effects and GPA
for identification of risk SNPsn with K = 50. We controlled global FDR at 0.1 to evaluate empirical
FDR and power. The results are summarized from 50 replications.
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Figure S59: FDR, power, AUC and partial AUC of LSMM, LSMM without fixed effects and GPA
for identification of risk SNPs with K = 10. We controlled global FDR at 0.1 to evaluate empirical
FDR and power. The results are summarized from 50 replications.
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3.17 Comparison between LSMM and cmfdr (Zablocki et al., 2014)

We compared LSMM with cmfdr. As cmfdr is not able to handle a large number of covariates and
the MCMC sampling algorithm it derived is time-consuming, we set M = 5000, L = 5, K = 5 and
run 2500 iterations with 2000 retained draws for cmfdr. The comparison between LSMM and cmfdr
are shown in Figure S60.
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Figure S60: FDR, power, AUC and partial AUC of LSMM and cmfdr for identification of risk SNPs.
We controlled global FDR at 0.1 to evaluate empirical FDR and power. The results are summarized
from 50 replications.
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3.18 Comparison between LSMM and GenoWAP (Lu et al., 2016)
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Figure S61: FDR, power, AUC and partial AUC of LSMM, LFM and GenoWAP for identification
of risk SNPs with α = 0.2 and K = 100. We controlled global FDR at 0.1 to evaluate empirical
FDR and power. The results are summarized from 50 replications.
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Figure S62: FDR, power, AUC and partial AUC of LSMM and GenoWAP for identification of risk
SNPs. We controlled global FDR at 0.1 to evaluate empirical FDR and power. The results are
summarized from 50 replications.
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4 More about real data analysis

4.1 The source of the 30 GWAS

Alzheimer Lambert et al., 2013, Nature Genetics. https://data.broadinstitute.org/alkesgroup/sumstats_formatted/

BMI Speliotes et al., 2010, Nature Genetics. https://data.broadinstitute.org/alkesgroup/sumstats_formatted/

Bipolar Disorder Psychiatric GWAS Consortium Bipolar Disorder Working Group, 2011, Nature Genetics
https://data.broadinstitute.org/alkesgroup/sumstats_formatted/

Coronary Artery Disease Schunkert et al., 2011, Nature Genetics. http://www.cardiogramplusc4d.org/data-downloads

Crohns Disease Jostins et al., 2012, Nature. https://data.broadinstitute.org/alkesgroup/sumstats_formatted/

Height Wood et al., 2014, Nature Genetics
http://portals.broadinstitute.org/collaboration/giant/index.php/GIANT_consortium_data_files

High-density Lipoprotein Global Lipids Genetics Consortium, 2013, Nature Genetics
http://csg.sph.umich.edu//abecasis/public/lipids2013/

HIV McLaren et al., 2013, PLoS Pathogens
http://journals.plos.org/plospathogens/article?id=10.1371%2Fjournal.ppat.1003515

Inflammatory Bowel Disease Jostins et al., 2012, Nature. https://data.broadinstitute.org/alkesgroup/sumstats_formatted/

Low-density Lipoprotein Global Lipids Genetics Consortium, 2013, Nature Genetics
http://csg.sph.umich.edu//abecasis/public/lipids2013/

Lupus Bentham et al., 2015, Nature Genetics
https://www.immunobase.org/downloads/protected_data/GWAS_Data/

Mean Cell Haemoglobin Pickrell, 2014, The American Journal of Human Genetics
https://ega-archive.org/studies/EGAS00000000132

Mean Cell Volume Pickrell, 2014, The American Journal of Human Genetics
https://ega-archive.org/studies/EGAS00000000132

Menopause Day et al., 2015, Nature Genetics. http://www.reprogen.org/data_download.html

Multiple Sclerosis Sawcer et al., 2011, Nature. https://www.immunobase.org/downloads/protected_data/GWAS_Data/

Neuroticism Okbay et al., 2016a, Nature Genetics. http://ssgac.org/documents/Neuroticism_Full.txt.gz

Primary Biliary Cirrhosis Cordell et al., 2015, Nature Communications
https://www.immunobase.org/downloads/protected_data/GWAS_Data/

Red Cell Count Pickrell, 2014, The American Journal of Human Genetics
https://ega-archive.org/studies/EGAS00000000132

Rheumatoid Arthritis Okada et al., 2014, Nature. https://data.broadinstitute.org/alkesgroup/sumstats_formatted/

Schizophrenia1 Cross-Disorder Group of the Psychiatric Genomics Consortium, 2013, The Lancet.
https://www.med.unc.edu/pgc/results-and-downloads (SCZ subset)

Schizophrenia2 Schizophrenia Psychiatric Genome-Wide Association Study (GWAS) Consortium, 2011, Nature Genetics.
https://www.med.unc.edu/pgc/results-and-downloads (SCZ1)

Schizophrenia3 Ripke et al., 2013, Nature Genetics. https://www.med.unc.edu/pgc/results-and-downloads (Sweden+SCZ1)

Schizophrenia4 Ripke et al., 2014, Nature. https://www.med.unc.edu/pgc/results-and-downloads (SCZ2)

Total Cholesterol Global Lipids Genetics Consortium, 2013, Nature Genetics
http://csg.sph.umich.edu//abecasis/public/lipids2013/

Triglycerides Global Lipids Genetics Consortium, 2013, Nature Genetics
http://csg.sph.umich.edu//abecasis/public/lipids2013/

Type 1 Diabetes Bradfield et al., 2011, PLoS Genetics
https://www.immunobase.org/downloads/protected_data/GWAS_Data/

Type 2 Diabetes Morris et al., 2012, Nature Genetics. http://diagram-consortium.org/downloads.html

Ulcerative Colitis Jostins et al., 2012, Nature. https://data.broadinstitute.org/alkesgroup/sumstats_formatted/

Years of Education1 Rietveld et al., 2013, Science. https://data.broadinstitute.org/alkesgroup/sumstats_formatted/

Years of Education2 Okbay et al., 2016b, Nature. http://ssgac.org/documents/EduYears_Main.txt.gz

Table S2: The source of the 30 GWAS.
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4.2 Four Schizophrenia GWAS with different sample sizes

Table S3: Summary of results for Schizophrenia.

α̂
No. of risk SNPs

Bonferroni correction TGM LFM LSMM
Schizophrenia1 0.677 2 470 527 527
Schizophrenia2 0.633 7 2,107 2,404 2,405
Schizophrenia3 0.562 126 6,811 7,541 7,545
Schizophrenia4 0.413 1110 48,802 50,481 50,990

a. The estimate α̂ is obtained using LSMM.
b. The number of risk SNPs is reported based on global FDR ≤ 0.1.

Figure S63: Manhattan plots of Schizophrenia1-4 using TGM and LSMM. The red lines indicate
local fdr = 0.1. The green points denote the additional SNPs LSMM identied with FDR ≤ 0.1.

No. of risk SNPs
Schizophrenia3 Schizophrenia4

GenoWAP+

upstream 11 65
downstream 12 42
exonic 27 143
intergenic 142 1,531
intronic 624 3,541
ncRNA_exonic 11 30
ncRNA_intronic 63 272
UTR3 29 156
UTR5 4 21
Total 922 5,798

TGM 3,092 24,575
LFM 3,395 25,383
LSMM 3,396 25,612

Table S4: The number of risk SNPs identified by GenoWAP, TGM, LFM and LSMM for Schizophre-
nia with the nominal local FDR controlled at 0.1.
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4.3 Computational time for 30 GWAS
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Figure S64: Computational time using LSMM and cmfdr for 30 GWAS.

61



4.4 Relevant functional annotations for 30 GWAS without fixed effects
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Figure S65: Relevant functional annotations for 30 GWAS without integrating genic category anno-
tations.
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