
Supplementary Methods for the manuscript

“FaStore – a space-saving solution for raw sequencing

data”

 Lukasz Roguski, Idoia Ochoa, Mikel Hernaez, Sebastian Deorowicz

Contents

1 Methods description 2

1.1 Compression of DNA Sequences . 2

1.2 Compression of Quality Scores . 13

1.3 Compression of Read Identifiers . 18

2 Datasets 21

3 Compression test – tools invocation 25

3.1 Compression of FASTQ files . 25

3.2 Compression of DNA sequences . 26

3.3 Running FaStore . 27

4 Variant calling test – tools invocation 29

4.1 Preprocessing of FASTQ files . 29

4.2 Variant calling . 30

5 Additional results 32

5.1 Comparison of “normal” vs. “fast” modes . 32

5.2 FaStore resources usage . 32

5.3 Metagenomics results . 32

5.4 Variant calling results with applied filtering 34

1

1 Methods description

1.1 Compression of DNA Sequences

The general data processing workflow and DNA sequence compression algorithm is based

on ORCOM [?] with some major improvements. First, FaStore introduces a “paired-end”

compression mode, which allows to preserve the pairing between the reads when sequenced in

the paired-end configuration. In this mode, the pairing between the FASTQ reads is preserved

with the sequences and the decompressed reads will reside on the same lines in the output

files (while sharing the same read identifier, possibly differing only by the indicator marking

the number of the read in the pair). Second, FaStore introduces a number of optional reads

re-distribution steps to improve the DNA sequence compression ratio. Hence, the standard

DNA sequence compression mode corresponds to the one as in ORCOM and is denoted as

“C0” mode. The extended one, consisting of multiple reads re-distributon stages is denoted

as “C1” and is the default one. Nonetheless, the main underlying ideas behind processing of

the reads and compressing the DNA sequence remain similar as in ORCOM.

To exploit the significant sequence redundancy present in high-coverage HTS data FaStore

aims to cluster the reads into groups, sharing a significant sequence overlap. This allows to

achieve a high level of compression of the DNA sequences. The data processing workflow

is divided into two (or optionally three) main phases. First, the reads from FASTQ file(s)

are distributed into independent bins in which they are clustered. Optionally, in the next

step, the reads follow an additional re-distribution phase in order to improve their clustering.

Finally, reads inside bins are compressed. The decompression algorithm consists of the reverse

of the compression phase. Since the bins can be processed independently, the compression

and decompression algorithms are highly parallelizable. A more detailed description of each

of the phases is presented in the following subsections.

1.1.1 Signatures selection

Let s = s[0]s[1]...s[n − 1] be a string of length n over a finite alphabet Σ of size σ. Given

0 ≤ i ≤ j < n the symbol s[i] denotes the (i + 1)th symbol of s, the s[i . . . j] denotes the

substring s[i]s[i+ 1] . . . s[j], and the s ◦ t denotes the concatenation of strings s and t.

The minimizer for a read with a sequence s of length r is the lexicographically smallest of its

all (r − p+ 1) p-mers, where usually p� r. In a very simplified case, such minimizer can be

already used as an identifier of the bin into which the read will be placed. The motivation here

is that if two sequences share a large overlap, they are also likely to share the same minimizer.

Moreover, for practical reasons, we assume the alphabet size σ = 4, i.e., Σ = {A,C,G, T},
which will give a total of σp possible minimizers. Through a significant number of preliminary

experiments we found a reasonable length of p-mer to be p = 8 (the default parameter), which

gives σ8 = 65536 possible minimizers. This way, each minimizer can be directly mapped to an

integer value, encoding each symbol using 2 bits. However, since we only consider 4 possible

DNA symbols, all the minimizers containing at least one unsupported symbol N are mapped

2

to a special bin, labeled N . Hence, the maximum number of independent bins is 48 + 1.

When searching for minimizers, as DNA sequences can be read in two directions (forward and

reverse with complements of each nucleotide), we process each sequence twice in its original

and reverse-complemented form. Additionally, we introduce a “skip zone” z, that is, not to

look for minimizers in the read suffixes of a given length (default: z = 12 symbols in “C0”

mode or z = 0 in “C1” mode). Therefore, the minimizers are sought over 2× (r − z − p+ 1)

resulting p-mers, where r is the length of the read. We call them canonical minimizers.

The introduction of the skip zone will be useful when performing reads matching (as will be

explained in the following subsections).

However, a problem with strictly defined minimizers is an uneven distribution of bins, where

the bins identified by minimizers starting with or including repetitions of identical nucleotides

will also contain the majority of all the reads. In ORCOM we restricted the canonical min-

imizers by excluding the triplets AAA, CCC, GGG, TTT (apart from containing any ‘N’

symbol). However, we found that the restrictions on canonical minimizers posed by KMC2 [?]

tend to provide a better reads distribution in the bins, hence, we also decided to use them

in FaStore. These restrictions are: not to contain AAA subsequence, neither to start with

ACA and neither to contain AA anywhere except at the beginning of the minimizer. Such

restricted canonical minimizers we denote as signatures.

1.1.2 Distribution of the reads into buckets

When processing reads from FASTQ file(s) we first search for their signatures, which will be

used as an identifier of the bin. As previously mentioned, we search for the signature in the

DNA sequence in two directions – forward and backward with a reverse-complement of each

base. From the two generated signatures, we select the lexicographically smallest one and

keep the information about the direction in which it was found.

There are, however, some differences in handling the reads between the single- and paired-end

mode. In single-end mode, we search for the signature only in the read’s sequence itself and

place the read in the corresponding bin. In the paired-end mode, we search for signatures in

both sequences of a pair. Having determined the two signatures with their direction indicators,

we select the lexicographically smallest one (and its direction) and keep the information which

read of the pair it originates from – this read we will call as the main read. When processing

reads in the single-end mode the situation is straightforward – all the reads are treated as main

reads. Finally, the read or the pair of reads is placed in a bin identified by the determined

signature. If no valid signature could be found in the read(s), it (or the pair) is placed in the

special ‘N’ bin.

During the read distribution stage, the reads are analyzed and some statistics related with base

quality scores and read identifiers (if these are used) are gathered. The details are given in the

following subsections. Having the reads distributed into bins, we proceed to reads-matching

followed by an optional reads re-distribution stage.

3

1.1.3 Building reads matching trees

Independently for each bin, we reorder the reads inside the bins to move overlapping reads

possibly close to each other. The operation is similar to the reads encoding stage performed

in ORCOM, yet, with significant improvements. First, we sort the reads (sequences) si, for

all i, according to the lexicographical order of the string si[j . . . r−1]◦si[0 . . . j−1], where j is

the position of the signature for the si. Here is when setting the appropriate skip zone length

z becomes relevant, as it will influence the matching of the reads. When z is set too small,

some signatures will be found close to the end of the sequence. The first factor of the sorting

criterion, i.e., si[j . . . r− 1] will be too short to have a good chance of placing the read among

those that overlap it in the genome and, hence, finding the read matches. On the other hand,

with the zone being too long many possibly overlapping sequences will be forbidden.

With the reads sorted, we proceed to match them. During this step, we will be building a

graph G over the reads, composed of independent sub-graphs – trees, where each read with its

sequence si is indicated by some node vi. When matching, we maintain a buffer (a window)

of m previously processed reads (by default m = 256) and for each read si, we seek a read

from the buffer which maximizes the overlap with si.

The distance between a read and a considered match depends on the number of elementary

operations transforming one into another. For example, given two reads with their sequences

respectively AACGTacgaCGGCAT and CCTacgaCGGCATCC, where acga denotes a signa-

ture, we match them after a (conceptual) alignment:

AACGTacgaCGGCAT

CCTacgaCGGCATCC

to find that they differ with one mismatch (‘G’ versus ‘C’) and 2 end symbols of the second

sequence have to be inserted, hence the distance is d = cm×1+ ci×2, where cm and ci are the

mismatch and the insert cost, respectively. The default values for the parameters are cm = 2

and ci = 1, and they were chosen experimentally. The read among the m previous ones that

minimizes such a distance, and is not greater than the maximum distance threshold dmax (set

by default to a half of the read length), is considered a reference for the current read. There

are three possible results of such defined matching.

A read for which no referential read was found is classified as hard read. A read for which a

referential read was found with the distance d = 0 is classified as exact match. Otherwise, the

read is classified as normal match.

Moreover, if no referential read was found for the read s and the advanced search mode is

used (“-r” flag in the command-line parameter of FaStore, set as default in “C1” mode), we

perform an additional search for the potential matches of s in the reads processed so far. Let

the s[j . . . i] be the reverse of the sequence s[i . . . j], where j > i. To facilitate the search

we keep an auxiliary buffer of all the reads processed so far sorted by their inversed prefix

si[j− 1 . . . 0], where j is the position of the read’s si signature. We compare lexicographically

each read si with s, starting from their positions of minimizers, i.e., we compare s[j − 1 . . . 0]

4

with si[j
′−1 . . . 0]. This additional search step allows to reduce the number of reads classified

as hard reads, which could have been reported as such due to a sequencing error present in

the read just after the signature. In such cases, the reads after sorting could be distant by

more than m positions and would not be matched by using a reads buffer keeping only m

previous reads.

Finally, having the read s (with its corresponding and unlinked node v) classified and having

its possible referential read sk (with node vk), we update the graph G and the auxiliary read

matching buffers. If the read was classified as a hard read then we create a new tree T with

its root node Tv set to v. Otherwise, the read’s node is set as a child node of the referential

node vk, keeping the information about matching. Such constructed trees can be though as

small clusters of reads sharing a high degree of sequence similarity between them.

Important to mention, in the paired-end mode, the above matching is performed only for the

main read. The matching of the second read from the pair is performed in a different way

(see Subsection 1.1.7).

1.1.4 Re-distribution of the reads

With the reads initially distributed into bins, we perform a further re-distribution of the reads

in an iterative way. The goal is to create larger clusters of highly similar reads to possibly

bring the reads from the same genomic regions close to each other. This operation should also

improve the results of paired reads matching.

Let Y be the initial set of valid signatures represented as integer values. Let f be a signature

filtering parity parameter (by default, at the beginning f = 1). We define a new set of valid

signatures Ŷ , being a subset of the initial Y , such that Ŷ = {ŷ ∈ Y : ŷ mod 2f = 0}. For

each bin identified by the signature y ∈ Y \ Ŷ , we process all of its stored trees as follows.

For each tree T we traverse it starting from its root Tv and look for a pair of reads residing at

the “edges” of the possible genomic region that the tree T covers with its reads, i.e., the reads

with the extreme positions of the signature. These reads must also contain a new signature

from Ŷ . We look for one read that has its new signature possibly close to the beginning of

its sequence (j close to 0) and for another one that has its new signature close to its end (j

close to r−1−p− z). From these reads, we select the one which has the smallest signature ŷ.

The node v corresponding to this read will be a new root node of T . Next, with a new Tv we

update T and move it into a bin identified by ŷ. However, if no new valid signature was found

for any of the reads in T , we leave the tree in the current bin intact. Once all the trees have

been processed, we perform reads sorting and matching as explained in the previous step.

What’s important to note, although for each moved tree T , its root’s read sequence s (as

pointed by the Tv) contains the signature ŷ of the new bin, the other reads present in T may

not. Therefore, when moving a tree T to a new bin, we practically only move its root node,

which keeps the information about the tree structure. Such read (node) will be processed as a

regular read during reads matching stage and the information related with the kept sub-tree

5

will be used during the final compression stage. As a consequence, when performing multiple

redistribution steps, one node can store information about multiple subtrees.

Finally, in the next step, we either proceed to build contigs based on the built trees or follow

another step of reads re-distribution, increasing the parameter f ← f + 1 and setting the

initial set of signatures Y as Ŷ . As a side note, usually, performing more than 3 reads re-

distribution steps does not give any significant improvements in compression ratio, hence, in

“C1” mode we perform only 3 steps.

1.1.5 Assembling contigs

Having built the final reads matching graph G we proceed to assembly contigs, independently

per each bin and independently per each tree inside the bin. A contig C is defined by a set

of reads (nodes) assembling a consensus sequence Cseq, its length Clen and a set of possible

variants Cvar in the consensus. It is later linked with G through its main node Cv. Given the

maximum length of reads rmax, the maximum length of the consensus sequence is 2 × rmax
1,

where the “center” of the consensus resides at the position rmax. The “center” of the consensus

corresponds to the sequence Cseq[rmax . . . rmax+p−1], which will be used to anchor the reads to

Cseq using their signatures. Therefore, the sequence Cseq[rmax . . . rmax +p−1] will be constant,

shared across all the reads building the contig.

For each tree T , we traverse T from its root node following the breadth-first-search method.

We start with an empty contig C and process the T nodes as follows. Let v be the next node

we visit. If the current contig C is empty, then we add the read s (as indicated by v) to C

and select v as the main node of C denoted as Cv (it will be later used for linking C with T).

Otherwise, we try to add s to the contig by firstly checking whether the read will introduce

new variants into the consensus sequence, as these will need to be also shared (and encoded)

by the rest of the reads in the current contig.

When performing this check, for the read s we analyze how s[c . . . j − 1] ◦ s[j + p . . . r− t− 1]

matches with the Cseq (anchored using its signature position), where c is the sequence trimming

length (by default: t = 2) and r is the read length. In a number of experiments, we found that

by skipping the first/last t bases from the read during the sequences comparison, we managed

to build better contigs, i.e., consisting of a higher number of reads and with a smaller number

of introduced variants.

To show an example, given a read AGAacgaCGGCATCC and a contig with a consensus se-

quence TCAAACGTacgaCGGCAT constructed from two reads (CCGTacgaCGGCATT and

TTCAAACGAacgaCG), where acga denotes a signature, we perform a (conceptual) align-

ment, similarly, as when matching the reads:

1Actually, 2× rmax− p, where p is the length of the signature and also the minimum length of the possible

overlap between two reads with the signatures designated on their opposite ends. However, for simplicity, we

assume 2× rmax.

6

CCGTacgaCGGCATT

TTCAAACGAacgaCG

---TCAAACG*acgaCGGCAT-----

AGAacgaCGGCATCC

The new read aligns with the consensus sequence with two mismatches. The first mismatch is

at the beginning of the read (‘A’ vs. ‘C’), but it is discarded (with a sample t = 1). The second

mismatch (‘A’ vs ‘T’ / “*”) corresponds to the variant in the consensus sequence, so the read

does not introduce any new ones. In this simple example, the read will be added to the contig

and will update the consensus sequence – it will add the ‘C’ present at its penultimate position

(discarding the last ‘C’ due to trimming parameter). The updated consensus sequence will be

TCAAACGTacgaCGGCATC.

However, in a more realistic scenario, before accepting the read s in the contig C we analyze

few other conditions. With the read anchored to the consensus sequence Cseq, we calculate

the Hamming distance dh between the two sequences (taking also into account the length

of sequence trimming t). That is, we calculate dh = Hamm(s[t . . . j − 1] ◦ s[j + p . . . r −
t], Cseq[rmax− j + t . . . rmax] ◦Cseq[rmax + p . . . rmax + r− j − t]). During this operation we also

check for a number of potential new variants dvar which the read may introduce to Cseq. If the

calculated dh is above the given threshold dh max (by default: dh max = 8) or the number of

new introduced variants is above dvar max (by default: dvar max = 1), then the read is discarded.

Introducing new variants by the read to the contig imposes that all the bases at the positions

corresponding to the new variants (which are covered by the current reads in C plus the new

one) will need to be encoded in a different and less efficient way (explained in the following

section). Hence, in overall, it may be more convenient to encode the read separately as a

regular referential match.

When no more reads can be added to the current contig C, we perform its post-processing.

First, we remove the reads containing variants that are not present in any other reads. The

aim is to reduce the cost of encoding the contig as a whole, since with a variant present only

in one read, all the other remaining reads would need to handle it during the encoding stage.

If the size of the filtered contig (the number of reads assembling it) satisfies Csize ≥ Csize min we

accept the contig C as a valid one (by default: Csize min = 10). Otherwise, we discard it. With

a valid C we refine its consensus sequence by selecting the most frequent bases appearing in

the reads at respective positions (the majority voting).

Finally, all the nodes whose reads are assembling the contig C (apart from the main node Cv)

are unlinked from the graph, as they will be encoded differently. The main contig node Cv

stores the information about its structure (and reads) on a similar way as a node is keeping

information about storing possible sub-trees. Note that multiple contigs can be built per one

tree.

7

1.1.6 Encoding the reads

Having built the reads matching graph and the contigs we proceed to encode the reads.

Independently per each bin, we traverse each tree T starting from its root node following the

breadth-first-search method. Let v be the next node we visit and s the sequence of the read

indicated by v. Firstly, we encode s according to the type of the match it was classified. If

v is the root node of T we already know that the read was classified as a hard read (and it

has no referential read). Otherwise, the read was classified either as a normal match or as

an exact match using the read s̃ as a reference (indicated by the parent node ṽ of v). The

differential encoding of s using s̃ as a reference is performed on a similar basis as in ORCOM

with some modifications.

After encoding the sequence s, we check whether v stores any sub-trees originating from other

bins (and reads of which use a different signature than the reads in the currently traversed

tree T). In such cases, for each sub-tree T̃ of v we emit some control information about it and

proceed to traverse it using v as a “virtual” root node. The reads of T̃ are referentially encoded

as normal following the above described algorithm. After finishing encoding of the sub-tree T̃

we emit information about its end. The nodes in T̃ can also contain information about other

sub-tress – the encoding of the sub-trees is a recursive operation where its maximum depth

corresponds to the number of previously performed reads re-distribution steps.

Finally, we check whether v stores a contig. In such case, for contig C we emit some control

information about it (such as the length of the consensus sequence and the positions of vari-

ants), referentially encoding the consensus sequence Cseq with respect to s. In the next step,

we proceed to encode the reads which assemble the contig. We sort the reads in the contig

by their signature position, which slightly helps with compression. Then we encode each of

the reads. At the end, we emit information about finishing the encoding of C. The whole

encoding process is summarized in Algorithm 1.

All the encoding information is emitted into a number of streams. The streams and the used

encoding schemes are as follows.

ReadFlags. Stores the flag corresponding to the method of the encoding of the current read.

The flags can denote the type of classified read during referential matching, i.e., exact matches

(fread copy), normal matches (fread shift, fread full, fread full exp), and hard matches (fread hard).

Moreover, they also can denote that the read assembles a contig (fread contig, fread copy). More

specifically, they mean:

• fread copy – the current read is identical to the previously encoded one,

• fread shift – the current read overlaps with some previously encoded read without mis-

matches (only trailing symbols are to be encoded),

• fread full – the current read overlaps with some previously encoded read with ≤ 4 mis-

matches,

• fread full exp – as in the case of fread full, but with > 4 mismatches,

8

9

Algorithm 1 Encoding of a reads matching tree – the encode tree() function

Input: Reads matching tree T

Output: Encoding information stored in a set of streams {Oi}
while v ← next node bfs(T) do

s← dna sequence of(v)

if v is the root node of T then

Encode s as a hard read

else

ṽ ← parent node of(v)

s̃← dna sequence of(ṽ)

Encode s̃ according to its classified matching type using s̃ as a reference sequence

end if

if v encodes any sub-tree then

for all sub-tree T̃ of v do

Store the offset of T̃ with respect to s

Set v as a ”virtual” root node of T̃

encode tree(T̃)

end for

end if

if v encodes a contig then

C ← contig of(v)

Store the Cvar and encode Cseq with respect to s

for all Read s̃ in C do

Encode s̃ according to Cvar using Cseq as a reference sequence

end for

end if

end while

• fread hard – the current read has no referential read,

• fread contig – the current read is a read in the current contig but it differs from the

previously encoded one (which is encoded using fread copy flag).

ControlFlags. Stores the control flags used to initialize or finalize encoding of a group of

reads. These are:

• fgroup tree start – the current read starts encoding a sub-tree,

• fgroup contig start – the current read starts encoding a contig,

• fgroup end – the current read ends encoding of the current group (sub-tree or contig).

Rev. (Used with all flags from ‘ReadFlag’). Stores binary flags telling whether reads are in

the reverse-complemented form as in ORCOM.

HardReads. (Used only if ’ReadFlag’ is fread hard). Here the hard reads are stored almost

in verbatim form as in ORCOM – we omit only storing the signature, which is replaced by an

extra symbol (’.’).

Prev. (Used only if ’ReadFlag’ is fread shift, fread full, or fread full exp). Stores the distance

offset dist to the referenced read, i.e., a number of reads encoded between the reference read

and the current one. In case of exact matches, the read is stored as the next one after the

referential read, hence, the information can be encoded using only one flag fread copy. Since

the most frequent dist value is 0, occurring in short runs, we use a form of RLE-0 (run-length

encoding) to store the values. More specifically, we use a special symbol ‘S0’ (emitted as ‘0’

byte value) to encode a singular occurrence of 0 value, and ‘S1’ (emitted as ‘1’ byte value) to

encode two consecutive occurrences of 0 values. Any other offset of value > 1 is emitted as

dist + 1. Moreover, in contrast to ORCOM, we allow to store both 8-bit and 16-bit offsets,

not having the strict limitation of the size of the matching window. To handle this case, we

use another code. More specifically, if dist < 255− 1, then we store it as a byte. Otherwise,

we store a special symbol ‘SN’ (emitted as ‘255’ byte value) and store the dist using 2 bytes.

Nonetheless, usually the majority of offsets will have a value less than 255.

Shift. (Used only if ‘ReadFlag’ is fread shift, fread full, or fread full exp). Stores the positional

offset of the current read against its referenced read as in ORCOM. The offset can be negative.

MatchRLE. (Used only if ‘ReadFlag’ is fread full). Stores information on mismatch positions

using a form of RLE as in ORCOM. Namely, each run of matching positions (of length at

least 1) is encoded with its length represented on 1 byte, and if the byte value is less than 255

and there are symbols left yet, we know that there must be a mismatch at the next position,

so it is skipped over. “Unpredicted” mismatches are encoded with 0.

MatchBinary. (Used only if ‘ReadFlag’ is fread full exp). Stores the mismatch positions as a

binary mask. When the number of mismatches in the read is greater than nmism, the produced

10

RLE runs of matching positions will be relatively short. Therefore, in such cases, storing the

information about mismatches in an alternative binary form can improve the compression.

LettersX. (These are used only if ‘ReadFlag’ is fread full or fread full exp). Stores all the mis-

matching bases [b0, . . . , bn] from the current read where at their corresponding positions in

the referenced read are bases [b̃0, . . . , b̃n]. In contrast to ORCOM, we use only one stream

(versus 5 separate ones) to encode the mismatching bases bi, where the corresponding b̃i base

is used as a context. All trailing symbols from the current read beyond the referential match

are encoded using ‘N’ symbol as a context.

TreeShift. (Used only if ‘ControlFlag’ is fgroup tree start). Stores the offset of the sub-tree

against the referential read. More specifically, it stores the offset between the current read’s

(as indicated by the “virtual” root node) signature position and the position of the signature,

which is shared by the reads in the sub-tree. The offset can be negative.

ContigCoord. (Used only if ‘ControlFlag’ is fgroup contig start). Stores the length of the con-

sensus sequence encoded as a pair of relative positional offsets from its beginning and its end

with respect to its center.

ContigVarRLE. (Used only if ‘ControlFlag’ is fgroup contig start). Stores information on vari-

ants positions in the consensus sequence using the same encoding technique as in ‘MatchRLE’

stream.

ContigConsensus. (Used only if ‘ControlFlag’ is fgroup contig start). Stores the consensus

sequence differentially with respect to the referential read (indicated by the contig’s main

node), similarly, as when encoding mismatching bases in ‘LettersX’ stream. This is, it stores

all the variable bases [b0, . . . , bn] from the consensus sequence where at their corresponding

positions in the referenced read are bases [b̃0, . . . , b̃n]. When encoding bi base its corresponding

b̃i base is used a context. As the consensus sequence will be usually longer than the single

referential match, all the bases not covered by the match are encoded using ’N’ symbol as a

context.

ContigShift. (Used only if ‘ReadFlag’ is fread contig). Stores the positional offset of the

current read against the previous one encoded as a part of the current contig.

ContigLetters. (Used only if ‘ReadFlag’ is fread contig). Stores all the possibly variable bases

[b0, . . . , bn] from the current read where at their corresponding positions in the consensus

sequence are bases [b̃0, . . . , b̃n]. We encode the variable base bi using the corresponding b̃i base

as a context. The encoding is done similarly as in ‘LettersX’ and ‘ContigConsensus’ streams.

The streams are compressed using either a strong general-purpose compressor PPMd2 or

our variant of a range coder (RC). Namely, the streams ‘ReadFlags’, ‘ControlFlags’, ‘Rev’,

‘MatchBinary’ are compressed using RC of order-4, where context is formed of the four previ-

2http://compression.ru/ds/ppmdj1.rar

11

ous symbols. The streams ‘LetterX’, ‘ContigConsensus’, ‘ContigLetters’ are compressed using

RC of order-5, where the context is formed of the four previous bases and a mismatching (or

variant) base from the referential sequence. All the other streams are compressed using PPMd,

using order-4 context model and memory up to 16 MB. As a side note, in practice, some of the

streams are compressed interlaced, namely: ‘ReadFlags’ with ‘ControlFlags’, ‘TreeShift’ with

‘ContigCoord’ and ‘ContigConsensus’ with ‘ContigLetters’, which allows to improve a bit the

overall compression. Also note that, in parallel, when encoding the DNA sequences, we also

encode their corresponding read identifier and base quality scores emitting the information

into other streams – the description of the compression methods can be found in Sections 1.2

and 1.3 respectively.

1.1.7 Matching and encoding of the paired reads

The previously performed steps of building matching trees, re-distributing reads, and building

contigs were taking into consideration only the main reads. When compressing the data in

the single-end mode, all the reads are considered as the main ones, where as in the paired-end

mode, we process the paired reads after the main reads. More specifically, when traversing

trees, we firstly encode the main read s (as indicated by the node v) followed by matching

and encoding of the paired read ŝ (and followed by compressing the read identifier and base

quality scores of both reads). The matching and encoding procedure of the paired read is as

follows.

We maintain a buffer (a window) of m̂ of previously encoded paired reads (m̂ = 4096 by

default) with a simple index updated once a new read is added or an old one removed from

the buffer. The reads in the buffer are indexed by their first (up to) 4 lexicographically smallest

p-mers, which satisfy the same restrictions as signatures – we call them restricted p-mers.

Let ŝ be the currently processed paired read. When searching for matches, we first retrieve a

set of possibly matching reads s̃ which have been indexed by any of restricted p-mers found

in ŝ. Then, we search in m̃ for the read which matches the best with ŝ, i.e., the distance

d̂ between the match s̃ and ŝ is minimal. We analyze each potential match and calculate

the distance d̂ on the same basis as when performing matching of the main read (described

in Subsection 1.1.3). The only difference is that the default value of the maximum distance

threshold d̂max used in matching paired reads is set by default to d̂max = 2
3
× r̂, where r̂ is

the length of the current paired read. Therefore, analogously, the read can be classified either

as hard read (when no referential read was found in the buffer or the calculated distance

d̂ > d̂max), normal match (d̂ ≤ d̂max) or exact match (d̂ = 0).

The result of the reads matching is encoded in a number streams in an equivalent way

as when encoding the result of the matching the main read, but with some minor differ-

ences. The streams which encode the matching result the same way are: ‘Len-PE’, ‘Shift-PE’,

‘MatchRLE-PE’, ‘MatchBinary-PE’, ‘LettersX-PE’. The new ones or the ones which encode

the information with minor differences are described below.

12

ReadFlags-PE. Stores the flag corresponding to a method of encoding the current read.

The set of flags is the same as in case of ‘ReadFlags’ stream, excluding fread contig. When

encoding the paired read, we do not use any control flags (as when encoding the main read).

Swap-PE. Stores the binary flag telling whether during the reads distribution stage the

second read from the pair has been swapped with the first one marking it as the main read

(having the lexicographically smallest signature of both reads in the pair).

HardReads-PE. (Used only if ‘ReadFlag-PE’ is fread hard). Here the hard reads are stored

in a verbatim form – in contrast to “HardReads” stream used when encoding the main read,

we do not skip storing the signature subsequence.

Prev-PE. (Used with all flags from ‘ReadFlag-PE’). Stores the distance offset to the refer-

enced read, i.e., the number of reads encoded between the reference read and the current one.

The value of the offset is stored in 2 bytes.

Almost all the streams are compressed the same way as their equivalent ones used for encoding

main reads. Only ‘Prev-PE’ stream is encoded using PPMd (and using the same parameters

as for other streams). ‘Swap-PE’ is compressed using RC of order-4.

1.2 Compression of Quality Scores

FaStore provides two modes to compress and store the quality scores – lossless and lossy. In

our work, we primarily focused on the latter, providing further compression (as compared

to lossless) while being able to achieve variant calling results comparable – and sometimes

superior – to those achieved with the original file (equivalently lossless compression). Thus in

the following we focus on the lossy mode.

In FaStore we provide two general approaches to compress the quality scores in the lossy way

– fixed and adaptive approaches. In the former, prior to compression, we apply a fixed data

transformation to the quality scores, reducing the available resolution of the quality scores,

which helps to reduce the size of the compressed stream. In the latter, we apply a controlled

degree of information loss to the quality scores based on the statistics of the quality scores at

hand. In other words, based on the observed quality scores, we try to select and apply the

best scheme to compress it (based on user-specified requirements), reducing the size of the

compressed quality scores stream while aiming to preserve the necessary information for the

variant calling.

Independently of the approach used, the compressed quality scores are stored in a separate

“Quality” stream. Next we explain in detail the fixed and adaptive schemes supported by

FaStore.

13

Quality scores range Mapped value

‘N’ (no call) ‘N’ (no call)

2− 9 6

10− 19 15

20− 24 22

25− 29 27

30− 34 33

35− 39 37

≥ 40 40

Table 1: Illumina 8-level quality values binning scheme [?]

1.2.1 Fixed schemes

In FaStore we provide two fixed quality scores transformations – Illumina 8-level binning [?]

and binary thresholding. When selected, the transformation is applied during FASTQ reads

distribution stage (see Subsection 1.1.2). Note that no prior information about the quality

stream is required during the encoding step.

Illumina 8-level quality binning. When using this scheme, the resolution of quality scores

is reduced to only 8 values, where the values of the quality scores are mapped according to

Table 1. In case of “no call” (“N” symbol appearing at the corresponding DNA sequence

position), we just do not store the quality score and replace it with “0” value when decom-

pressing. To encode the quality scores, we apply range encoder of order-7, where the context

is formed by the 6 previous symbols and a positional indicator p = i
8
, where i is the position

of the currently encoded base.

Binary thresholding. When using the binary thresholding scheme, the quality scores are

classified either as “good” (qmax) or “bad” (qmin) according to a user-specified threshold pa-

rameter qt, following the transformation:

q′ =

qmin, if q < qt

qmax, otherwise
(1)

By default, we use qmax = 40, qmin = 6 and qt = 20. Similarly, as when performing Illumina

8-level binning, in case of “no call”, we just do not store the quality score and replace it

with “0” value when decompressing. To encode the quality scores, we apply range encoder of

order-11, where the context is formed of the 10 previous symbols and a positional indicator

p = i
2
, where i is the position of the currently encoded base.

14

1.2.2 Adaptive approach

Our compressor uses QVZ [?] as its engine for adaptive quality scores compression. However,

we introduce several improvements that result in better compression ratios for the same variant

calling performance. Next we describe in detail the method used to compress the quality

scores. As a side note, this scheme is also the used to compress the quality scores in a lossless

manner.

Let N be the number of quality score sequences to be compressed. We denote each of these

sequences as Qj = [Qj,1, Qj,2, . . . , Qj,L], for 1 ≤ j ≤ N . L denotes the length of the reads. We

further denote the alphabet of the quality scores by Q. For example, for Phred + 33 scale,

Q = {33, 34, . . . , 73}.

We model the quality score sequences by a Markov chain of order one, that is, for a given

sequence Q, we assume the probability that Qi takes a particular value depends on previous

values only through Qi−1. We further assume that the quality score sequences are independent

and identically (i.i.d.) distributed.

In brief, the steps to compress the quality scores are the following:

1. Compute the empirical transition probabilities of a Markov-1 Model from the data to

be compressed. That is, P (Qi|Qi−1), for 1 ≤ i ≤ L, with P (Q1|Q0) = P (Q1).

2. Based on the above computed probabilities, construct a codebook consisting on a set of

quantizers. These quantizers are indexed by position (within the read) and the quantized

value at the previous position (the context). They are constructed using a variant of the

Lloyd-Max quantizer [?], which finds the optimal quantizers so as to satisfy a distortion

constraint specified by the user.

3. Quantize the quality scores using the codebook constructed in the previous step and

encode the results by means of an adaptive arithmetic encoder that achieves entropy-

rate compression.

Next we explain each of these steps in more detail.

1.2.3 Computation of the empirical probabilities

Recall that the compression of the reads (DNA sequences) requires the data to be read as

a pre-processing step. Thus we compute the desired probabilities during the pre-processing

stage, avoiding having to read the data a second time.

1.2.4 Codebook generation

As stated above, the codebook consists of a set of quantizers indexed by position and quantized

value at the previous position. Thus, for a given position i ∈ {1, 2, . . . , L}, we construct as

many quantizers as unique quantized values at position i−1 across all quality score sequences.

For a given quality score Q, we denote its quantized value as Q̂, such that the quantized

15

quality score sequences are represented as Q̂j = [Q̂j,1, Q̂j,2, . . . , Q̂j,L], with 1 ≤ j ≤ N . Next

we explain how the quantizers are constructed.

Given a random variable Q governed by the probability mass function P (·) over the alphabet

Q of size K, let D ∈ RK×K be a distortion matrix where each entry Dq,q̂ = d(q, q̂) is the

penalty for reconstructing symbol q as q̂. We further define Q̂ ⊆ Q to be the alphabet of the

quantized values of size M ≤ K.

The quantizer, denoted hereafter as LM(·), is a mapping Q → Q̂ that minimizes the expected

distortion. Specifically, the quantizer seeks to find a collection of boundary points bk ∈ K

and reconstruction points q̂k ∈M , where k ∈ {1, 2, . . . ,M}, such that the quantized value of

symbols q ∈ Q is given by the reconstruction point of the region to which it belongs. That is,

the quantizer aims to minimize

{bk, q̂k}Mk=1 = argmin
bk,q̂k

M∑
j=1

bj−1∑
q=bj−1

P (q)d(q, q̂j). (2)

In order to solve this problem we perform a one-dimensional weighted k-means algorithm,

where after initializing the boundary points bk, the algorithm iteratively performs as follows:

i) for each region k choose the q̂k ∈ {bk−1, . . . , bk−1} that minimizes
∑bk−1

q=bk−1
P (q)d(q, q̂), and

ii) assign each point q to the closest reconstructed point q̂k, where the distance is measured as

d(q, q̂), yielding new boundary points bk. The algorithm stops if no further change is obtained

in the bk or after a fixed number of iterations.

Given a distortion matrix D, the defined quantizer depends on the number of regions M and

the input probability mass function P (·). Thus we denote the quantizer with M regions based

on probability mass function P (·) as LMP
M(·), and the quantized value of a symbol q ∈ Q as

LMP
M(q).

Note that a reconstructed point q̂ has probability of occurrence P (q̂) =
∑

q:LMP
M (q)=q̂ P (q).

Thus, each generated quantizer LMP
M(·) defines a rate-distortion pair, where the rate and

distortion are given by

R(LMP
M(·)) =

∑
q̂∈Q̂

P (q̂) log2 P (q̂) and D(LMP
M(·)) =

∑
q̂∈Q̂

∑
q:LMP

M (q)=q̂

P (q̂)d(q, q̂),

respectively. Furthermore, for a fixed probability mass function P (·), the only varying param-

eter is the number of regions M . Since M needs to be an integer, not all rate-distortion pairs

are achievable. Thus, as done in QVZ [?], we define an extended version of the LM quantizer,

which consists of two LM quantizers with the number of regions given by ρ and ρ + 1, each

of them used with probability 1− r and r, respectively (where 0 ≤ r ≤ 1).

However, in contrast to QVZ, which aims at achieving an arbitrary rate (same for all quan-

tizers), we aim at achieving an arbitrary distortion D (we discuss below the reason for this

choice, which was also made in [?]). Therefore, ρ is given by the maximum number of regions

such that D(LMP
ρ (Q)) > D (which implies D(LMP

ρ+1(Q)) < D). Then, the probability r is

chosen such that the average distortion is equal to D.

16

The reason for setting all quantizers to the same distortion D is the following. Given that

there are at most L×K quantizers (indexed by position and previously quantized value), the

final rate R is given by the convex combination of the individual rates Ri of all the quantizers.

Thus, one can pose the following optimization problem:

minimize
Ri

∑
i

αiRi

subject to
∑
i

αiKi exp(−hiRi) = D,

where we have assumed that the rate-distortion function generated by each of the quantizers

is of the form Di(Ri) = Ki exp(−hiRi) [?].

Solving this problem using the Lagrange multipliers method, we obtain that the optimal

distortion at which each quantizer must operate is given by

Di =
D

hi
∑

i
αi

hi

.

For the case under consideration, hi may not be computable in some cases. Moreover, we

expect all quantizers to exhibit a similar behavior. Thus, we assume hi = h ∀i, which

translates into all quantizers targeting the same distortion D. Note that a distortion D equal

to zero corresponds to lossless compression.

In order to compute the quantizers defined above, we need to specify the input probability

P (·). For the case under consideration, this probability is given by P (Qi|Q̂i−1), where i

denotes the position within the read (i.e., 1 ≤ i ≤ L). These probabilities can be computed

from the empirically computed probabilities P (Qi|Qi−1) (1 ≤ i ≤ L). We refer the reader to

[?] for the exact derivation.

We denote the set of quantizers as {Qiq̂}, where i denotes the position, and q̂ the value in the

previous context i− 1. The codebook generation is summarized in Algorithm 2.

1.2.5 Encoding

The encoding process is performed read by read. For each read, we quantize all quality scores

sequentially, starting at the first position. The latest quantized value serves as context to

quantize the quality score at the next position. As the quantization takes place, the quantized

values are passed to an adaptive arithmetic encoder, which uses a separate model for each

position and context.

1.2.6 Note on the distortion metric

By default, FASTORE aims at minimizing the Mean Squared Error (MSE) distortion between

the original and quantized quality scores. However, the considered adaptive lossy compressor

for the quality scores works with any quasi-convex distortion metric. The user can provide it

as input to the program in the form of a matrix. As a reference, Table 2 lists some of the most

17

Algorithm 2 Codebook generation

Input: Transition probabilities P (Qi | Qi−1), distortion value D

Output: Codebook: collection of quantizers {Qiq̂}
P ← P (Q1)

Compute and storeQ1 based on P and the corresponding ρ so as to achieve desired distortion

D

for all columns i = 2 to L do

Compute P (Qi−1 | Q̂i−1 = q̂), ∀ q̂ ∈ support(Q̂i−1)

for all q̂ ∈ support(Q̂i−1) do

P ← P (Qi | Q̂i−1 = q̂)

Compute and store Qiq̂ based on P and the corresponding ρ so as to achieve desired

distortion D

end for

end for

Table 2: Distortion metrics used for assessment of the lossy compressors in terms of rate-

distortion performance. Q is the original quality score and Q̂ is the reconstructed one after

lossy compression.

MSE dmse(Q, Q̂) = 1
L·N

∑N
j=1

∑L
i=1 |Qj,i − Q̂j,i|2

L1 d`1(Q, Q̂) = 1
L·N

∑N
j=1

∑L
i=1 |Qj,i − Q̂j,i|

Lorentzian dL(Q, Q̂) = 1
L·N

∑N
j=1

∑L
i=1 log(1 + |Qj,i − Q̂j,i|)

Chebyshev dC(Q, Q̂) = 1
N

∑N
j=1max1≤i≤L |Qj,i − Q̂j,i|)

Max-Min dMM (Q, Q̂) = 1
N

∑N
j=1max1≤i≤L

max(Qj,i,Q̂j,i)

min(Qj,i,Q̂j,i)

Soergel dS(Q, Q̂) = 1
N

∑N
j=1

∑L
i=1 |Qj,i−Q̂j,i|∑L

i=1 max(Qj,i,Q̂j,i)

widely used distortion metrics in practice. MSE has been chosen as the default distortion as

it provides the best results [?, ?].

1.3 Compression of Read Identifiers

The FASTQ read identifiers start with the ’@’ character and are followed by an arbitrary

sequence identifier. Optionally, they can also contain a comment, represented as a content

appearing after the first whitespace character. The identifier is a free text format with no

limit on its length [?] and which can can hold information such as instrument name, unique

read number, flowcell lane, read length, etc. Usually, for the FASTQ reads which have been

generated from the same sequencing experiment and using the same instrument, the informa-

tion stored in the read identifiers follow the same convention. Therefore, the read identifier

can be perceived as a concatenation of different fields (tokens) separated by a set of delimiters,

where each of the tokens can be of a character, string or numeric type.

18

Moreover, if the FASTQ reads have been generated from a sequencing library created in

paired-end configuration, the read identifiers of a pair of reads will share a significant portion

of the content. They will possibly differ on the tokens indicating the number of the read in

the pair (e.g., “1” or “2”). Therefore, in FaStore, when processing reads in paired-end mode,

we store only one read identifier per pair of reads (and keep the information about possible

differences), which allows to reduce the size of the compressed read identifiers up to half of

what they would occupy in single-end compression mode.

In FaStore, we provide an option to compress the read identifiers in lossless (flag ‘-H’) or

lossy modes, with the focus on the former one. In lossy mode, we can either skip storing the

comments (flag ‘-C’) or completely skip storing the identifiers (the default option), generating

a unique identifier per read or pair of reads while decompressing.

In brief, depending on the selected read identifiers compression mode, the steps to compress

them are the following:

1. Tokenize all the read identifiers gathering statistics for each token.

2. Based on the gathered statistics compress the identifiers, encoding each token separately.

1.3.1 Tokenization

During the analysis and tokenization of the read identifiers, we keep a (global) set of statistics,

indexed by number of the currently processed token of the identifier. We process the identifiers

as follows. We split the identifier into a set of tokens ti using a set of delimiters (such as comma,

dot, semicolon, etc.). We use a set of dictionaries Di (where Di correspond to the i-th token)

and a set of pairs vmin
i , vmax

i to assess the type of the token and its possible values. For each

ti, we check its type and compare its value with the previous ones stored in Di. However, we

only keep a track of maximum 255 distinct values. Additionally, if ti is of numeric type, we

also update the observed minimum vmin
i and maximum vmax

i values.

When processing reads in single-end mode, each read with its identifier is treated separately.

However, in paired-end mode, as the significant part of the read identifier is shared between

both reads, we analyze them together to check which are the tokens that they possibly differ

by. As a side note, we perform the tokenization and gathering of statistics during reads

distribution stage (see Subsection 1.1.2) and we compress the identifiers in parallel while

compressing the DNA sequence and base quality scores.

1.3.2 Encoding

Having calculated the global statistics for the tokens, we can proceed to encode them. We use

two streams to store them, namely ‘Idx’ and ‘Val’. Let ti be the i-th token of the current read,

which is being encoded. If ti is a fixed token, i.e., only one possible value was observed in Di,

it is being skipped. Otherwise, if the token is of a string type and the number of its possible

distinct values is less than 255, we obtain the index idx of the value of ti stored in Di. Then,

we encode idx value in ‘Idx’ stream using the number i of the token as a context. Finally,

19

the token of character, numerical or string type, but for which the number of distinct values

is greater than 255, is directly encoded in ‘Val’ stream using i as a context. The numerical

values, however, are previously rescaled, subtracting the minimal observed value v mini from

them. In case of paired-end compression, only one read identifier is encoded per one pair of

reads. Encoding the variable part of the identifier shared between two reads from the pair

(denoting whether the read is either the first or the second read from the pair) is already done

while encoding the pairing information between two DNA sequences (in ‘Swap-PE’ streams).

The streams are finally compressed using our range coder of order-2, using one previous symbol

and the number i of the currently encoded token as a context. At the end of the compression,

the set of dictionaries Di and with the set of v mini, v maxi values (but only for the numerical

tokens) is stored in the file footer. Moreover, for paired-end compression, we also store in the

footer the corresponding numbers of the variable fields in the paired reads.

20

2 Datasets

This section describes the datasets used in the experiments and reports the links used to

download them.

HS2 dataset

This dataset was previously used in ORCOM [?]. It consists of 48 compressed FASTQ files,

which can be downloaded from:

f t p : // f tp . s ra . eb i . ac . uk/ vo l1 / f a s t q /ERR024/ERR024163/ERR024163 1 . f a s t q . gz

f tp : // f tp . s ra . eb i . ac . uk/ vo l1 / f a s t q /ERR024/ERR024163/ERR024163 2 . f a s t q . gz

f tp : // f tp . s ra . eb i . ac . uk/ vo l1 / f a s t q /ERR024/ERR024164/ERR024164 1 . f a s t q . gz

f tp : // f tp . s ra . eb i . ac . uk/ vo l1 / f a s t q /ERR024/ERR024164/ERR024164 2 . f a s t q . gz

f tp : // f tp . s ra . eb i . ac . uk/ vo l1 / f a s t q /ERR024/ERR024165/ERR024165 1 . f a s t q . gz

f tp : // f tp . s ra . eb i . ac . uk/ vo l1 / f a s t q /ERR024/ERR024165/ERR024165 2 . f a s t q . gz

f tp : // f tp . s ra . eb i . ac . uk/ vo l1 / f a s t q /ERR024/ERR024166/ERR024166 1 . f a s t q . gz

f tp : // f tp . s ra . eb i . ac . uk/ vo l1 / f a s t q /ERR024/ERR024166/ERR024166 2 . f a s t q . gz

f tp : // f tp . s ra . eb i . ac . uk/ vo l1 / f a s t q /ERR024/ERR024167/ERR024167 1 . f a s t q . gz

f tp : // f tp . s ra . eb i . ac . uk/ vo l1 / f a s t q /ERR024/ERR024167/ERR024167 2 . f a s t q . gz

f tp : // f tp . s ra . eb i . ac . uk/ vo l1 / f a s t q /ERR024/ERR024168/ERR024168 1 . f a s t q . gz

f tp : // f tp . s ra . eb i . ac . uk/ vo l1 / f a s t q /ERR024/ERR024168/ERR024168 2 . f a s t q . gz

f tp : // f tp . s ra . eb i . ac . uk/ vo l1 / f a s t q /ERR024/ERR024169/ERR024169 1 . f a s t q . gz

f tp : // f tp . s ra . eb i . ac . uk/ vo l1 / f a s t q /ERR024/ERR024169/ERR024169 2 . f a s t q . gz

f tp : // f tp . s ra . eb i . ac . uk/ vo l1 / f a s t q /ERR024/ERR024170/ERR024170 1 . f a s t q . gz

f tp : // f tp . s ra . eb i . ac . uk/ vo l1 / f a s t q /ERR024/ERR024170/ERR024170 2 . f a s t q . gz

f tp : // f tp . s ra . eb i . ac . uk/ vo l1 / f a s t q /ERR024/ERR024171/ERR024171 1 . f a s t q . gz

f tp : // f tp . s ra . eb i . ac . uk/ vo l1 / f a s t q /ERR024/ERR024171/ERR024171 2 . f a s t q . gz

f tp : // f tp . s ra . eb i . ac . uk/ vo l1 / f a s t q /ERR024/ERR024172/ERR024172 1 . f a s t q . gz

f tp : // f tp . s ra . eb i . ac . uk/ vo l1 / f a s t q /ERR024/ERR024172/ERR024172 2 . f a s t q . gz

f tp : // f tp . s ra . eb i . ac . uk/ vo l1 / f a s t q /ERR024/ERR024173/ERR024173 1 . f a s t q . gz

f tp : // f tp . s ra . eb i . ac . uk/ vo l1 / f a s t q /ERR024/ERR024173/ERR024173 2 . f a s t q . gz

f tp : // f tp . s ra . eb i . ac . uk/ vo l1 / f a s t q /ERR024/ERR024174/ERR024174 1 . f a s t q . gz

f tp : // f tp . s ra . eb i . ac . uk/ vo l1 / f a s t q /ERR024/ERR024174/ERR024174 2 . f a s t q . gz

f tp : // f tp . s ra . eb i . ac . uk/ vo l1 / f a s t q /ERR024/ERR024175/ERR024175 1 . f a s t q . gz

f tp : // f tp . s ra . eb i . ac . uk/ vo l1 / f a s t q /ERR024/ERR024175/ERR024175 2 . f a s t q . gz

f tp : // f tp . s ra . eb i . ac . uk/ vo l1 / f a s t q /ERR024/ERR024176/ERR024176 1 . f a s t q . gz

f tp : // f tp . s ra . eb i . ac . uk/ vo l1 / f a s t q /ERR024/ERR024176/ERR024176 2 . f a s t q . gz

f tp : // f tp . s ra . eb i . ac . uk/ vo l1 / f a s t q /ERR024/ERR024177/ERR024177 1 . f a s t q . gz

f tp : // f tp . s ra . eb i . ac . uk/ vo l1 / f a s t q /ERR024/ERR024177/ERR024177 2 . f a s t q . gz

f tp : // f tp . s ra . eb i . ac . uk/ vo l1 / f a s t q /ERR024/ERR024178/ERR024178 1 . f a s t q . gz

f tp : // f tp . s ra . eb i . ac . uk/ vo l1 / f a s t q /ERR024/ERR024178/ERR024178 2 . f a s t q . gz

f tp : // f tp . s ra . eb i . ac . uk/ vo l1 / f a s t q /ERR024/ERR024179/ERR024179 1 . f a s t q . gz

f tp : // f tp . s ra . eb i . ac . uk/ vo l1 / f a s t q /ERR024/ERR024179/ERR024179 2 . f a s t q . gz

f tp : // f tp . s ra . eb i . ac . uk/ vo l1 / f a s t q /ERR024/ERR024180/ERR024180 1 . f a s t q . gz

f tp : // f tp . s ra . eb i . ac . uk/ vo l1 / f a s t q /ERR024/ERR024180/ERR024180 2 . f a s t q . gz

f tp : // f tp . s ra . eb i . ac . uk/ vo l1 / f a s t q /ERR024/ERR024181/ERR024181 1 . f a s t q . gz

f tp : // f tp . s ra . eb i . ac . uk/ vo l1 / f a s t q /ERR024/ERR024181/ERR024181 2 . f a s t q . gz

f tp : // f tp . s ra . eb i . ac . uk/ vo l1 / f a s t q /ERR024/ERR024182/ERR024182 1 . f a s t q . gz

f tp : // f tp . s ra . eb i . ac . uk/ vo l1 / f a s t q /ERR024/ERR024182/ERR024182 2 . f a s t q . gz

21

f t p : // f tp . s ra . eb i . ac . uk/ vo l1 / f a s t q /ERR024/ERR024183/ERR024183 1 . f a s t q . gz

f tp : // f tp . s ra . eb i . ac . uk/ vo l1 / f a s t q /ERR024/ERR024183/ERR024183 2 . f a s t q . gz

f tp : // f tp . s ra . eb i . ac . uk/ vo l1 / f a s t q /ERR024/ERR024184/ERR024184 1 . f a s t q . gz

f tp : // f tp . s ra . eb i . ac . uk/ vo l1 / f a s t q /ERR024/ERR024184/ERR024184 2 . f a s t q . gz

f tp : // f tp . s ra . eb i . ac . uk/ vo l1 / f a s t q /ERR024/ERR024185/ERR024185 1 . f a s t q . gz

f tp : // f tp . s ra . eb i . ac . uk/ vo l1 / f a s t q /ERR024/ERR024185/ERR024185 2 . f a s t q . gz

f tp : // f tp . s ra . eb i . ac . uk/ vo l1 / f a s t q /ERR024/ERR024186/ERR024186 1 . f a s t q . gz

f tp : // f tp . s ra . eb i . ac . uk/ vo l1 / f a s t q /ERR024/ERR024186/ERR024186 2 . f a s t q . gz

The downloaded files were decompressed, concatenated pairwise, truncating all reads to 100

bp, which can be done as follows:

gunzip -c ERR0241*_1.fastq.gz | cut -c1 -100 >> HS2_1.fastq

gunzip -c ERR0241*_2.fastq.gz | cut -c1 -100 >> HS2_2.fastq

The result was stored as two FASTQ files: HS2 1.fastq and HS2 2.fastq.

GG dataset

This dataset was previously used in ORCOM [?]. It consists of 12 compressed FASTQ files,

which can be downloaded from:

f t p : // f tp . ddbj . n ig . ac . jp / ddbj database /dra/ f a s t q /SRA030/SRA030308/SRX043656/

SRR105788 1 . f a s t q . bz2

f tp :// f tp . ddbj . n ig . ac . jp / ddbj database /dra/ f a s t q /SRA030/SRA030308/SRX043656/

SRR105788 2 . f a s t q . bz2

f tp :// f tp . ddbj . n ig . ac . jp / ddbj database /dra/ f a s t q /SRA030/SRA030309/SRX043656/

SRR105789 1 . f a s t q . bz2

f tp :// f tp . ddbj . n ig . ac . jp / ddbj database /dra/ f a s t q /SRA030/SRA030309/SRX043656/

SRR105789 2 . f a s t q . bz2

f tp :// f tp . ddbj . n ig . ac . jp / ddbj database /dra/ f a s t q /SRA030/SRA030312/SRX043656/

SRR105792 1 . f a s t q . bz2

f tp :// f tp . ddbj . n ig . ac . jp / ddbj database /dra/ f a s t q /SRA030/SRA030312/SRX043656/

SRR105792 2 . f a s t q . bz2

f tp :// f tp . ddbj . n ig . ac . jp / ddbj database /dra/ f a s t q /SRA030/SRA030314/SRX043656/

SRR105794 1 . f a s t q . bz2

f tp :// f tp . ddbj . n ig . ac . jp / ddbj database /dra/ f a s t q /SRA030/SRA030314/SRX043656/

SRR105794 2 . f a s t q . bz2

f tp :// f tp . ddbj . n ig . ac . jp / ddbj database /dra/ f a s t q /SRA036/SRA036382/SRX043656/

SRR197985 1 . f a s t q . bz2

f tp :// f tp . ddbj . n ig . ac . jp / ddbj database /dra/ f a s t q /SRA036/SRA036382/SRX043656/

SRR197985 2 . f a s t q . bz2

f tp :// f tp . ddbj . n ig . ac . jp / ddbj database /dra/ f a s t q /SRA036/SRA036383/SRX043656/

SRR197986 1 . f a s t q . bz2

f tp :// f tp . ddbj . n ig . ac . jp / ddbj database /dra/ f a s t q /SRA036/SRA036383/SRX043656/

SRR197986 2 . f a s t q . bz2

The downloaded files were decompressed and concatenated pairwise.The result was stored as

two FASTQ files: GG 1.fastq and GG 2.fastq.

22

HSX dataset

HSX dataset consists of 2 FASTQ files, which compressed can be downloaded from:

https : // dnanexus−rnd . s3 . amazonaws . com/NA12878−xten/ reads /NA12878D HiSeqX R1 .

f a s t q . gz

https : // dnanexus−rnd . s3 . amazonaws . com/NA12878−xten/ reads /NA12878D HiSeqX R2 .

f a s t q . gz

The downloaded files were decompressed and stored as HSX 1.fastq and HSX 2.fastq.

WGS-14, WGS-42, and WGS-235x datasets

WGS-235 dataset consists of 36 FASTQ files (18 pairs) coming from Illumina Platinum

Genomes [?]. They can be downloaded in a compressed form from:

f t p : // f tp . s ra . eb i . ac . uk/ vo l1 / f a s t q /ERR174/ERR174324/ERR174324 1 . f a s t q . gz

f tp : // f tp . s ra . eb i . ac . uk/ vo l1 / f a s t q /ERR174/ERR174324/ERR174324 2 . f a s t q . gz

f tp : // f tp . s ra . eb i . ac . uk/ vo l1 / f a s t q /ERR174/ERR174325/ERR174325 1 . f a s t q . gz

f tp : // f tp . s ra . eb i . ac . uk/ vo l1 / f a s t q /ERR174/ERR174325/ERR174325 2 . f a s t q . gz

f tp : // f tp . s ra . eb i . ac . uk/ vo l1 / f a s t q /ERR174/ERR174326/ERR174326 1 . f a s t q . gz

f tp : // f tp . s ra . eb i . ac . uk/ vo l1 / f a s t q /ERR174/ERR174326/ERR174326 2 . f a s t q . gz

f tp : // f tp . s ra . eb i . ac . uk/ vo l1 / f a s t q /ERR174/ERR174327/ERR174327 1 . f a s t q . gz

f tp : // f tp . s ra . eb i . ac . uk/ vo l1 / f a s t q /ERR174/ERR174327/ERR174327 2 . f a s t q . gz

f tp : // f tp . s ra . eb i . ac . uk/ vo l1 / f a s t q /ERR174/ERR174328/ERR174328 1 . f a s t q . gz

f tp : // f tp . s ra . eb i . ac . uk/ vo l1 / f a s t q /ERR174/ERR174328/ERR174328 2 . f a s t q . gz

f tp : // f tp . s ra . eb i . ac . uk/ vo l1 / f a s t q /ERR174/ERR174329/ERR174329 1 . f a s t q . gz

f tp : // f tp . s ra . eb i . ac . uk/ vo l1 / f a s t q /ERR174/ERR174329/ERR174329 2 . f a s t q . gz

f tp : // f tp . s ra . eb i . ac . uk/ vo l1 / f a s t q /ERR174/ERR174330/ERR174330 1 . f a s t q . gz

f tp : // f tp . s ra . eb i . ac . uk/ vo l1 / f a s t q /ERR174/ERR174330/ERR174330 2 . f a s t q . gz

f tp : // f tp . s ra . eb i . ac . uk/ vo l1 / f a s t q /ERR174/ERR174331/ERR174331 1 . f a s t q . gz

f tp : // f tp . s ra . eb i . ac . uk/ vo l1 / f a s t q /ERR174/ERR174331/ERR174331 2 . f a s t q . gz

f tp : // f tp . s ra . eb i . ac . uk/ vo l1 / f a s t q /ERR174/ERR174332/ERR174332 1 . f a s t q . gz

f tp : // f tp . s ra . eb i . ac . uk/ vo l1 / f a s t q /ERR174/ERR174332/ERR174332 2 . f a s t q . gz

f tp : // f tp . s ra . eb i . ac . uk/ vo l1 / f a s t q /ERR174/ERR174333/ERR174333 1 . f a s t q . gz

f tp : // f tp . s ra . eb i . ac . uk/ vo l1 / f a s t q /ERR174/ERR174333/ERR174333 2 . f a s t q . gz

f tp : // f tp . s ra . eb i . ac . uk/ vo l1 / f a s t q /ERR174/ERR174334/ERR174334 1 . f a s t q . gz

f tp : // f tp . s ra . eb i . ac . uk/ vo l1 / f a s t q /ERR174/ERR174334/ERR174334 2 . f a s t q . gz

f tp : // f tp . s ra . eb i . ac . uk/ vo l1 / f a s t q /ERR174/ERR174335/ERR174335 1 . f a s t q . gz

f tp : // f tp . s ra . eb i . ac . uk/ vo l1 / f a s t q /ERR174/ERR174335/ERR174335 2 . f a s t q . gz

f tp : // f tp . s ra . eb i . ac . uk/ vo l1 / f a s t q /ERR174/ERR174336/ERR174336 1 . f a s t q . gz

f tp : // f tp . s ra . eb i . ac . uk/ vo l1 / f a s t q /ERR174/ERR174336/ERR174336 2 . f a s t q . gz

f tp : // f tp . s ra . eb i . ac . uk/ vo l1 / f a s t q /ERR174/ERR174337/ERR174337 1 . f a s t q . gz

f tp : // f tp . s ra . eb i . ac . uk/ vo l1 / f a s t q /ERR174/ERR174337/ERR174337 2 . f a s t q . gz

f tp : // f tp . s ra . eb i . ac . uk/ vo l1 / f a s t q /ERR174/ERR174338/ERR174338 1 . f a s t q . gz

f tp : // f tp . s ra . eb i . ac . uk/ vo l1 / f a s t q /ERR174/ERR174338/ERR174338 2 . f a s t q . gz

f tp : // f tp . s ra . eb i . ac . uk/ vo l1 / f a s t q /ERR174/ERR174339/ERR174339 1 . f a s t q . gz

f tp : // f tp . s ra . eb i . ac . uk/ vo l1 / f a s t q /ERR174/ERR174339/ERR174339 2 . f a s t q . gz

f tp : // f tp . s ra . eb i . ac . uk/ vo l1 / f a s t q /ERR174/ERR174340/ERR174340 1 . f a s t q . gz

f tp : // f tp . s ra . eb i . ac . uk/ vo l1 / f a s t q /ERR174/ERR174340/ERR174340 2 . f a s t q . gz

f tp : // f tp . s ra . eb i . ac . uk/ vo l1 / f a s t q /ERR174/ERR174341/ERR174341 1 . f a s t q . gz

23

f t p : // f tp . s ra . eb i . ac . uk/ vo l1 / f a s t q /ERR174/ERR174341/ERR174341 2 . f a s t q . gz

WGS-14 and WGS-42 datasets are subsets of WGS-235 – WGS-14 consists of only first

pair of files (ERR174324 1.fastq.gz and ERR174324 2.fastq.gz) and WGS-42 of first 3 pairs.

The files corresponding to WGS-14 and WGS-42 datasets were decompressed and concate-

nated pairwise, resulting in WGS 14 1.fastq and WGS 14 2.fastq and WGS 42 1.fastq and

WGS 42 2.fastq files, respectively.

Analogously, when analyzing how the compression ratio changes with the sequencing coverage,

we sampled the WGS-235 dataset into 1, 2, 3, 4, 6, 9, 12, and 18 pairs of FASTQ files,

respectively.

CE dataset

CE dataset consists of 2 FASTQ files used previously in LEON [?]. They can be downloaded

in a compressed form from:

f t p : // f tp . s ra . eb i . ac . uk/ vo l1 / f a s t q /SRR065/SRR065390/SRR065390 1 . f a s t q . gz

f tp : // f tp . s ra . eb i . ac . uk/ vo l1 / f a s t q /SRR065/SRR065390/SRR065390 2 . f a s t q . gz

The downloaded files were decompressed and stored as CE 1.fastq and CE 2.fastq.

WEX dataset

WEX dataset is available as aligned data in BAM format coming from GIAB [?]. It can be

downloaded from:

f t p : // ftp−t r a c e . ncbi . nlm . nih . gov/ giab / f tp /data/AshkenazimTrio/HG002 NA24385 son

/OsloUnivers i tyHospita l Exome /151002 7001448 0359 AC7F6GANXX Sample HG002−
EEogPU v02−KIT−Av5 AGATGTAC L008 . po s i S r t .markDup .bam

After downloading the file it was renamed to WEX.bam. Next, we used SAMTools [?] (version

1.2) to transcode it to FASTQ format:

sort the file by read names before transcoding

samtools sort -n WEX.bam > WEX -sorted.bam

transcode to FASTQ

samtools fastq -1 WEX_1.fastq -2 WEX_2.fastq -0 WEX.fastq WEX.bam

The result of transcoding is stored as 2 files – WEX 1.fastq and WEX 2.fastq. There are no

unpaired reads – in that case, they would had been stored in a separate WEX.fastq file.

Metagenomic datasets

Metagenomic dataset were downloaded from the following sites:

https : //www. eb i . ac . uk/ena/data/view/SRR359032

https : //www. eb i . ac . uk/ena/data/view/ERR532393

https : //www. eb i . ac . uk/ena/data/view/ERR1474585

24

3 Compression test – tools invocation

The applications were tested in multithreaded mode (if supported) using 8 threads. In the

case that the application did not provide an option to compress the FASTQ files in paired-end

mode (or provides explicitly a single-end mode), the two paired files were concatenated into

one large FASTQ file prior to compression. Application execution times were measured using

Linux command “time”.

The final tests were performed on the CNAG cluster. It is made of more than 100 compute

nodes each one having two Intel Xeon E52670 2.60 GHz processors with 128 GB of RAM.

It has about 3 PB of network-distributed hard-drive storage mounted as a Lustre parallel

file system (http://lustre.org/). Inter-node communication is performed via a dedicated

Infiniband network, whereas the Lustre filesystem is connected to the cluster via a number

of standard Gigabit Ethernet connections. Each single performance test was performed on a

fully reserved node to avoid possible interference with other applications.

3.1 Compression of FASTQ files

PIGZ (gzip) We tested PIGZ (a parallel version of gzip) in version 2.3.3.

• To compress:

pigz -9 -p 8 -c IN.fastq > COMP.gz

• To decompress:

pigz -d -p 8 -c COMP.gz > OUT.fastq

DSRC2 We tested DSRC2 [?] in version 2.1.0, which was downloaded from https://

github.com/lrog/dsrc.

• To compress using DSRC-FAST :

dsrc c -m0 -t8 -v IN.fastq COMP.dsrc

• To compress using DSRC-MAX :

dsrc c -m2 -t8 -v IN.fastq COMP.dsrc

• To decompress:

dsrc d -t8 COMP.dsrc OUT.fastq

FQZCOMP We tested FQZCOMP [?] in version 4.6, which was downloaded from https:

//sourceforge.net/projects/fqzcomp/.

• To compress using FQZCOMP-STD :

fqz_comp IN.fastq COMP.fqz

• To compress using FQZCOMP-MAX :

fqz_comp -n2 -q3 -s8+ -b IN.fastq COMP.fqz

• To decompress:

fqz_comp -d COMP.fqz OUT.fastq

25

QUIP We tested QUIP [?] in version 1.1.8, which was downloaded from https://github.

com/dcjones/quip.

• To compress using QUIP-FQ-STD :

quip -v -c IN.fastq > COMP.qp

• To compress using QUIP-FQ-MAX :

quip -a -v -c IN.fastq > COMP.qp

• To decompress:

quip -d -c COMP.qp OUT.fastq

SCALCE We tested SCALCE [?] in version 2.8, which was downloaded from http://

sfu-compbio.github.io/scalce/.

• To compress using SCALCE-SE :

scalce -T 8 -o COMP.sc IN.fastq

• To decompress using SCALCE-SE :

scalce -d -T 8 -o OUT.fastq COMP.sc_1.scalcen

• To compress using SCALCE-PE :

scalce -T 8 -r -o COMP.sc IN.fastq

• To decompress using SCALCE-PE :

scalce -d -r -T 8 -o OUT.fastq COMP.sc_1.scalcen

LEON We tested LEON [?] in version 1.0.0, which was downloaded from http://gatb.

inria.fr/software/leon/.

• To compress:

leon -c -file IN.fastq -nb -cores 8 -lossless

• To decompress:

leon -d -file IN.leon -nb -cores 8

3.2 Compression of DNA sequences

ORCOM We tested ORCOM [?] in version 1.0rc, which was downloaded from https:

//github.com/lrog/orcom/.

• To compress:

orcom_bin e -t8 -v -iIN.fastq -oCOMP.bin

orcom_pack e -t8 -v -iCOMP.bin -oCOMP.pack

• To decompress:

orcom_pack d -t8 -iCOMP.pack -oOUT.dna

MINCE We tested MINCE [?] in version 0.6.1, which was downloaded from http://www.

cs.cmu.edu/ckingsf/software/mince.

26

• To compress in single-end mode:

mince -e -r IN.fastq -o COMP -p 8

• To compress in paired-end mode:

mince -e -1 IN_1.fastq -2 IN_2.fastq -o COMP -p 8

• To decompress:

mince -d -i COMP -o OUT.dna -p 8

BEETL We tested BEETL [?] in version 1.1.0, which was downloaded from https://

github.com/BEETL/BEETL.

• To compress:

run BEETL -BWT

beetl -bwt -i IN.fastq -o COMP.beetl --output -format ASCII \

--sap -ordering --algorithm ext

compress the output BWT runs uzing 7za with PPMd

7za a -mmt=$2 -mm=PPMd -mmem =256m -mo=4 COMP -B.zip $TMP_PFX.beetl -B*

7za a -mmt=$2 -mm=PPMd -mmem =256m -mo=4 COMP -P.zip $TMP_PFX.beetl -P*

7za a -mmt=$2 -mm=PPMd -mmem =256m -mo=4 COMP -S.zip $TMP_PFX.beetl -S*

• To decompress:

decompress the BWT runs

7za e -mmt=$2 COMP -B.zip

7za e -mmt=$2 COMP -P.zip

7za e -mmt=$2 COMP -S.zip

run BEETL -UNBWT

beetl -unbwt -i COMP.beetl -o OUT.fasta --output -format fasta

3.3 Running FaStore

FaStore offers a variety of different compression configurations. Hence, for an easier selection,

we created 4 profiles, namely lossless, reduced, lossy and max. To perform automatic compres-

sion and decompression, a pair of scripts ‘fastore compress.sh’ and ‘fastore decompress.sh’ is

available in the FaStore package.

• To compress files in paired-end mode:

bash fastore_compress.sh --in IN_1.fastq --pair IN_2.fastq --out COMP \

--threads 8 PROF [--fast] [--signature p]

• To decompress in paired-end mode:

bash fastore_decompress.sh --in COMP --out OUT_1.fastq \

--pair OUT_2.fastq --threads 8

• To compress file in single-end mode:

bash fastore_compress.sh --in IN.fastq --out COMP \

--threads 8 PROF [--fast] [--signature p]

• To decompress in single-end mode:

27

bash fastore_decompress.sh --in COMP --out OUT.fastq --threads 8

In all cases, the PROF parameter specifies the profile, which can be: ‘–lossless’, ‘–reduced’,

‘–lossy’ or ‘–max’. Alternatively, ‘–fast’ switch can be provided which will launch FaStore in

C0 DNA compression mode (C1 by default). When compressing, FaStore uses a signature

of length p = 8, however, ‘–signature p’ switch can be used to specify a different one. The

compressed files will be stored as COMP.cmeta and COMP.cdata files.

28

4 Variant calling test – tools invocation

The analysis of the possible impact of performing lossy quality scores compression and re-

ordering the reads on variant calling was performed on WGS-14 and WGS-42 datasets, both

generated from paired-end library. For the analysis, we run multiple singular experiments,

each consisting of two steps:

• preprocessing of the input FASTQ files,

• performing mapping and variant calling.

As a point of reference, we performed mapping and variant calling using the original files.

4.1 Preprocessing of FASTQ files

4.1.1 Reordering the reads in original FASTQ files

As the input datasets were generated from paired-end library, each stored as a pair of FASTQ

files, after reordering the reads, it is crucial to preserve the pairing between the reads in

resulting files on the file level (i.e., a pair of reads resides on the same lines in both files). For

reordering we used the script ‘shuffle sort.sh’ available in the FaStore package. It can be run

as:

bash shuffe_sort.sh IN_1.fastq IN_2.fastq

the output of reordering the reads inside files will be stored as shuf-IN 1.fastq and shuf-

IN 2.fastq.

4.1.2 Transforming quality scores in original FASTQ files

We tested three different transformations of base quality scores performed on original FASTQ

files: Illumina 8-level binning [?], binary thresholding and quantization based on QVZ [?].

The algorithms have been explained in details in Section 1.2.

Illumina 8-level binning and binary thresholding transformations were implemented in ‘down-

sample quality.py’ script available in the FaStore package, which can be run as:

python downsample_fastq.py IN.fastq OUT.fastq MODE [THR]

where MODE specifies the transformation (‘B’ for Illumina binning, ‘T’ for thresholding) and

THR specifies the threshold value used with the former transformation. The script needs to

be run for both FASTQ files separately.

The quantization of quality scores was performed using QVZ standalone application, which can

be downloaded from https://github.com/mikelhernaez/qvz2. To perform quantization,

we use the script ‘quantize qvz.sh’ available in the FaStore package, which can be run as:

bash quantize_qvz.sh IN.fastq DIST OUT.fastq

29

where DIST specifies the distortion value. We refer to Section 1.2.6 for the different distortions

allowed by QVZ. The script needs to be run for both FASTQ files separately.

Previous to running the script, the user needs to use the C file ‘replace qual fastq.c’ also

available in the FaStore package, and compile it as follows:

gcc -o replace_qual_fastq replace_qual_fastq.c

Finally, the user needs to modify the paths to QVZ and the executable C file in the quan-

tize qvz.sh script.

4.1.3 Preprocessing FASTQ files using FaStore

We run FaStore in ‘C0’ mode testing different lossy quality compression modes alongside

lossless. We run FaStore as a set of commands:

1. bin the reads

fastore_bin e -i"IN_1.fastq IN_2.fastq" -o"__tmp.bin" \

-p8 -s10 -H -z -tTH QUA

2. compress the reads

fastore_pack e -i"__tmp.bin" -o"__tmp.pack" \

-f256 -c10 -d8 -w256 -W256 -z -tTH

3. decompress the reads

fastore_pack d -i"__tmp.pack" -o"OUT_1.fastq OUT_2.fastq" -z -tTH

where TH specifies the number of processing threads and QUA specifies the quality compres-

sion option, which can be:

• ‘-q0’ – lossless mode

• ‘-q1’ – binary thresholding

• ‘-q2’ – Illumina 8-level binning

• ‘-q3 -Dn’ – QVZ mode using ‘n’ distortion level.

It’s important to note, that the options to compress quality scores alongside read identifiers

need to be specified during the binning stage.

4.2 Variant calling

To obtain the analysis-ready set of variants, we follow steps as recommended by Genome

Analysis Toolkit (GATK) [?] Best Practices [?]. We use BWA-MEM [?, ?] in version 0.7.10

to map the reads to the human reference genome version GRCh37. We convert the resulting

SAM flies into BAM format and sort by chromosome and position using SAMTools [?] in

version 1.2. Then, we mark duplicates, add/replace read groups, and index the BAM file

using Picard tools (https://broadinstitute.github.io/picard/) in version 2.4.1. Follow-

ing, we apply GATK Base Quality Score Recalibration (BQSR) and perform variant calling

30

using GATK HaplotypeCaller both for SNPs and INDELs. For completeness, we optionally

perform filtering of the variants using GATK Variant Quality Scores Recalibration (VQSR).

We compare the variants (both filtered and not) using as a “gold standard” the set of vari-

ants from the Genome In A Bottle (GIAB) consortium [?] in version 3.2.2. Finally, we

compare our results using Haplotype Comparison Tools provided by Illumina (available at

https://github.com/Illumina/hap.py), which is also recommended by Global Alliance for

Genomics and Health (GA4GH) as one of benchmarking standards. The pipeline is available

in the FaStore package as ‘GATK BestPractices pipe happy NIST.sh’.

Before running the pipeline, it is necessary to set the paths to the binaries and data resources

(e.g., reference sequence, picard tools, etc.) in the provided script. The user also needs

to provide some input arguments like the path to the FASTQ files under consideration. In

particular, the script can be run as follows:

bash GATK_BestPractices_pipe_happy_NIST.sh temp_location_path num_threads \

IN_1.fastq IN_2.fastq

31

5 Additional results

5.1 Comparison of “normal” vs. “fast” modes

Table 3: Trade-off between modes C0 (fast) and C1 (default).

Compr. factor of DNA stream Compr. speed

C0 C1 Ratio C0 C1 Ratio

Data set [%] [%] C0/C1 [MB/s] [MB/s] C0/C1

CE 6.96 6.35 1.09 35.5 3.4 10.56

GG 8.96 8.41 1.07 39.2 6.2 6.30

HS2 5.88 5.34 1.10 11.9 6.6 1.82

HSX 8.91 8.03 1.11 32.2 9.1 3.52

WEX 5.60 5.38 1.04 35.1 5.2 6.74

WGS-14 10.82 10.28 1.05 32.5 5.1 6.39

WGS-42 7.14 6.47 1.10 29.7 8.5 3.50

5.2 FaStore resources usage

Table 4: Example of temporary peak disk and RAM usage when compressing the WGS-14

and WGS-42 datasets. “Fast” refers to C0 mode (in contrast to default mode C1).

Peak HDD [GB] Peak RAM [GB]

Data set WGS-14 WGS-42 WGS-14 WGS-42

Lossless fast 73 208 19 52

Lossless 108 314 17 47

Reduced fast 42 118 15 38

Reduced 62 181 14 39

Lossy fast 59 165 15 40

Lossy 95 278 16 43

Max fast 22 59 12 34

Max 33 95 12 34

5.3 Metagenomics results

Prior to compression, the metagenomics datasets have been preprocessed, by downsampling

the quality scores (Illumina binning) and trimming the read identifiers (for compatibility with

SCALCE as it trims them by default). When running FaStore, we reduced the length of the

signature to p = 6 symbols. When compressing small datasets it may be better to use a

shorter signature length, as it defines the number of available bins into which the reads will

be distributed. Compressing bins containing small number of reads will result in degraded

compression efficiency.

32

T
ab

le
5:

E
x
am

p
le

m
et

ag
en

om
ic

s
d
at

as
et

–
co

m
p
re

ss
io

n
re

su
lt

s
re

p
or

te
d

fo
r

w
h
ol

e
ar

ch
iv

es
.

S
iz

es
ar

e
re

p
or

te
d

in
gi

ga
b
y
te

s.
R

at
io

is
ex

p
re

ss
ed

as
th

e
si

ze
of

th
e

ra
w

F
A

S
T

Q
fi
le

d
iv

id
ed

b
y

it
’s

co
m

p
re

ss
ed

si
ze

.

D
at
as
et

F
ile

R
aw

gz
ip

D
S
R
C
2

Q
u
ip

F
Q
Z
co
m
p

L
E
O
N

S
C
A
L
C
E

F
aS

to
re

S
iz
e

S
iz
e

R
at
io

S
iz
e

R
at
io

S
iz
e

R
at
io

S
iz
e

R
at
io

S
iz
e

R
at
io

S
iz
e

R
at
io

S
iz
e

R
at
io

E
R
R
16
62
20
4

1
0.
96

0.
24

4.
02
8

0.
16

6.
07
5

0.
16

6.
14
8

0.
15

6.
48
1

0.
19

5.
17
6

0.
14

6.
64
3

0.
13

7.
58
7

2
0.
96

0.
24

3.
99
7

0.
16

6.
02
9

0.
16

6.
10
1

0.
15

6.
41
4

0.
19

5.
12
7

0.
15

6.
55
9

0.
13

7.
45
1

E
R
R
53
23
93

1
8.
00

2.
22

3.
60
1

1.
47

5.
44
7

1.
42

5.
62
5

1.
07

7.
49
9

1.
23

6.
47
6

1.
19

6.
69
6

0.
91

8.
75
2

2
8.
00

2.
26

3.
54
1

1.
49

5.
35
0

1.
45

5.
52
0

1.
14

7.
01
9

1.
33

6.
03
2

1.
29

6.
19
6

1.
01

7.
91
3

S
R
R
35
90
32

1
3.
87

0.
97

4.
01
2

0.
61

6.
38
5

0.
46

8.
40
8

0.
33

11
.6
16

0.
42

9.
16
8

0.
41

9.
55
2

0.
31

12
.3
41

2
3.
87

0.
98

3.
95
7

0.
62

6.
29
9

0.
46

8.
34
4

0.
34

11
.5
10

0.
43

9.
07
9

0.
41

9.
49
1

0.
32

12
.1
30

T
ab

le
6:

E
x
am

p
le

m
et

ag
en

om
ic

s
d
at

as
et

–
co

m
p
re

ss
io

n
re

su
lt

s
re

p
or

te
d

fo
r

p
ar

ti
cu

la
r

d
at

a
st

re
am

s.
S
iz

es
ar

e
re

p
or

te
d

in
m

eg
ab

y
te

s.

D
at
as
et

F
ile

D
S
R
C
2

Q
u
ip

F
Q
Z
co
m
p

L
E
O
N

S
C
A
L
C
E

F
aS

to
re

ID
D
N
A

Q
U
A

ID
D
N
A

Q
U
A

ID
D
N
A

Q
U
A

ID
D
N
A

Q
U
A

ID
D
N
A

Q
U
A

ID
D
N
A

Q
U
A

E
R
R
16
62
20
4

1
0

10
6

52
0

10
5

51
0

98
50

0
11
0

75
17

67
60

12
59

55

2
0

10
6

53
0

10
5

52
0

98
51

0
11
0

77
17

68
61

12
60

57

E
R
R
53
23
93

1
0

88
3

58
5

0
83
9

58
2

0
49
1

57
6

0
40
7

82
8

17
2

36
8

65
4

11
6

20
5

59
3

2
0

88
1

61
4

0
84
0

60
9

0
53
3

60
6

0
46
3

86
2

17
3

42
9

68
9

11
6

26
6

62
9

S
R
R
35
90
32

1
0

39
7

21
0

0
24
8

21
2

0
12
7

20
7

0
11
2

31
0

81
89

23
5

54
43

21
7

2
0

39
6

21
9

0
24
3

22
2

0
12
1

21
6

0
10
5

32
2

81
84

24
3

54
38

22
7

33

5.4 Variant calling results with applied filtering

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

0.98141

0.98142

0.98143

0.98144

0.98145

0.98146

0.98147

0.98148

0.9943

0.99435

0.9944

0.99445

0.9945

0.9977

0.99775

0.9978

0.99785

0.9979

Figure 1: Precision and Recall obtained for various reorderings of dataset WGS-14, with and

without VQSR filtering. Points without label correspond to random shuffling. The red point

represents the mean, the red line is the 95% confidence on the mean, and the blue line is the

standard deviation. The y-axis represents precision or recall, based on what it is specified in

the x-axis.

34

