
Supplementary Materials for ”Leveraging known genomic variants to improve
detection of variants, especially close-by Indels”
Nam S. Vo 1 and Vinhthuy Phan2

1Department of Bioinformatics and Computational Biology, The University of Texas MD
Anderson Cancer Center, Houston, TX 77030, USA
2Department of Computer Science, The University of Memphis, Memphis, TN 38111,
USA

1 Iterated randomized algorithm

1.1 Overview of algorithm

Algorithm 1 describes the iterated randomized algorithm mentioned in main text. In this
algorithm we aim at finding proper seeds based on long exact matches of the read r and
the meta-genome G with respect to p.

Algorithm 1 FindSeeds(read r)

1: p < − a random position on the read r.
2: for n from 1 to A do
3: repeat
4: Start forward search in r from p using FM-index I of meta-genome G.
5: until seed length ≥W OR search reaches the end |r|
6: if seed found then
7: return seeds
8: else
9: p < − a random position on the read r.

10: Return ∅.

In line 1, we set the maximal numbers of iterations to A. If A is too small, there will
be many unaligned reads. If A is too large, the algorithm is slow. So, it is important to
choose A appropriately. In line 5 and 6, we set minimum seed length to W . If W is too
small, we might run into repeats, which lead to false positives. Small W also leads to more
seeds and we have to perform more approximate matching for the next step (extending
seeds), which is much more time-consuming. Therefore, the choice of W is very important.
Our strategy for determining good values of A and W is based on randomization.

1.2 Parameter estimation

Suppose that the correct seed is s. Assume that there are d mismatches between r and s,
which divide r into d+ 1 blocks. Let the sizes of the blocks be m1,m2, · · · ,md+1, then the
length of r is m =

∑d+1
i=1 mi. Since p is a random position, the seed found by Algorithm 1,

as a common substring, would be a random block. This block is selected with probability

pi = mi
m , thus the expected size of block i is E[Si] = mipi =

m2
i

m . Therefore, the expected

size of a random block, i.e. the expected length of the seed, is E[X] =
∑d+1

i=1 E[Xi] =∑d+1
i=1

m2
i

m . Use Cauche-Schwarz inequality we have:(
d+1∑
i=1

1

d+ 1

mi

m

)2

≤
d+1∑
i=1

(
1

d+ 1
)2

d+1∑
i=1

(
mi

m
)2

1

After simplifying we have E[S] ≥ m
d+1 . In other words, the expected length of the seeds

found by Algorithm 1 is at least m
d+1 . Therefore, we can estimate W ∼ m

d+1 . The distance
d can be estimated by the rate of mutations of the given genome and the rate of sequencing
errors of the given data. Let b be the rate of mutations or sequencing errors, which we
can assume to be distributed by a binomial distribution with mean µ = mb and variance
σ2 = mb(1− b), where m is read length. Then the upper bound of d can be estimated by
µ+ cσ, for some constant c, then the value of W can be derived. In our experimentation,
c = 4 produces good performance.

The value of A can be selected so that the longest block can be sampled with high
certainty. The probability that the longest block is selected (i.e. if a random position p
lands inside it) is m∗

m , where m∗ is the length of the longest block. Using the Pigeonhole
Principle we have m∗ ≥ m

d+1 , which means d + 1 ≥ m
m∗ . This is the expected number of

iterations to make p land inside the longest block. Therefore, we can estimate A = t+ 1 ≥
d + 1. If we assign A = c · (t + 1), then the probability of landing in the longest block is
exponentially increased as a function of c. In our experimentation, c = 2 produces good
performance, in trade-off between accuracy and running time.

2 Asymmetric alignment algorithm

2.1 Overview of algorithm

The following describes our asymmetric alignment algorithm mentioned in main text. In
this algorithm, we aim to compute edit distance with affine gap penalty between s =
s1s2 · · · sm and t = t1t2 · · · tn, in which s represents a read and t represents the matching
meta-reference:

• Consider the right-most column of alignment between s = s1s2 · · · si (1 ≤ i ≤ m) and
t = t1t2 · · · tj (1 ≤ j ≤ n), we compute three traditional matrixes, D for an alignment
(si, tj), IS for an alignment (si, −), and IT for an alignment (−, tj):

D(i, j): ... si
... tj

IS(i, j): ... si
... −

IT (i, j): ... −
... tj

• If tj is a standard character (A, C, G, T, N) then we use the traditional dynamic
programming strategy for affine gap alignment.

• If tj is a variant character V (a known variant location) then tj can have several
possibilities, which can be Indels. The algorithm needs to consider all possibilities of
matching s to these possible variants. In the case of Indels (more than one character),
we need to look back on the s from si to take a equal-length sequence, i.e., the
sequence si−k+1si−k+2...si (k is equal to length of Indel), to match with the Indel.

This algorithm is exploited together with the aforementioned iterated randomized al-
gorithm. After several iterations, if it found only one match with distinct minimum score,
it will stop and considers that match as the correct candidate. Our experiment showed
that, in many cases, (e.g, on the non-repeat regions of genomes) the number iterations
are quite small. In some cases (e.g, on the repeat regions of genomes, which can result
in multiple matches with similar score), the number iterations can reach the maximum
number of allowed iterations. In this cases, we employed a filter strategy to determine the
correct matches, which selects the correct candidate among the matches with lowest scores
and proper insert sizes (for paired-end reads).

2

2.2 Cost scheme

In our experimentation, the cost of substituting a read base si and reference base tj is
− log f(tj), where f(tj) is the probability of tj to be a variant. If tj is a known variant,
f(tj) is obtained from its probability in the variant profile, which is updated during the
alignment of reads. If tj is not a known variant, f(tj) is set to a user-defined value, with
default value of mismatches, gap opens and gap extensions are 4, 6 and 1, respectively, the
same with default values of BWA-MEM.

The alignment is asymmetrical due to the following initial configurations: (1) IT0,j = 0,
for j ≤ n: the cost of converting t to an empty string is 0; (2) ISi,0 = O, for j ≤ n, O
is gap open penalty; (3) otherwise, the values were set to ∞. It is not possible to match
reads to nothing from the reference genome.

3 Variant profile update strategy

Initial profiles of known variants are assigned based on the input databases. Probabilities
of known variants are assigned based on their allele frequency in the databases. In case of
diploid data, they are assigned based on frequency of genotypes.

Initial profiles of unknown variants, which are detected during the alignment process,
are assigned experimentally as user-input. For human genomes, default values of prior
probability of a new SNP and a new Indel are assigned to 0.001 and 0.00001, respectively.

The variant profile is then updated read-by-read during the alignment process. After all
reads are aligned, the final variant profile will be used to call variants based on maximum
probabilities of each variants in the updated profiles.

4 Implementation

Our method, IVC, was implemented in the Go programming language, which was designed
to have high performance, garbage collection, and primitive support for concurrency. Al-
though Go might not be very common currently and other languages such as C are also
good choices for implementing high performance software like this, we think that Go is a
better choice in this context. It is easier to write simple, reliable, and efficient software in
Go, although the most optimal C code might be faster than those of Go. We also provided
several pre-complied binary packages of the tool for several common platforms to help users
run the tool without installing Go. These pre-complied binary packages were obtained by
using the Go’s built-in cross compilation feature.

The source code of IVC can be found at https://github.com/namsyvo/IVC.

5 Data

• Reference genome: the NCBI Genome Reference Consortium, GRCh37 p.13.
http://www.ncbi.nlm.nih.gov/assembly/GCF 000001405.25/

• Known variant profile: 1000 Genomes Project Data (Phase 1).
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase1/analysis results/integrated call sets/

• Known variant profile: dbSNP (build 149).
ftp://ftp.ncbi.nih.gov/snp/organisms/human 9606 b149 GRCh37p13/VCF/

3

• Sequencing reads, Illumina HiSeq 2000 paired-end, sample ERR194147 (individual
NA12878), read length 100, coverage ∼50x:
http://www.illumina.com/platinumgenomes
http://www.ebi.ac.uk/ena/data/view/ERR194147

• GIAB data: The Genome-In-A-Bottle Consortium.
ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/NA12878 HG001/NISTv2.19

• Simulated reads: generated from DWGSIM.
https://github.com/nh13/dwgsim

• Simulated genomes: generated from IVC genome simulator.
https://github.com/namsyvo/varcall-tools/tree/master/ivc-tools/genome-simulator

6 Variant callers, used command and settings

Scripts to run all tools are available publicly in our github repositories:

• For BWA: https://github.com/namsyvo/varcall-tools/tree/master/bwa-tools

• For GATK-UG/HC: https://github.com/namsyvo/varcall-tools/tree/master/gatk-tools

• For SAMtools: https://github.com/namsyvo/varcall-tools/tree/master/sam-tools

• For Atlas2: https://github.com/namsyvo/varcall-tools/tree/master/atlas-tools

• For IVC: https://github.com/namsyvo/varcall-tools/tree/master/ivc-tools

Commands and parameters to run all tools:

• IVC: running with default parameters, version 0.8.1.

ivc-index -R ref.fasta -V known variants.vcf -I index dir

ivc -R ref.fasta -V known variants.vcf -I index-dir -O ivc var call.vcf -1 read1.fastq -2
read1.fastq

• Other methods:

– Alignment: running BWA-MEM version 0.7.7 with default parameters, exclud-
ing the number of threads for parallel running (32).

Input FASTA file: $1

Output SAM files: $2

∗ Indexing the reference: bwa index index dir/$1.fasta

∗ Aligning reads to the reference: bwa mem -t 32 index dir/$1.fasta data dir/read1.fastq
data dir/read2.fastq >result dir/$2.sam 2 >result dir/log.txt

– Post-alignment processing:

Input FASTA file (without file extension .fasta): $1

Input SAM files (without file extension .sam): $2

genome-tools path: $3

4

∗ Converting SAM to BAM: software version is indicated in the script.
$3/samtools-0.1.19/samtools view -bS -t $1.fasta -@ 32 $2.sam >$2.bam

∗ Creating reference dictionary: software version is indicated in the script.
java -jar $3/picard-tools-1.109/picard-tools-1.109/CreateSequenceDictionary.jar
R=$1.fasta O=$1.dict

∗ Creating fasta index file: software version is indicated in the script.
$3/samtools-0.1.19/samtools faidx $1.fasta

∗ Sorting the BAM file: software version is indicated in the script.
java -jar $3/picard-tools-1.109/picard-tools-1.109/SortSam.jar INPUT=$2.bam
OUTPUT=$2-sorted.bam SORT-ORDER=coordinate TMP-DIR=/tmp

∗ Creating BAM index file: software version is indicated in the script.
$3/samtools-0.1.19/samtools index $2-sorted.bam $2-sorted.bam.bai
java -jar $3/picard-tools-1.109/picard-tools-1.109/AddOrReplaceReadGroups.jar
I=$2-sorted.bam O=$2-sorted-RG.bam SORT-ORDER=coordinate RGID=foo
RGLB=bar RGPL=illumina RGPU=run RGSM=ivc-mutant CREATE-INDEX=True

– Indel realignment:

Input FASTA file: $1

Input BAM files: $2

Input VCF files: $3

Output VCF files: $4

genome-tools path: $5

∗ Creating Indel Realignment intervals: running IndelRealigner with default
parameters, excluding the number of threads for parallel running (32). Soft-
ware version is indicated in the script.
java -jar $5/GenomeAnalysisTK-3.1-1/GenomeAnalysisTK.jar -l INFO -nt
32 -T RealignerTargetCreator -R $1 -I $2 -o ”$4.forIndelRealigner.intervals”

∗ Realigning Indels: running with default parameters, software version is in-
dicated in the script.
java -jar $5/GenomeAnalysisTK-3.1-1/GenomeAnalysisTK.jar -l INFO -T
IndelRealigner -R $1 -I $2 -o $4 -targetIntervals ”$4.forIndelRealigner.intervals”

– Variant calling:

Running each tool with the specified parameters as in the following commands,
using input/output file notations as in Indel realignment step, software version
is indicated in the script.

∗ Calling variants with GATK-UnifiedGenotyper:
java -jar $5/GenomeAnalysisTK-3.1-1/GenomeAnalysisTK.jar -l INFO -nct
32 -T UnifiedGenotyper -R $1 -I $2 –dbsnp $3 -o $4 –output-mode EMIT-
VARIANTS-ONLY -glm BOTH -rf BadCigar -stand-call-conf 20.0 -stand-
emit-conf 20.0 -dcov 200

∗ Calling variants with GATK-HaplotypeCaller:
java -jar $5/GenomeAnalysisTK-3.1-1/GenomeAnalysisTK.jar -l INFO -nct
32 -T HaplotypeCaller -R $1 -I $2 -o $4 –genotyping-mode DISCOVERY
-rf BadCigar -stand-call-conf 20.0 -stand-emit-conf 20.0 -dcov 200

∗ Calling variants with SAMtools:

5

$5/samtools-0.1.19/samtools mpileup -uf $1 $2 | $5/bcftools/bcftools view
-vcg -> $4
$5/bcftools/bcftools norm -f $1 -m -any -o st-var-call-norm.vcf -O v $4

∗ Calling variants with Altas2:
$5/Atlas2 v1.4.3/Atlas-SNP2/Atlas-SNP2.rb -r $1 -i $2 -o $4 -n dwgsim -y
2 –Illumina
$5/Atlas2 v1.4.3/Atlas-Indel2/Atlas-Indel2.rb -r $1 -b $2 -o $4 -s dwgsim
-I

∗ Calling variants with Scalpel:
$5/scalpel-0.5.3/scalpel-discovery –single –ref $1 –bed exome regions.bed
–bam $2 –dir scalpel results –window 600 –numprocs 32

– Filtering variants:

In addition to parameters specified by the above commands, all variants are
filtered by a threshold of quality 20 or more. They are filtered more by setting
thresholds for read depth before evaluation.

7 Raw values of precision and recall in Results section

Table below shows raw values of precision and recall on simulated data at coverages from
3x to 50x, for SNP and Indel calling in known and unknown variant locations before and
after indel realignment. Tools: IR: GATK IndelRealigner, UG: GATK UnifiedGenotyper,
HC: GATK HaplotypeCaller, ST: SAMtools, AT: Atlas2.

Known variant locations Unknown variant locations
3x 5x 10x 15x 20x 25x 50x 3x 5x 10x 15x 20x 25x 50x

SNPs

IVC Prec 0.9995 0.9996 0.9997 0.9996 0.9996 0.9996 0.9997 0.9963 0.9949 0.9962 0.9975 0.9978 0.9978 0.9976
Rec 0.9493 0.9932 0.9998 0.9998 0.9998 0.9998 0.9999 0.8155 0.9648 0.9956 0.9985 0.9984 0.9985 0.9987

UG Prec 0.9998 0.9996 0.9994 0.9993 0.9992 0.9991 0.9990 0.9891 0.9852 0.9859 0.9857 0.9842 0.9833 0.9804
Rec 0.8147 0.9633 0.9980 0.9987 0.9988 0.9990 0.9991 0.8150 0.9647 0.9981 0.9987 0.9988 0.9990 0.9991

UG-IR Prec 0.9999 0.9998 0.9997 0.9997 0.9997 0.9996 0.9997 0.9911 0.9892 0.9926 0.9943 0.9942 0.9941 0.9934
Rec 0.8147 0.9633 0.9980 0.9987 0.9989 0.9990 0.9991 0.8150 0.9647 0.9981 0.9987 0.9988 0.9989 0.9991

HC Prec 0.9993 0.9993 0.9995 0.9995 0.9995 0.9994 0.9994 0.9919 0.9908 0.9942 0.9969 0.9970 0.9969 0.9967
Rec 0.7932 0.9542 0.9964 0.9975 0.9977 0.9979 0.9980 0.7938 0.9555 0.9965 0.9975 0.9977 0.9978 0.9979

HC-IR Prec 0.9993 0.9993 0.9995 0.9995 0.9995 0.9995 0.9994 0.9919 0.9908 0.9942 0.9969 0.9970 0.9969 0.9967
Rec 0.7932 0.9542 0.9964 0.9975 0.9977 0.9979 0.9980 0.7938 0.9555 0.9965 0.9975 0.9977 0.9978 0.9979

ST Prec 0.9982 0.9969 0.9943 0.9943 0.9970 0.9989 0.9995 0.9949 0.9933 0.9901 0.9888 0.9908 0.9918 0.9905
Rec 0.7838 0.9487 0.9907 0.9918 0.9947 0.9968 0.9976 0.7839 0.9495 0.9911 0.9921 0.9949 0.9967 0.9976

ST-IR Prec 0.9982 0.9970 0.9944 0.9944 0.9971 0.9990 0.9996 0.9953 0.9943 0.9921 0.9915 0.9940 0.9955 0.9960
Rec 0.7838 0.9487 0.9906 0.9917 0.9947 0.9967 0.9976 0.7839 0.9495 0.9911 0.9921 0.9949 0.9967 0.9976

AT-IR Prec 1.0000 1.0000 0.9999 0.9997 0.9994 0.9991 0.9978 0.9973 0.9975 0.9962 0.9947 0.9929 0.9898 0.9871
Rec 0.2852 0.4842 0.4032 0.2794 0.2113 0.1679 0.0926 0.2839 0.4828 0.4029 0.2801 0.2116 0.1675 0.0925

Indels

IVC Prec 0.9820 0.9819 0.9827 0.9827 0.9827 0.9828 0.9820 0.9021 0.8934 0.9078 0.9062 0.9063 0.9072 0.9061
Rec 0.9352 0.9773 0.9831 0.9831 0.9832 0.9833 0.9841 0.6974 0.8561 0.9064 0.9247 0.9286 0.9312 0.9338

UG Prec 0.9262 0.9499 0.9615 0.9623 0.9626 0.9623 0.9617 0.8682 0.8964 0.8987 0.8909 0.8867 0.8851 0.8855
Rec 0.1134 0.3899 0.8130 0.8780 0.8868 0.8876 0.8886 0.1167 0.4047 0.8173 0.8770 0.8840 0.8859 0.8852

UG-IR Prec 0.9454 0.9602 0.9638 0.9634 0.9634 0.9634 0.9630 0.8804 0.9037 0.9022 0.8987 0.8985 0.8985 0.8955
Rec 0.1341 0.4334 0.8352 0.8843 0.8895 0.8900 0.8909 0.1372 0.4495 0.8371 0.8831 0.8865 0.8876 0.8865

HC Prec 0.9654 0.9653 0.9655 0.9658 0.9659 0.9659 0.9658 0.8870 0.8906 0.8992 0.9005 0.9000 0.9002 0.8995
Rec 0.6859 0.8430 0.8951 0.8972 0.8977 0.8983 0.8984 0.6807 0.8395 0.8926 0.8954 0.8958 0.8964 0.8960

HC-IR Prec 0.9654 0.9653 0.9655 0.9658 0.9659 0.9659 0.9658 0.8870 0.8906 0.8992 0.9003 0.8996 0.9000 0.8995
Rec 0.6867 0.8435 0.8951 0.8972 0.8977 0.8983 0.8985 0.6818 0.8393 0.8926 0.8954 0.8958 0.8964 0.8960

ST Prec 0.9579 0.9602 0.9623 0.9622 0.9616 0.9608 0.9573 0.8614 0.8631 0.8490 0.8307 0.8118 0.7968 0.7226
Rec 0.5768 0.7164 0.8402 0.8689 0.8759 0.8788 0.8798 0.5710 0.7289 0.8417 0.8719 0.8790 0.8818 0.8835

ST-IR Prec 0.9585 0.9610 0.9630 0.9635 0.9634 0.9632 0.9604 0.8735 0.8752 0.8772 0.8685 0.8573 0.8488 0.8003
Rec 0.5945 0.7275 0.8428 0.8714 0.8779 0.8806 0.8810 0.5882 0.7362 0.8442 0.8729 0.8799 0.8822 0.8826

AT-IR Prec 0.9315 0.9121 0.9297 0.9369 0.9528 0.9621 0.9681 0.8120 0.8440 0.8314 0.8490 0.8780 0.9003 0.9073
Rec 0.0165 0.0595 0.1995 0.3435 0.5488 0.7268 0.8859 0.0177 0.0736 0.2096 0.3563 0.5434 0.7241 0.8829

6

