
“pehaplo_supplementary_minor_revision” — 2018/4/4 — page 1 — #1

Bioinformatics

Supplementary

De novo haplotype reconstruction in viral
quasispecies using paired-end read guided path
finding - Supplementary
Jiao Chen 1, Yingchao Zhao 2 and Yanni Sun 1,∗

1Computer Science and Engineering, Michigan State University, East Lansing, MI 48824, USA.
2School of Computing and Information Sciences, Caritas Institute of Higher Education, Hong Kong

1 Longest Common Substring (LCS) Distribution

1.1 Dynamic Programming for Calculating LCS Distribution

A number of existing haplotype reconstruction tools employ paired-end
read information to distinguish different haplotypes. By estimating the size
distribution of LCSs in viral quasispecies samples, we can evaluate whether
paired-end reads are sufficient for haplotype reconstruction. Below we
provide a probability model to estimate the LCS length distribution
between a viral strain and its nth generation offspring.

Suppose initially there is only one virus strain x0 of length L in the
environment. Mistakes, such as insertions, deletions or substitutions, can
happen each time the virus replicates. Finally there will be an equilibrium
of multiple viral strains of constant abundances in the environment, which
is described by the quasispecies theory. To simplify the LCS problem, we
assume only substituions can happen during replication and the mutation
rate at each position is constant and independent.

Mutation rate accumulation for sequence replication Denote the
mutation rate between two generations as µ, we ask what is mutation rate
at each location between x0 and its nth offspring xn?

This problem can be solved by dynamic programming. Define the
subproblem f [n] as the probability that xn[i] is different from x0[i], of
which n denotes the nth generation and i is an arbitrary position on the
genome. We have

f [n+ 1] = (1− f [n])µ+ f [n](1− µ/3), n = 1, 2, ... (1)

where f [1] = µ. Equation 1 can be solved

f [n] = (1−
4µ

3
)n−1(µ−

3

4
) +

3

4
, n = 1, 2, ... (2)

Probability of LCS Let τ be the mutation rate at each position between
x0 and its nth generation offspring xn, which can be calculated from
equation 2. We can compute the distribution of LCSs between x0 and
xn with dynamic programming. Let x[1...i] be the prefix of x ending at
position i. Define two sub-problems f(i) and g(i). f(i) is the probability

that prefix xn[1...i] has LCS ≤ m with x0[1...i] and xn[i] mutated,
g(i) is the probability that prefix xn[1...i] has LCS ≤ m with x0[1...n]
and xn[i] not mutated. We get the following recursive relationship:

m = 2

f(i+ 1) = τf(i) + τg(i)

g(i+ 1) = (1− τ)f(i) + (1− τ)2f(i− 1)

m = 3

f(i+ 1) = τf(i) + τg(i)

g(i+ 1) = (1− τ)f(i) + (1− τ)2f(i− 1) + (1− τ)3f(i− 2)

...
m

f(i+ 1) = τf(i) + τg(i)

g(i+ 1) =
∑m−1
j=0 f(i− j)(1− τ)j+1

If i ≤ m, the LCS will always be less or equal to m. Thus, f(i) =

τ, g(i) = 1− τ . Therefore, the recursive equations for calculating f(i)
and g(i) are
When 1 ≤ i ≤ m {

f(i) = τ

g(i) = 1− τ
(3)

When L ≥ i ≥ m+ 1{
f(i) = τ(f(i− 1) + g(i− 1))

g(i) =
∑m−1
j=0 f(i− j − 1)(1− τ)j+1 (4)

The time complexity to calculate the probability forLCS = m isO(2L+

mL). Since the sequence length isL,m can be any integers between 0 and
L. To calculate the probability for each m ∈ [0, L], the time complexity
isO(2L2 + (L+1)L

2

2
) = O(L3). For HIV, its genome length is about

104. Calculating directly with equations 4 for all the possible LCS is time
consuming. It costs hours to calculate the probabilities for all the available
LCS with a typical single-core CPU.

The time complexity can be reduced to O(L2) if we utilize the result
of g(i) to calculate for g(i + 1). Let S(i) = f(i) + g(i), we will have

© The Author . Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 1

“pehaplo_supplementary_minor_revision” — 2018/4/4 — page 2 — #2

De novo viral haplotype reconstruction 2

the recursive relationship (Proof omitted)

S(i+ 1) = S(i)− τ(1− τ)m+1S(i−m− 1), i ≥ m+ 2

Therefore, we get

S(i) =


1, if 1 ≤ i ≤ m
1− (1− τ)m+1, if i = m+ 1

1− (1 + τ)(1− τ)m+1, if i = m+ 2

S(i− 1)− τ(1− τ)m+1S(i−m− 2), if i ≥ m+ 3

It is linear to calculate the probability for one LCS. The time complextiy
for calculating LCS = m is O(L). To calculate each m ∈ [0, L], the
time complexity is O(L2).

1.2 Results of LCS Distribution

To estimate the LCS between two strains within a quasispecies, we
calculated the probability distribution of LCS between two strains that
are n generations apart based on Equation 4.

Let the mutation rate µ between two generations be 3e-5, which is
a commonly used average RNA viral mutation rate. The mutation rate
between two haplotypes that are n generations apart can be calculated
by equation 2. The genome size L is set as 10,000. The probability
distribution for LCSs between two strains is shown in Figure S1. With the
increase of replication cycles, the average LCS length keeps decreasing.
According to the distribution, for haplotypes that are only 50 generations
apart, the average LCS between them are very large and thus only paired-
end sequencing with large insert size can be used to distinguish them.
Figure S1 provides theoretical guidance about choosing appropriate insert
sizes for given quasispecies data.

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0
80

0
90

0
10

00
11

00
12

00
13

00
14

00
15

00
16

00
17

00
18

00
19

00
20

00
21

00
22

00
23

00
24

00
25

00
26

00
27

00
28

00
29

00
30

00
31

00
32

00
33

00
34

00
35

00
36

00
37

00
38

00
39

00
40

00
41

00
42

00
43

00
44

00
45

00
46

00
47

00
48

00
49

00
50

00

LCS length (bp)

0.001

0.000

0.001

0.002

0.003

0.004

0.005

0.006

pr
ob

ab
ili

ty

Generaion_50 Max probability LCS: 1801
Generaion_100 Max probability LCS: 1128
Generaion_200 Max probability LCS: 677
Generaion_500 Max probability LCS: 333

Fig. S1. Probability distribution for LCSs between two strains that are 50, 100, 200, and
500 generations apart. The x-axis is the length of LCS, with a range from 0 to 10,000. The
y-axis is the corresponding probabilities for those LCS sizes.

2 Data Pre-processing
Error correction based on coverage information, usually improves de novo
assembly. An alignment-based error correction tool Karect (Allam et al.,
2015) is used to correct substitution, insertion, and deletion errors. Besides
adopting existing error correction tools, we also removed reads with very
low abundance. Only reads that have at least n duplicates in the original
data set were used for downstream analysis. Using a probability model,
we show that this method can further filter out error containing reads while
maintaining sufficient reads for de novo assembly.

Let N be the total reads number, r be the read length and L be the
genome size. If we assume the reads are randomly sequenced from the

genome, the probability that k reads start from the same location on the
genome can be estimated by a Poisson distribution:

Pr[k] =
λke−λ

k!
, λ = N/L

Pr[k >= n] =1−
n−1∑
i=0

λie−λ

i!
, n ≥ 1

We denote µ as the probability of sequencing error at each base. For k
reads originating from the same location on genome, the probability that
they have one sequencing error on the same location is Pr[Nµ = 1] =

rµk , the probability of two sequencing errors on the same locations is
Pr[Nµ = 2] =

(r
2

)
µ2k ,..., the probability of at least one sequencing

error on the same location can be calculated as Pr =
∑r
i=1

(r
i

)
µik =

(µk+1)r−1. In the HIV MiSeq data set we used,∼700k error corrected
reads are left for 5 HIV strains. The genome length is ∼10k bp. λ =

7×105/(5×104) = 14. For each base on the genome, the probability that
at least 3 reads start from it is over 99.9%. If we assume µ = 0.01, r =

200, the probability that a read sequence has at least 3 duplicates but
contain one or more sequencing error is Pr = (1e − 6 + 1)200 − 1 ≈
2.0e− 4. The results reveal that when sequencing depth is deep enough,
keeping reads with duplications is able to filter out error containing reads
and will not reduce connectivity.

3 Reads orientation adjustment with overlap
graph

Reads in the raw data set can come from both strands of the genome. The
two reads of a read pair usually come from different strands. To better
assemble the reads, we need to adjust the reads orientation so that they are
from the same strand. We used Readjoiner(Gonnella and Kurtz, 2012) to
construct the overlap graph and traverse each node of the graph for strand
adjustment.

For two reads ri and rj , we denote r′i and r′j as their reverse
complements. Readjoiner computes all possible overlaps between (ri, rj),
(r′i, rj) and (ri, r

′
j), and label the overlaps with ‘+ +’, ‘- +’ and ‘+

-’ respectively if their suffix-prefix matches are longer or equal to the
overlap threshold. A breadth-first search (BFS) traversal method is used
for reads orientation adjustment. The traversal starts at a start node (with
in-degree of 0) and label it as ‘+’, then recursively labels all its successors
and predecessors based on the edge type. The ‘+ +’ type means current
node and its neighbour come from the same strand, while ‘- +’ or ‘+ -
’ types mean a different strand. After traversing a connected subgraph,
the corresponding paired-end of those labelled reads are checked and be
assigned to a different strand if they are unlabelled. Although there are
possible contradictions that two ends of a read pair are labelled with the
same symbol during the BFS traversal step, in reality, we did not observe
such cases. After the whole graph traversal, all the reads labelled with ‘-’
will be replaced with their reverse complements.

4 Clique enumeration in PEHaplo
Several recently published virus assembly tools (Töpfer et al., 2014;
Baaijens et al., 2017) have employed clique enumeration for haplotype
reconstruction. They usually merge reads inside each clique to super-
reads and iteratively apply this process to extend a local haplotype to
a global one. However, directly merging reads in a clique to a super-
read may incorrectly join reads from different haplotypes. An example
is shown in Figure S2(A, B, C). In this overlap graph (Figure S2(B)), if
a.1 overlaps with a.2, it should also overlap with d.2 because d.2 and
a.2 share the same prefix longer than or equal to the overlap threshold

“pehaplo_supplementary_minor_revision” — 2018/4/4 — page 3 — #3

De novo viral haplotype reconstruction 3

(Figure S2(A)). Similarly, d.1 will also overlap with a.2 if it overlaps with
d.2. Therefore, this overlap graph has four cliques of size 6 (Figure S2(C)).
However, two of these cliques, a.1 → b → c → e → f → d.2 and
d.1→ b→ c→ e→ f → a.2, have reads from two haplotypes, which
are "chimeric super-read".

d.1

a.2

d.2

b c e f

a.2

b - f

a.1

d.2d.1

A B

C D

G
C

A
G

a.1
d.1 b

e
a.2

c
f

d.2

a.1 b c e f a.2

a.1 b c e f d.2

d.1 b c e f d.2

d.1 b c e f a.2

a.1

Fig. S2. (A) The bottom two long lines represent two haplotypes, which only differ by two
mutations at two loci (G-C and A-G). Short lines represent reads sequenced from the two
strains. The reads are sorted by their read mapping positions against their native strain. (B)
Overlap graph. Nodes b, c, e, and f originate from the common region of the two strains.
The dashed nodes have random overlaps with nodes c and e. (C) The overlap graph have
4 cliques of size 6. They can be merged to 4 super-reads by previous methods. But two of
them have reads from two haplotypes. (D) The result of our clique enumeration.

In our methods, instead of directly converting each clique to a super-
read, we are more cautions and use cliques mainly for graph pruning. When
there is only a single clique, our processing is the same as others. However,
the hard case comes from connected cliques, which is a cluster of cliques
with two or more sharing nodes. Each clique cluster, denoted as Gc, is a
connected subgraph. The nodes with zero in- or out degree in the subgraph
ofGc are denoted as boundary nodes. All others are inside nodes. After we
simplify the subgraph Gc with transitive reduction and node collapsing,
the edges connecting inside nodes and nodes outside ofGc will be removed
as they are likely to be random overlaps. As shown in Figure S2(D), the
edges connecting dashed nodes and c, e in Figure S2(B) are removed after
merging connected cliques. Those common nodes shared by cliques will be
kept and paired-end information will be further applied to identify correct
strains in path finding step. By merging connected cliques, we are able to
prune the overlap graph while avoiding "chimeric super-read".

5 NP-complete (NPC) Proof for Path Finding in
Paired-end Overlap Graph

Theoram: finding a path between two nodes in paired-end overlap graph
with the most number of paired-end connections is NPC.
Proof : we can make a reduction from Hamiltonian Path problem, which
is a famous NP-complete problem.

A Hamiltonian path in a directed graph is a directed path that goes
through each node exactly once. The decision problem is: Given a directed
graph G = (V,E) and two nodes s and t in this graph, is there a
Hamiltonian path from s to t in G?

Because the path will go through each node exactly once and start from
s, all the incoming edges to s will have no contributions in the solution.

Similarly, all the outgoing edges from t will have no contributions in the
solution. Therefore we can assume that there are no incoming edges to s
and no outgoing edges from t.

Given an instance of Hamiltonian path problem, we can create an
instance of our problem as follows.

We construct a directed graph G′ = (V ′, E′) by splitting each edge
inG into two edges. For example, if (a, b) is an edge inG, then we add a
new node vab between a and b so that edge (a, b) is replaced by two edges
(a, vab) and (vab, b) inG′. Meanwhile we add a constraint pair (a, vab)
for each new pair of edges. Additionally, we add an extra constraint pair
(v, t) for each incoming edge from v to t in the new graph G′. To make
it clear, we call nodes in V as old nodes, and the new added nodes as new
nodes.

If G has |E| = m edges and |V | = n nodes, then there are m new
nodes in G′ and the number of constraints is m + d, where d is the in-
degree of node t in G′. We can see that |V ′| = n +m and |E′| = 2m.
Notice that there is exactly one old node appearing in each constraint.

Next we will show that the Hamiltonian path instance has a solution if
and only if the instance of our problem has a path that satisfiesn constraints.

If the instance of Hamiltonian path has a solution, i.e., there is a
Hamiltonian path p from s to t in G, then there are n− 1 edges in p. We
can find the corresponding path p′ from s to t inG′, and there are 2(n−1)

edges in p′. Since the first 2n− 3 edges satisfy n− 1 constraints, and the
last edge is an incoming edge to t, which satisfies one constraint, we can
see that p′ satisfies n constraints. Therefore the instance of our problem
has a path that satisfies n constraints.

If the instance of our problem has a path p′ that satisfies n constraints,
we need to show that path p′ is from s to t and contains all then old nodes,
so that the corresponding path in G is a Hamiltonian path from s to t.

Because p′ satisfies n constraints, and there is exactly one old node in
each constraint, we can see that there are exactly n old nodes in p′. Since
there are totally n old nodes and p′ can go through each node at most
once, path p′ go through all the n old nodes. In our assumption, there are
no incoming edges to s, and no outgoing edges from t. The graph G′ is
created from G, hence G′ also has no incoming edges to s, and has no
outgoing edges from t. But s and t must be somewhere on p′. Therefore,
p′ must be from s to t and contain all the n old nodes. Now we can find
the corresponding path p in G, and p is a path that is from s to t visiting
each node exactly once, which means that p is a Hamiltonian path in G.

“pehaplo_supplementary_minor_revision” — 2018/4/4 — page 4 — #4

De novo viral haplotype reconstruction 4

6 Supplementary Figures and Tables

Fig. S3. Partial multiple sequence alignment of five HIV-1 haplotypes. The alignment is
produced using the program ClustalW (Thompson et al., 2002). For each column, the same
color indicated the same bases.

Fig. S4. SISO nodes usually represent one haplotype. (A) The conserved regions common
to multiple haplotypes in the overlap graph are usually collapsed into one node, with in-
degree and out-degree greater than 1. This is the case often being observed in the overlap
graph. (B) The situation in which an SISO node comes from a common region of multiple
haplotypes happens when both its predecessor and successor have incorrect/random edges
with other nodes. Thus, the SISO node cannot be collapsed with them. Since error correction
and graph pruning steps were applied before path finding, this situation is rare in our
experiments. On the other hand, the SISO node in (B) do belong to two haplotypes, the
extensions to both node 1 and node 2 are correct.

Table S1. Pairwise sequence similarity
between 5 HIV-1 strains.

89.6 HXB2 JRCSF NL43 YU2

89.6 93.9 91.8 93.5 93.6
HXB2 92.8 97.4 95.2
JRCSF 92.6 92.9
NL43 94.9
YU2

Table S2. Longest common substring (LCS)
between 5 HIV-1 strains. These strains have
similar lengths of about 10k bp.

89.6 HXB2 JRCSF NL43 YU2

89.6 195 201 164 234
HXB2 180 427 216
JRCSF 157 201
NL43 185
YU2

Table S3. PEHaplo assembly results on simulated HIV data set with and
without false edges removal step.

Assemble
methods

Contigs
num N50

Genomes
covered (%)

Unaligned
length (bp)

Mismatch
rate(%)

Indels
(%)

Without
removal 9 9,151 91.8 0 0.045 0.002

With
removal 10 9,274 97.0 0 0.026 0.002

Table S4. Assembly results on pruned graph nodes for Ray Meta, Meta-
IDBA, and SAVAGE. Contigs are aligned to the true haplotype sequences
with a similarity cutoff of 98%.

Tools
Contig
num N50

Genomes
covered (%)

Unaligned
length

Mismatch
rate (%)

Indels
(%)

Ray-Meta 1 4,840 10.03 0 0.227 0
Meta-IDBA 27 1,237 57.23 0 0.007 0.004
SAVAGE 10 5,057 44.0 0 0 0

7 Supplementary algorithm
e′SISO,v represents a paired-end edge weight between SISO node(s) in
the current path and v, which is a successor node of pn. Function C(v)

denotes the read coverage of node v.

Algorithm 1 Greedy algorithm for path extension

1: if there exists a node v ∈ succ(pn) with e′SISO,v >0 then
2: extend to the node with argmaxv∈succ(pn)(e

′
SISO,v)

3: return
4: else if v ∈ succ(pn) with e′SISO,w > 0, w ∈ succ(v) in E then
5: extend to the node with argmaxv∈succ(pn)(e

′
SISO,w), w ∈

succ(v) in E
6: return
7: else if v ∈ succ(pn) wtih e′SISO,w > 0, w ∈ succ′(v) in E′ then
8: extend to the node with argmaxv∈succ(pn)(e

′
SISO,w), w ∈

succ′(v) in E′

9: return
10: else if v ∈ succ(pn) with e′Path,v > 0

11: extend to the node with argmaxv∈succ(pn)(e
′
Path,v) then

12: return
13: else if v ∈ succ(pn) with e′Path,w > 0, w ∈ succ(v) in E then
14: extend to the node with argmaxv∈succ(pn)(e

′
Path,w), w ∈

succ(v) in E
15: return
16: else
17: extend to the node v ∈ succ(pn) with

argminv∈succ(pn)(abs(C(v)− C(Path)))

18: return

8 Commands for running tools on simulated HIV
data set

Input data sets: virus_1,fa, virus_2.fa or virus_1.fq, virus_2.fq

“pehaplo_supplementary_minor_revision” — 2018/4/4 — page 5 — #5

De novo viral haplotype reconstruction 5

0

1
0

0
0

2
0

0
0

3
0

0
0

4
0

0
0

5
0

0
0

6
0

0
0

7
0

0
0

8
0

0
0

9
0

0
0

HXB2 genome (bp)

0

2

4

6

8

10

12

HXB2_9719:
1 9719

1(479) 3885(4363)
100%Contig_13_1

1(6091) 3519(9609)
99%Contig_12_3

1(7455) 2161(9615)
99%Contig_13_3

1(2925) 1520(4444)
99%Contig_12_1

1(4393) 1108(5500)
100%Contig_19_3

1(5299) 983(6281)
100%Contig_17_1

1(8781) 755(9535)
100%Contig_4_2

306(1) 755(450)
99%Contig_4_2

1(2460) 563(3022)
98%Contig_22_563

1(2790) 551(3340)
98%Contig_11_551

1(2490) 508(2997)
99%Contig_18_508

PEHaplo

0

1
0

0
0

2
0

0
0

3
0

0
0

4
0

0
0

5
0

0
0

6
0

0
0

7
0

0
0

8
0

0
0

9
0

0
0

HXB2 genome (bp)

0

5

10

15

20

25

HXB2_9719: 1 9719
1(6085) 3520(9604)99%7

1(2302) 2447(4748)98%1

1(2846) 2072(4917)100%9

1(552) 2034(2585)100%21

1(4524) 2013(6536)100%12

1(1793) 1585(3377)99%23

2(1512) 1416(2926)98%14

1(1375) 1286(2660)98%26

1(8223) 1200(9422)100%29

1(1859) 1164(3022)98%33

222(2543) 949(3270)98%54

1(479) 812(1290)100%34

1(6721) 783(7503)100%36

1(905) 751(1655)99%59

1(2719) 705(3423)98%44

1(2065) 632(2696)98%53

1(2577) 607(3183)98%24

1(3039) 604(3642)98%19

1(1082) 576(1657)98%66

1(2637) 327(2963)98%67

1(4292) 569(4860)98%48

216(2251) 552(2587)99%72

1(882) 543(1424)100%38

1(2363) 540(2902)98%71

2(3071) 537(3606)98%75
SAVAGE

Fig. S5. Contigs alignment result on HXB2 strain for PEHaplo and SAVAGE. These contigs were produced from the real HIV MiSeq data and aligned to reference genome with MetaQuast.
The x-axis is the coordinations of HXB2 genome, with the regions covered by contigs in green and others in black. The y-axis represents the number of contigs, with contig names listed
on the left panel. On each contig, the green number at the left is the starting coordinate of the aligned contig and the number inside of the parenthesis shows the starting coordinate on the
reference genome, the black value at the right is the ending coordinate of the aligned contig and the number inside of the parenthesis shows the ending coordinate on the reference. The red
number at the middle is the sequence identity between the contig and reference genome.

IVA

iva -f virus_1.fq -r virus_2.fq --max_insert 800 --

threads 4 result/

MLEHaplo

simulate_listoffiles: virus_1.fa, virus_2.fa

listofkmers: 55,45,35

../dsk-1.5655/multi-dsk simulate_listoffiles.txt

listofkmers.txt -d 10G -m 4G

../dsk-1.5655/parse_results solid_kmers_binary.55 >

simulate.55

python ../tools/join_pair_end_fasta.py virus_1.fa

virus_2.fa virus_whole.fa

“pehaplo_supplementary_minor_revision” — 2018/4/4 — page 6 — #6

De novo viral haplotype reconstruction 6

perl ../construct_graph.pl virus_whole.fa simulate.55 0

virus.55.graph "s"

perl ../construct_paired_without_bloom.pl -file1

virus_1.fa -file2 virus_2.fa -paired -kmerfile

simulate.55 -thresh 0 -wr virus_55.set.txt

perl ../dg_cover.pl -graph virus.55.graph -kmer

simulate.55 -paired virus_55.set.txt -fact 5 -

thresh 0 -IS 600 >virus.55.fact5.txt

perl ../process_dg.pl virus.55.fact5.txt >virus.55.

fact5.fasta

perl ../get_paths_dgcover.pl -f virus.55.fact5.txt -w

virus.55.fact5.paths.txt

perl ../likelihood_singles_wrapper_parallel.pl -

condgraph virus.55.cond.graph -compset virus.55.

comp.txt -pathsfile virus.55.fact5.paths.txt -back

-gl 10000 -slow >virus.55.smxlik.txt

perl ../extract_MLE.pl -f virus.55.fact5.fasta -l virus

.55.smxlik.txt >virus.55.MLE.fasta

SAVAGE

pear -f virus_1.fq -r virus_2.fq -o virus_join

python savage --split 20 --min_overlap_len 160 -s

singles.fastq -p1 paired1.fastq -p2 paired2.fastq

-t 16

PEHaplo

python pehaplo.py -f1 virus_1.fa -f2 virus_2.fa -l 180

-l1 210 -r 250 -F 600 -std 150 -n 3 -correct yes

References
Allam, A., Kalnis, P., and Solovyev, V. (2015). Karect: accurate correction of

substitution, insertion and deletion errors for next-generation sequencing data.
Bioinformatics, 31(21), 3421–3428.

Gonnella, G. and Kurtz, S. (2012). Readjoiner: a fast and memory efficient string
graph-based sequence assembler. BMC bioinformatics, 13(1), 82.

Thompson, J. D., Gibson, T., Higgins, D. G., et al. (2002). Multiple sequence
alignment using clustalw and clustalx. Current protocols in bioinformatics, pages
2–3.

Töpfer, A., Marschall, T., Bull, R. A., Luciani, F., Schönhuth, A., and Beerenwinkel,
N. (2014). Viral quasispecies assembly via maximal clique enumeration. PLoS
Comput Biol, 10(3), e1003515.

Baaijens, J. A., El Aabidine, A. Z., Rivals, E., and Schönhuth, A. (2017). De novo
assembly of viral quasispecies using overlap graphs. Genome Research, 27(5),
835–848.

