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Usage notes: 

 

JAMI comes with a detailed user manual located at http://jami.readthedocs.io. The manual provides             

usage instructions as well as a step-by-step guide to help users produce ceRNA interaction networks.               

The user is also shown how to load them into 3rd party software like Cytoscape for downstream                 

analysis and visualization. 

 

Alternatively, we also implemented a wrapper package for JAMI in R. Installation details and a               

detailed user guide are shown at http://github.com/SchulzLab/RJAMI and in the package vignette. 

 

Implementation improvements: 

 

http://jami.readthedocs.io/
http://github.com/SchulzLab/RJAMI


In addition to parallelizing the execution of the CMI computation, we made several improvements              

that contribute to making JAMI considerably faster even in single thread mode. These include: 

 

- In contrast to CUPID where gene and miRNA expression data have to be read from file for                 

each gene pair, JAMI reads required expression data for all considered gene pairs at once               

and keeps it in memory for faster access. 

- For a specific dataset, the initial cube used for iterative partitioning will always be the same.                

We use a single instance of this cube and pass it by reference. 

- After performing a split of a cube in iterative partitioning, CUPID requires O(n^2) for              

assigning the points to the new cubes,  whereas JAMI requires O(n). 

- To compute CMI values, CUPID loops through all points and retrieves their respective             

coordinates in three dimension by lookups in three indices. In contrast, JAMI follows the              

points along one coordinate and performs index lookups for only two dimensions.  

- For the random permutations, we do not create all data structures from scratch but reuse               

them efficiently, while permuting the indices.  

 

Benchmark dataset: 

 

The benchmark dataset was generated using paired miRNA and gene RNA-seq data from The Cancer               

Genome Project. Benchmark genes were selected using partial correlation to identify promising            

candidate genes with a large number of interactions. Genes in this network have been sorted by                

their network node degree and the top 5, 10, 20, 40, or 80 genes were selected for the benchmark.                   

Putative gene-miRNA interactions have been selected based on the output of an cross-validated             

elastic net regression with alpha = 0.5 (balancing ridge and lasso regression). Here, the response               

variable is the gene expression vector and the miRNA expression vectors serve as regressors. Only               

miRNAs with an coefficient < -0.05 have been selected to ensure a meaningful negative regulation of                

the miRNA is given. A custom R script was used to infer shared miRNAs between pairs of genes and                   

to generate the necessary input files for CUPID and JAMI. 

Profiling of CPU time and memory usage 

We used the linux tool GNU time (v1.7) to profile the average memory usage and CPU (user) time of: 

 

1. As a baseline for our comparison, we executed CUPID with 182, 752, 3,142, 11,8765 and               

41,338 interactions between 5, 10, 20, 40 and 80 genes, respectively. We could not produce               

timings for 40 and 80 gene cases due to excessive runtime (terminated after 48 hours). 

2. We compared this against running JAMI with the -rankzeros flag (to ensure a fair              

comparison, since this step is missing in CUPID).  

3. Since we expect that switching to a Java implementation already led to a tremendous              

improvement of the runtime, we also included an exact re-implementation of CUPID in JAMI.              

This mode can be used by setting the ‘-method cupid’ flag when executing JAMI.              

Importantly, the difference between the runtime of 3. and 2. can be attributed to              

improvements in the implementation. 



Parallelization: 

 

Supplemental Figure 1: JAMI executed on a test set of 37,098 interactions with varying number of                

threads illustrating a near-linear performance increase. 

 

 

Dealing with zero expression values: 

Before conditional mutual information can be computed, JAMI and CUPID transform the real valued              

input expression values into ranks. Due to this, the algorithm does not handle duplicate values               

correctly. While duplicates are typically not expected in gene and miRNA expression data, there is               

one exception. If no expression is measured in a sample (e.g. no reads have been mapped to a gene                   

in next-generation sequencing data), the expression value will be zero. For lowly expressed genes,              

these zero expression values can make up a sizable fraction of the expression data, thus introducing                

a considerable bias into the CMI computation.  

 

To address this issue, we extended the CMI algorithm in JAMI to handle zero expression values                

explicitly. More precisely, we introduce a preprocessing step in which zero expression values are split               

off the initial cube into a series of subcubes in which the corresponding dimension containing zero                

expression values is collapsed. The resulting square keeps a memory of the zero values that have                

been collapsed on the third axis in a HashSet to facilitate correct computation. If zero expression                

values are found on a second dimension this will also be collapsed, resulting in a line. If zero                  



expression values are found on the third axis those samples will be split off and result in a single bin                    

that is not split further. Squares and lines are processed similar to cubes in that they are split at the                    

center until they are balanced according to the chi squared test.  

 

In this way, we avoid splitting intervals of zero expression values and assigning arbitrary ranks to                

these values. This allows us to compute accurate CMI values under the assumption that no other                

values are duplicated. To identify zero expression values, we check if the minimal expression value is                

duplicated. Thus, we can also accommodate log2 scaled data in which a pseudocount is added to                

obtain a large negative value for the zero expression case. For the ceRNA network introduced above,                

we show that considering zero expression values has a considerable impact on the results: 

 

Supplemental Figure 2: Comparison of CMI values when accounting for duplicated zero expression             

values to the -rankzeros mode in which they are ignored. It is evident that the CMI values are affected                   

by this. Notably, the -nozero mode produces positive CMI values even when a gene or miRNA is not                  

expressed. 



 

Supplemental Figure 3: Comparison of p-values when accounting for duplicated zero expression            

values to the -nozero mode in which they are ignored. As can be expected from the differences in CMI                   

values shown in Supplemental Figure 2, p-values may change drastically when zero expression values              

are present. 

 

Accounting for the bias introduced by duplicated zero expression value improves the results of the               

ceRNA interaction network we computed above. To test this, we iterated through each modulator              

gene and computed the ranks (highest CMI with rank = 1) of its interaction when accounting for                 

zeros and when not accounting for zeros (-rankzeros mode). Next, we identified miRNA interactions              

with experimental evidence using miRTarBase [Chou2015] (version 7, downloaded December 6,           

2017). We hypothesize that accounting for zeros improves the ranks of miRNA interactions with              

experimental evidence. Indeed, for the ceRNA network of Tay et al. [Tay2014], we observe a               

significant improvement in the rank (wilcoxon test p = 0.049 two-sided, 0.025 one-sided). 

 



 

Supplemental Figure 4: Significant rank improvement for ceRNA interactions that involve miRNAs            

targeting the modulator gene and for which experimental evidence was reported in miRTarBase 7.              

Note that with the -nozero flag set JAMI will behave like CUPID and rank all values irrespective of the                   

occurrence of zero expression values. 

 

 



Supplemental Figure 5: Ranks of miRNAs for which experimental evidence was reported in             

miRTarBase 7, here shown for individual modulator genes. Note that with the -nozero flag set JAMI                

will behave like CUPID and rank all values irrespective of the occurence of zero expression values. 

 

 

Supplemental Figure 6: JAMI inferred ceRNA network for known ceRNAs reported in Tay et al. 2014.  

 

Comparison to correlation-based Methods 

JAMI facilitates comparisons to correlation-based methods such as sensitivity correlation. The           

following plot shows that CMI and sensitivity correlation values have a moderate correlation of 0.67               

when applied to our benchmark dataset. 

 



 

Supplemental Figure 7: Comparison between sensitivity correlation and conditional mutual          

information for a set of 752 matched interactions. 
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