
Supplemental Materials for

DeepSimulator: a deep simulator for

Nanopore sequencing

Yu Li1, Renmin Han1, Chongwei Bi2, Mo Li2, Sheng Wang*1, and

Xin Gao∗1

1King Abdullah University of Science and Technology (KAUST), Computational

Bioscience Research Center (CBRC), Computer, Electrical and Mathematical

Sciences and Engineering (CEMSE) Division, Thuwal, 23955-6900, Saudi Arabia

2King Abdullah University of Science and Technology (KAUST), Biological and

Environmental Sciences and Engineering (BESE) Division, Thuwal, 23955-6900,

Saudi Arabia

∗All correspondence should be addressed to Sheng Wang (sheng.wang@kaust.edu.sa) and

Xin Gao (xin.gao@kaust.edu.sa).



S1: Related works

In this section, we first provide an introduction to the three existing statistic-

based simulators, followed by a brief introduction to Bi-LSTM, which we used

for building the context-dependent pore model.

ReadSim

ReadSim (Lee et al., 2014), to our knowledge, is the first work that is able to gen-

erate long reads, following the read length distribution of PacBio or Nanopore

data. When proposed, it was used to simulate PacBio data. Later on, peo-

ple also used it for simulating the Nanopore data since there was no simulator

devoted to simulating the Nanopore data exclusively for a very long time. In

principle, this software is a fast and simple reads simulator. However, it was

not designed for Nanopore specifically and has not been updated since 2014.

Because Nanopore sequencing has been developed dramatically, ReadSim may

have difficulty in mimicking the error distribution and insertion-deletion pattern

of the most recent Nanopore sequencing protocol.

SiLiCO

SiLiCO (Baker et al., 2016) was claimed to be the first open source software

that is designed specifically to simulate Nanopore and PacBio data. Through

analysis, they found that the length distribution of Nanopore data follows the

gamma distribution. Based on the user-provided parameters for the distribu-

tion, SiLiCO would generate genomic coordinates stochastically, resulting in

the simulated data. Besides, SiLiCO can be scaled up to a Monte-Carlo simu-

lation. Although it can generate reads with desirable read lengths and coverage

with high scalability, this software does not mimic the error distribution and

insertion-deletion pattern of the Nanopore data.



NanoSim

NanoSim (Yang et al., 2017), published earlier in 2017, is the first formally

published software with the ability of both modeling the read length distribution

and the basecalling error pattern of the Nanopore data. There are two stages

of NanoSim. The first stage is read characterization, in which the user would

provide a reference and a training read set. During this stage, the training

read set is aligned to the reference using LAST (Frith et al., 2010), resulting

in an alignment file, from which a set of profiles, such as substitution rate

and insertion-deletion rate, could be summarized. Thus, the parameters of

the predefined distribution, modeling the mismatch, insertion and deletion, are

learned. The next stage is the read generation stage. With the user-provided

reference sequence, the reads based on the length distribution learned from the

previous stage are extracted from the input sequence. After that, the errors,

which are drawn from the statistical model and whose type is determined by

a predefined Hidden Markov Model (HMM), are introduced to the extracted

reads. This work makes great contribution to the Nanopore data simulation

field. However, we should notice that as the Nanopore technology evolves,

the predefined error model may no longer fit. What is worse, the basecalling

algorithm has been changed dramatically since September 2017, and Albacore

no longer uses events to perform basecalling. As a result, the predefined HMM

may not fit the current read error type transition well.

Bi-LSTM

Bi-LSTM is a well-known recurrent neural network architecture (Boža et al.,

2017). For a given input sequence Z, the uni-directional LSTM, generating the

hidden vector ht at position t, can be represented in the following way:



ft = σ(Wfzt + Ufht−1 + bf ),

nt = σ(Wnzt + Unht−1 + bn),

ot = σ(Wozt + Uoht−1 + bo),

ct = ft ∗ ct−1 + nt ∗ tanh(Wczt + Ucht−1 + bc),

ht = ot ∗ tanh(ct), (1)

where f , n, and o represent the forget, input, and output gates, respectively. c

is the cell memory vector. σ is the sigmoid function, and tanh is the hyperbolic

tangent function. W,U, b are the model parameters.

Let hf,t denote the hidden vector generated by the forward LSTM and

hb,t denote the one generated by the backward LSTM. Then hb,f,t generated by

Bi-LSTM is the concatenation of hf,t and hb,t.

S2: Length distribution parameters

The parameters for the three different read length distributions are given in

Table S1.

S3: Repeat time distribution

As shown in Figure S1 (A), it is not straightforward to use one predefined density

function to fit such a distribution. Instead, we used a mixed distribution to fit

it. Since if we ignore the value of 1, the remaining distribution could be easily

fitted using an alpha distribution, we split the fitting into two steps. We first

defined a ratio r, which specifies the ratio that belongs to the all 1 distribution,

which means the remaining 1− r should be drawn from the alpha distribution.

Then we fitted the real data using the two-step distribution. Table S2 shows



Table S1: Parameters of the read length distribution. The def-

inition of each parameter could be referred to Scipy document

(https://docs.scipy.org/doc/scipy/reference/stats.html). In order to fit

the third pattern, we ran an EM algorithm. Since the algorithm itself depends

on the initialization, we reran the algorithm for 10,000 times and selected the

best one as the final model, with the histogram interaction being the objective

function. The final histogram interaction value is 0.8818.

Parameters Exponential

distribution

Beta distribution Mixed Gamma

distribution

a - 1.778 6.369 & 1.676

b - 7.893 0.538 & 0.229

loc 213.989 316.758 -

scale 6972.532 34191.257 -

Table S2: Parameters of the repeat time distribution. r means the ratio of the

all 1 distribution in the mixed distribution. The definition of the remaining

parameter could be referred to the Scipy document.

Parameters r a loc scale

Value 0.075 3.393 -7.645 50.874

the parameters of the two-step distribution. Figure S1 shows the comparison

between the real distribution and the fitted distribution, which show similar

pattern explicitly.

S4: Parameter manual of DeepSimulator

Table S3 shows all the parameters of DeepSimulator, which can be adjusted in

the main.sh file by the users to simulate a variety of situations. Table S4 shows

the parameters of the four sets of reads (DS(noise free), DS(high acc), DS(med



Figure S1: Comparison between the real repeat time distribution and the fitted

distribution. (A) Histogram of the real data repeat times. (B) Histogram of

10,000,000 data points sampled from the fitted repeat time distribution.

acc), and DS(low acc)) in the main text.

Stage Parameter Explanation

Invoke

main.sh

-f The file path of the input reference genome or the contigs file in

the fasta format.

Sequence

sampling

-i The file path of the input reference genome or the contigs file in

the fasta format.

-p The prefix (including the path) of the output files in the fasta

format, which contains the sample sequences.

-n The number of sampled sequences.

-d The length distribution used for the sequence sampling. 1: beta

distribution, 2: exponential distribution, 3: mixed gamma distri-

bution. The default is the mixed gamma distribution. If the read

length drawn from the distribution is longer than the length of the

genome, the value would be clipped to the length of the genome.

The distribution can be directly modified in the samplying.py file

in the sampling from genome directory so that users can use their

desired distribution.



-c Whether the input genome is a circular genome or not.

Signal

generator

-i The file path of the input fasta file, containing the input sequences.

-p The prefix (including the path and signal file prefix) of the gener-

ated signal files.

-t The number of threads used for the program.

-a Change the read accuracy by modifying the signal repeat time dis-

tribution. The value is between 0 and 1. As the value increases,

the standard deviation of the repeat time decreases which would

increase the mapping accuracy of the final simulated reads. 0.1

would give the distribution that best simulates the real case while

0 would give the distribution whose result is slightly worse than

the real case. 1 would give the almost perfect basecalling result.

Note that due to the nonlinearity of the distribution changing, the

value change in [0, 0.5] would affect the final result more dramat-

ically than the value change in [0.5, 1].

-s Set the standard deviation of the random noise added to the sig-

nal. Default as 1.

--perfect Set it as 1 to get the almost perfect signal which could have 97%

basecalling accuracy.

Signal to

FAST5

-i The file path of the template FAST5 file.

-s The directory of the input signal files.

-d The directory of the output FAST5 files.

Basecalling

(Only the

used)

-i The directory of the input FAST5 files.

-s The directory of the output FASTQ files.

-c The configuration file of the basecaller.

-o Output format of Albacore.

-t Number of threads used in the basecaller.

Mapping

accuracy

check

-Hk19 The specific parameter of Minimap2 to perform mapping of the

Nanopore reads onto the reference genome.



-t Number of threads used in the mapping.

-c Show the mapping in the cigar format.

Table S3: All the parameters of DeepSimulator

Table S4: DeepSimulator parameter settings for the DS(noise free), DS(high

acc), DS(med acc), and DS(low acc) reads.

Readset DS(noise

free)

DS(high

acc)

DS(med

acc)

DS(low

acc)

-a(Signal generator) - 0.35 0.1 0

-s(Signal generator) - 1 1.2 3.5

--perfect(Signal gener-

ator)

1 0 0 0

S5: Distribution of the length of simulated reads

Figure S2 shows the distribution of the length of the simulated and experimental

reads for human, E.coli K-12 sub-strain MG1655, and lambda phage.

S6: Performance measure by dynamic time warp-

ing

The dynamic time warping (DTW) for mapping two input signals X,Y is

denoted as DTW(X,Y ). Specifically, given two input signal sequences X =

x1, x2, . . . , xL1 and Y = y1, y2, . . . , yL2 of length L1 and L2, respectively, DTW

constructs a warping path W = w1, w2, . . . , wL to minimize the distance mea-

surement Dist(W ) defined as follows:



Figure S2: The distribution of the length of the simulated and experimental

reads. The top panel shows the distribution of the length of the simulated

reads from the exponential distribution (A), the beta distribution (B), and the

mixed gamma distribution (C). The bottom panel shows the distribution of the

experimental reads for human (D), E.coli K-12 sub-strain MG1655 (E), and

lambda phage (F).

Dist(W ) =

L∑
l=1

c(wli, wlj), (2)

where L is the length of the warping path and c(wli, wlj) is the Euclidean

distance of the lth aligned element between the two signal points xi and yj .

To determine the optimal path W , a (L1×L2) matrix D is recursively

computed as D(i, j) = min{D(i−1, j−1), D(i, j−1), D(i−1, j)}+ c(i, j). The

matrix entry D(n,m) is the total cost of an optimal path between X(x1, .., xn)

and Y (y1, .., ym), which can be easily solved by dynamic programming which

results in the global optimal distance. We used the normalized distance of a

warping path nDist(W ) by dividing Dist(W ) by the maximal length of the

input signals.



S7: De novo assembly of mitochondrial genome

Figure S3: The Mummer plot comparing the reference mitochondrial genome

on the x-axis with the assembled genome on y-axis using simulated reads from

DeepSimulator.

Figure S3 shows the assembling result of the DeepSimulator simulated

reads from the mitochondrial genome using Miniasm (Li, 2016) with Racon

(Vaser et al., 2017).

S8: Runtime and memory usage of DeepSimula-

tor

In this section, we report the running time and memory usage of DeepSimulator,

compared with NanoSim. We ran the experiment on a workstation with 56

cores and 128GB memory. The details could be referred to Table S5. As we can

see from the table, the running time of DeepSimulator increases linearly with

the number of simulated reads. To simulate a large amount of sequences, it

would indeed take a significant amount of CPU time. However, DeepSimulator

takes advantage of the multiprocessing cores, reducing the real time greatly and



enabling large scale simulation.

Table S5: Running time and memory usage analysis of DeepSimulator and NanoSim. The

second and third rows show the running time of DeepSimulator(DP) and NanoSim(NS) when

simulating different numbers of reads. Inside each cell, the first number is the real time and

the number inside the bracket is the total CPU time. The fourth and fifth rows show the

memory usage of DeepSimulator and NanoSim, respectively.

#Reads 10 20 50 100 200 400 1000 2000

DP(sec) 23(68) 30(101) 36(360) 43(683) 66(1227) 116(2563) 270(6650) 524(13598)

NS(sec) 0.4(0.4) 0.5(0.5) 0.6(0.6) 0.8(0.8) 1.2(1.2) 2.2(2.2) 4.2(4.2) 8.8(8.8)

DP(GB) 13.1 13.9 15.2 16.5 16.2 16.4 17.6 17.7

NS(GB) 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5

S9: NanoSim Experiment

Since the original NanoSim would perform random sampling for a given reference

genome and output the simulated reads, which means we are unable to run the

simulation on a specific given sequence. To solve the problem, we modified

the original NanoSim to eliminate the random sampling step so that it can

output the simulated read for a given sequence. Downloading the pre-trained

R9 profile for the office website1, we ran NanoSim over the dataset in Section

3.2 and obtained the simulated read for each input sequence. After that, we

performed BLAST between the simulated reads and the input sequences and

averaged the results over all the sequences to gain the profile shown in Table 1.

1ftp://ftp.bcgsc.ca/supplementary/NanoSim/



References

Baker, E. A. G., Goodwin, S., McCombie, W. R., and Mendivil Ramos, O. (2016). Silico: A

simulator of long read sequencing in pacbio and oxford nanopore. bioRxiv , page 76901.

Boža, V., Brejová, B., and Vinař, T. (2017). Deepnano: Deep recurrent neural networks for base

calling in minion nanopore reads. PloS one, 12(6), e0178751.

Frith, M. C., Hamada, M., and Horton, P. (2010). Parameters for accurate genome alignment. BMC

Bioinformatics, 11(1), 80.

Lee, H., Gurtowski, J., Yoo, S., Marcus, S., McCombie, R. W., and Schatz, M. (2014). Error

correction and assembly complexity of single molecule sequencing reads. BioRxiv , page 6395.

Li, H. (2016). Minimap and miniasm: fast mapping and de novo assembly for noisy long sequences.

Bioinformatics, 32(14), 2103–2110.

Vaser, R., Sovic, I., Nagarajan, N., and Sikic, M. (2017). Fast and accurate de novo genome assembly

from long uncorrected reads. Genome Research.

Yang, C., Chu, J., Warren, R. L., and Birol, I. (2017). Nanosim: nanopore sequence read simulator

based on statistical characterization. GigaScience, 6(4), 1–6.


