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Materials and Methods 

Brief description combined technologies 
COBRA (Constraints Based Reconstruction and Analysis) (Schellenberger et al., 2011;          
Ebrahim et al., 2013) analyzes single-strain metabolic models. COBRA focuses on the            
application of the constraints imposed by the genome (internal boundaries) and environment            
(systems boundaries) in a given organism. It describes the set of feasible phenotypic states, in               
term of metabolic fluxes, under a given condition (Nogales, 2017). The constraint-based            
model consists of M metabolites and R reactions in an M x R matrix containing all the                 
stoichiometric coefficients (S). Flux balance analysis (FBA) was used for the analysis,            
including growth and flux predictions (Orth et al., 2010) FBA is based on solving a linear                
optimization problem by maximizing or minimizing a given objective function Z subject to a              
set of constraints. The constraints S·v = 0 correspond to a situation of steady-state mass             
conservation where the change in concentration of the metabolites as a function of time is               
zero. The vector v represents the individual flux values for each reaction. These fluxes are               
further constrained by defining lower and upper limits for flux values. Gurobi 6 solver were               
used for solving the linear programing problems in the current described FLYCOP            
applications. 

COMETS (Computation Of Microbial Ecosystems in Time and Space) (Harcombe et al.,            
2014) combines different metabolic models to design and simulate interactions in microbial            
consortia in a dynamic context (time and/or space). COMETS is a hybrid model             
(Perez-Garcia et al., 2016) that simulates dynamic of metabolite and biomass of multiple             
strains in the same physical space. The temporal dynamic of this hybrid model is simulated               
with the updates of the shared media metabolite concentrations and the update of biomasses,              
according to the metabolic activity of the organisms in the community. COMETS allows to              
update the metabolite concentrations with different algorithms. The default approach is to            
update each metabolite multiplying the uptake by the biomass of each strain secreting or              
consuming that metabolite. The biomass of each strain within the consortium is predicted             
following the same algorithm in COBRA, i.e. Flux Balance Analysis (FBA), although with             
some differences. For instance, it runs along several consecutive time slots in a similar way to                
a dynamic FBA, but it uses a dynamic computation of the bounds of the exchange reactions                
taking into account the updated concentration of the corresponding metabolite in the media in              



each time slot, which could be lower than the original bound in the model. Many other                
parameters could be configured, following the available documentation in the COMETS           
website (http://www.bu.edu/segrelab/comets). 

SMAC (Sequential Model-based Algorithm Configuration) (Hutter et al., 2011) allows to           
automate a model parameterization with an iterated local search, guided by ad-hoc fitness.             
Stochastic local search is one of the most efficient and widely used methods for solving               
combinatorial problems, which are characterized with an exponential or higher (such as NP)             
complexity, where approximate solutions are often useful and easier to compute. It allows             
exhaustive exploration of big state spaces to be avoided, finding good solutions more             
efficiently than systematic search; although these kinds of algorithms could be incomplete,            
this means they do not guarantee to find a solution even if one exists. There are different                 
stochastic local search methods (simulated annealing, tabu search, etc.), where the best are             
the hybrid ones, i.e. combinations of several simple search strategies (such as iterated local              
search or evolutionary algorithms).  

At the beginning, SMAC establishes an initial (default) configuration as a solution.            
The best solution found is preserved until a better one is reached (i.e. lower fitness, since                
SMAC minimizes the fitness value) or the algorithm ends; when the pre-defined number of              
iterations or timeout is reached. In each iteration, random modification of some of the              
parameter values are applied; first, with small modifications, searching in the neighborhood            
of the new solution. Where a better configuration is not achieved after several iterations, the               
algorithm then applies large changes in the values, trying to go out from a local minimum,                
and exploring a distant area in the solution space. Specific details about condition-specific             
SMAC setups can be found in the proper Results sections. The problems solved with              
FLYCOP described in this manuscript applied SMAC v2.10. 

 

Detailed comparison consortia optimization methods 
 
FLYCOP vs optimizing community parameters (OptCom (Zomorrodi and Maranas, 2012)          
and d-OptCom (Zomorrodi et al.,2014)). OptCom allows modeling or evaluation of           
consortia, not suggesting automatic configuration as FLYCOP does. OptCom requires several           
executions with the initial compound concentration in each time slot, versus FLYCOP            
capturing temporal changes. This dynamic limitation was solved with its improved version            
framework d-OptCom. (d)OptCom optimizes in two levels, the inner level (single strains)            
with the parameter optimized in the outer level (community). However, FLYCOP optimizes            
consortia configuration at different levels at the same time, both at single strain level (i.e.               
uptakes of carbon sources or cross-feeding metabolites) and community level (i.e. initial ratio             
biomasses and after n hours, total biomass at different time points, metabolite concentration             
in the media by time slot). Besides, FLYCOP offers flexibility in the parameters to configure               
(integer, real or even nominal ones). d-OptCom also uses dFBA to optimize fluxes.             
Regarding simplicity, FLYCOP does not configure any MILP problem with new reactions for             
new interactions among strains, nor to known the type of interactions, as (d)OptCom requires.              
Our approach only needs the individual models and the media composition, and the required              
interactions will emerge by themselves based on metabolism codified in models. The            
complementary ‘Descriptive d-OptCom’ is equivalent to include parameters about the media           
and initial biomasses in FLYCOP. Regarding experimental kinetics data requirement, one           
d-OptCom input is the uptake kinetics parameters independent per metabolite (or they assume             
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direct transfer of metabolite between input and output through fluxes), while in FLYCOP it is               
optional, according to COMETS configuration (which allow define the same kinetics           
parameters for all metabolites). Thus, FLYCOP could work with less experimental data that             
d-OptCom, that requires uptake kinetics parameters independent per metabolite. Besides, we           
could represent the problem in order to find some optimal uptakes in FLYCOP. Finally,              
d-OptCom is defined as a ‘comprehensive computational framework’, not providing any           
software that allows reproducibility or new applications as FLYCOP does.  

FLYCOP vs optimizing stability (SteadyCom (Chan et al., 2017)). The main difference            
with FLYCOP is related to flexibility in objective and use-cases, focusing SteadyCom on             
consortia where the GR must be the same in all members in the community, to ensure                
co-existence. FLYCOP could optimize consortia with that objective of parallel GR (through            
defining a fitness function to minimize the difference in GR in exponential phase) among              
other multiple ones. SteadyCom joins all reactions in a common model, being more similar to               
lumped network than multi-compartment modeling approach. Apart from FBA, SteadyCom          
is compatible with FVA. Both ones provide with a similar contribution in the cross-cutting              
task of predicting composition on microbial consortia. Other similarity is the ability to predict              
changes in strain relative abundances in response to external perturbations (such as changes             
in media metabolites) although through distinct approximations: SteadyCom by adding          
constraints on the model and FLYCOP by including static or dynamic modifications in the              
media in COMETS configuration file, along the time (or in some specific time point) or               
running a new optimization with a new media composition or media update. FLYCOP             
intrinsically explores multiple combinations of model parameters, making them available for           
further analysis; while SteadyCom requires an external procedure when they want to analysis             
random consortium configurations.  

FLYCOP vs optimizing pathway distribution (MultiPlus (Julien-Laferrière et al.,2016)). In          
contrast to the previous approaches, MultiPlus does not optimize a set of parameters of the               
metabolic models or community properties as FLYCOP and the remaining ones do, but             
optimize the fragmentation of a pathway and distribution of the reactions among the species              
within the community, even selecting the subset of strains. This means it is constrained to be                
applied in only one use-case (distributing pathway), only one optimization goal (minimizing            
new reactions and minimizing exchanged metabolites), not flexible in both as FLYCOP.             
Pathway distribution approaches are usually stoichiometric-independent, simplifying GEM to         
a representation in an hyper-graph, with just reactions and metabolite relations. It means a              
drawback versus other approaches because it results in unchecked consortium configurations           
which could not growth together when it is constrained to stoichiometry, requiring            
post-processing steps to compute yield (proposing to use a posteriori FBA) and to get              
stability of the consortium or even including not defined cross-feeding relations; whilst            
FLYCOP reports multiple values for measuring the performance of the community (GR,            
increase in biomass, yield, etc.), without requiring additional post-processing, and          
additionally providing the optimized GEMs as an output, allowing their run together in a              
microbial community descriptive microbial community system such as COMETS, showing          
common grow and production of metabolites, and checking if some cross metabolite is             
danger to the other strains. It is similar to FLYCOP in terms of searching a solution among                 
different configurations. The same as MultiPlus, FLYCOP also could optimize the production            
of endogenous metabolite, not only exogenous. Regarding to optimizing distribution of           
reactions, maybe it could be better to apply some of the existing regardless-stoichiometric             
graph-based methods (Eng and Borenstein, 2016; Julien-Laferrière et al.,2016) to reduce the            



huge number of possibilities, and between the best outputs, to apply FLYCOP taking the              
stoichiometry and the consortium dynamic (updates of biomass and metabolite concentration)           
into account to finally define the optimized distribution of tasks among the strains in the               
consortium. 

LTEE case study: comparing FLYCOP with inverseFBA and        
evoFBA 

Inverse FBA (Zhao et al., 2016) also was applied to this LTEE domain to determine the                
objective function. Their most relevant conclusion for FLYCOP is that there are infinite             
objective functions could give the observed fluxes as one of the optimal solutions of an FBA,                
and only maximizing growth rate is not included in those solutions. Many solutions tend              
towards strains with higher respiration flux (~= glucose specialist) and other solutions with             
lower respiration (~= acetate specialist). They did not infer a separate set of fluxes of both                
strains in the Ara-2 population, but only one set, assuming it is a monoclonal population,               
ignoring the stable polymorphism. In fact, the fluxes for Ara-2 are more similar to glucose               
specialist (with slight higher growth than ancestor) than acetate specialist. 
 
evoFBA (Großkopf et al., 2016) is an alternative work about LTEE, randomly generating             
different niches of specialized species along the time, assuming different phenotypes in the             
same strain, the same as we consider. evoFBA runs the evolution and finds a solution               
consortia at the end, resulting from intermediate mutations along the evolution. Whereas            
FLYCOP defines different consortia configuration a priori (it means to apply some mutations             
apriori) and checks whether its viability and stability along time, finding the best consortium              
configuration for a predefined goal. evoFBA uses a reduced E.coli metabolic model with 95              
reactions, while we use the whole model with thousands of reactions, although the uptake              
mutations is only in one or a few, we do not remove the remaining model reactions because                 
all are involved in the E.coli metabolism. evoFBA only runs isolated strain models, not              
simulating co-culture of the acetate-glucose specialists as FLYCOP does. 
 
Both methods predict the cross-feeding among two E.coli specialists as a stable end-point             
after evolution. Both systems have two optimization levels: a) FBA and b) evolutionary             
time-scale (in FLYCOP with SMAC). At the evolutionary one, evoFBA constraints the            
overall input uptakes (carbon and oxygen) per organism, to simulate in a simplified way the               
trade off observed in in-vivo studies; however, FLYCOP allows flexible “mutations” in the             
model depending on the parameters you want to determine, given an optimization goal.             
evoFBA predicts a completely loss of taking acetate in L strains, although invivo data it is                
really a down-regulation, as FLYCOP allows. evoFBA could determine when the mutant            
strain appears, while FLYCOP pre-defines it exists, without knowing when it will appear             
during the evolution. FLYCOP conditions/mutations are only defined at the beginning of the             
consortia growing point, without changes in uptakes during time, as evoFBA allows. Their             
mutations are in each time steps along the evolution, not just as the beginning like we do. 
 
A further results comparison is unfeasible, because evoFBA does not simulate co-culture of             
the acetate-specialist with glucose-specialist, but they only can run dFBA for isolated            
strains/models. 
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