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Figure S1: Flowchart of the pre-processing for iCFN: sequential reading and
pruning
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Algorithm 1 Pseudocode for sequential reading and pruning.

for i = 1: N do
Read substate(i)
Type Dep DEE(i,δ)
if Is it first substate() then

Create main substate()
else

Substate Dep DEE(i,δ)
if Is new substate pruned() == 0 then

Concat to main substate()
end if

end if
end for

2 Across-substate type-dependent DEE

Theorem 1. Rotamer ia of substate 1 provably pruned by rotamer ib of substate
2, is not part of the optimal solution if both substates belong to the same state
(positive or negative), both rotamers are of the same amino acid type, and the
following criterion holds:

c1 + E1(ia) +
∑
j,j 6=i

min
s1

(
E1(js1) + E1(ia, js1)

)
+

∑
j>k,k 6=i,j 6=i

min
s1,u1

E1(js1 , ku1)

> c2 + E2(ib) +
∑
j,j 6=i

max
s2

(
E2(js2) + E2(ib, js2)

)
+

∑
j>k,k 6=i,j 6=i

max
s2,u2

E2(js2 , ku2)

(1)

Proof. Following Eq. 1 in the main text, the energy of substate 1 (used as a
subscript) with rotamer ia at residue i and its upper bound can be written as:

c1 +
∑
m

E1(mr) +
∑
m<j

E1(mr, js)

= c1 + E1(ia) +
∑
m 6=i

E1(mr) +
∑
j 6=i

E1(ia, js)+∑
m<j,m 6=i,j 6=i

E1(mr, js)

> c1 + E1(ia) +
∑
j,j 6=i

min
s

(
E1(js) + E1(ia, js)

)
+

∑
j>m,m,j 6=i

min
s,r

E1(js,mr) , L1(ia)

(2)
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By doing the same for rotamer ib in substate 2:

c2 +
∑
m

E2(mr) +
∑
m<j

E2(mr, js)

= c2 + E2(ib) +
∑
m6=i

E2(mr) +
∑
j 6=i

E2(ib, js)+∑
m<j,m 6=i,j 6=i

E2(mr, js)

< c2 + E2(ib) +
∑
j,j 6=i

max
s

(
E2(js) + E2(ib, js)

)
+

∑
j>m,m6=i,j 6=i

max
s,r

E2(js,mr) , U2(ib)

(3)

Therefore, if L1(ia) > U2(ib), then ia is pruned by ib and cannot be part of the
global optimum.

A natural extension for the top δ kcal/mol ensemble is that rotamer ia of
substate 1 is pruned by rotamer ib of substate 2 if L1(ia) > U2(ib) + δ.
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3 Global sequence search

Algorithm 2 Main algorithm

best score = Max Value
best score = Global Search GMEC()
Global Search Ensemble()

Algorithm 3 Global Search GMEC()

if LDS constraint() then
return

end if
if Is fully defined() then
if Lower bound fully defined() == 0 then

Backbone pruning()
Seq defined GMEC()
if best score > Lowest energy pos - Lowest energy neg then

best score = Lowest energy pos - Lowest energy neg
end if

end if
else

i = Variable ordering()
a = Amino ordering()
Assign amino(i,a)
if Lower bound Not fully defined() == 0 then

Global Search GMEC()
else

Remove amino(i,a)
Global Search GMEC()

end if
end if
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Algorithm 4 Seq defined GMEC()

Update pos = 0
Lowest energy pos = Max Value
for i = 1 : N do
if Stability condition(τ) then

temp best = SCP GMEC(i)
if temp best < Lowest energy pos then

Lowest energy pos = temp best
Update pos = 1

end if
end if

end for
if Update pos == 0 then

return
end if
Lowest energy neg = Max Value
for j = 1 : M do

temp best = SCP GMEC(j)
if temp best < Lowest energy neg then

Lowest energy neg = temp best
end if
if best score < Lowest energy pos - Lowest energy neg then

return
end if

end for
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Algorithm 5 Global Search ensemble()

if LDS constraint() then
return

end if
if Is fully defined() then
if Lower bound fully defined() == 0 then

Backbone pruning()
Seq defined GMEC()
Seq defined ensemble()
if best score + ε > Lowest energy pos - Lowest energy neg then

print conformation for this sequence
end if

end if
else

i = Variable ordering()
a = Amino ordering()
Assign amino(i,a)
if Lower bound Not fully defined() == 0 then

Global Search ensemble()
else

Remove amino(i,a)
Global Search ensemble()

end if
end if

Algorithm 6 Seq defined ensemble()

for i = 1 : N do
if backbone pruned(i) == 0 then

SCP ensemble(i)
end if

end for
for j = 1 : M do
if backbone pruned(j) == 0 then

SCP ensemble(j)
end if

end for
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4 Bounding in global sequence search

Theorem 2. For any sequence space S, a lower bound of the objective function
for multistate protein design with substate ensembles (Formulation in Eq. 5 of
main text) is given by

min
(k,l)∈P×Q

(
∆ckl +

∑
i

min
a∈S(i)

min
(r,r′)

(
∆Ekl(ir,r′)+∑

j>i

min
a′∈S(j)

min
(s,s′)

∆Ekl(ir,r′ , js,s′)
))
, where

(4)

∆ckl = c+k − c
-
l ,

∆Ekl(ir,r′) = E+
k (ir)− E-

l (ir′),

∆Ekl(ir,r′ , js,s′) = E+
k (ir, js)− E-

l (ir′ , js′),

(5)

i.e., differences in constant, singleton, and pairwise energies between a positive
substate k (position i and j taking rotamer r and s) and a negative substate l
(position i and j taking rotamer r′ and s′).

Proof. For an arbitrary sequence a in the space S, its rotamer vector r is in the
space of Rk(a) for substate k. The highest specificity is thus

min
a∈S

(
min
k∈P

min
r∈Rk(a)

E+
k (r)−min

l∈Q
min

r′∈Rl(a)
E−l (r′)

)
> min

a∈S
min

(k,l)∈P×Q
min

(r,r′)∈Rk(a)×Rl(a)

(
E+

k (r)− E−l (r′)
)

> min
a∈S

min
(k,l)∈P×Q

(
∆ckl + min

(r,r′)

(∑
i

∆Ekl(ir,r′)

+
∑
j>i

∆Ekl(ir,r′ , js,s′)
))

> min
a∈S

min
(k,l)∈P×Q

(
∆ckl +

∑
i

min
(r,r′)

(
∆Ekl(ir,r′)

+
∑
j>i

min
(s,s′)

∆Ekl(ir,r′ , js,s′)
))

= min
(k,l)∈P×Q

(
∆ckl + min

a

∑
i

min
(r,r′)

(
∆Ekl(ir,r′)

+
∑
j>i

min
(s,s′)

∆Ekl(ir,r′ , js,s′)
))

> min
(k,l)∈P×Q

(
∆ckl +

∑
i

min
a∈S(i)

min
(r,r′)

(
∆Ekl(ir,r′)

+
∑
j>i

min
a′∈S(j)

min
(s,s′)

∆Ekl(ir,r′ , js,s′)
))

(6)
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The complexity of evaluating the lower bound for undefined sequences is
given as follows:

Theorem 3. The lower bound in Theorem 2 can be computed in O
(
(nRa)2r

)
,

where n is the number of positions, R the average number of rotamers per posi-
tion, a the average number of substates per state, and r the average number of
rotamers per amino acid.

Proof. we prove the complexity by starting with the most inner minimization:

min
(s,s′)

∆Ekl(ir,r′ , js,s′)

= min
(s,s′)

(
E+

k (ir, js)− E−l (ir′ , js′)
)

= min
s
E+

k (ir, js) + min
s′

(
− E−l (ir′ , js′)

)
= min

s
E+

k (ir, js)−max
s′

E−l (ir′ , js′)

(7)

So, we can calculate it in O(r). Since the number of amino acids is known, then

min
a′∈S(j)

min
(s,s′)

∆Ekl(ir,r′ , js,s′) (8)

will be again O(r), so by summing over positions it will be O(nr). For calcu-
lating:

min
a∈S(i)

min
(rk,rl)

(
∆Ekl(ir,r′) +

∑
j>i

min
a′∈S(j)

min
(s,s′)

∆Ekl(ir,r′ , js,s′)
)

(9)

similar to previous version, we can compute it in O(nR2r) and summing over
all positions it will be O(n2R2r). Finally, since we are calculating (9) for all a2

pairs of substates across the two states, complexity will be O(a2n2R2r).
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When a sequence is specifically defined during search, we have derived a
more powerful lower bound as follows:

Theorem 4. For any defined sequence s (S = {s}), a lower bound can be
computed by

min
k∈P

L+
k (s)−min

l∈Q
U -
l (s) (10)

in which L+
k (s) is lower bound on all rotamer conformation for sequence s and

kth substate in positive design and U -
l (s) is Upper bound on all rotamer confor-

mation for sequence s and lth substate in negative design.

Proof. When sequence is fully defined, a lower bound can be derived by:

min
k∈P

min
rk∈Rk(s)

E+
k (rk)−min

l∈Q
min

rl∈Rl(s)
E−l (rl)

> min
k∈P

L+
k (s)−min

l∈Q
U -
l (s),

(11)

in which L+
k (s) can be any lower bound from single-state protein design (we use

existential directed arc consistency a.k.a. EDAC) and U -
l (s) can be any upper

bound from single state protein design (we use limited discrepancy search a.k.a.
LDS).
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5 Results

5.1 TCR Design: Efficiency

Additional contributions to performance improvement

Beyond substate pruning enabled by interconnected CFNs, three more improve-
ments we made also contribute to the numerical efficiency. The first affects both
reduced iCFN and iCFN: (1) variables (positions) are ordered based on the num-
ber of rotamers divided by the median of singleton energies only, which affects
the nodes and leaves (and ultimately sequences) visited during tree search. The
rest two are both for calculating lower bounds of undefined sequences thus only
affect iCFN: (2) a lookup table storing intermediate min/max values for each
substate reduces calculations in the order of the number of substates, and (3)
an upper bounding when minimizing differences over substate pairs can be ac-
complished with any feasible solution.

To dissect the contributions of these three additional contributions, we start
with none and incrementally introduce them into versions 0 (none), 0.1, and 0.2,
where the latter two only apply to iCFN. The latest version in the main text
is regarded version 1. By comparing them in the supplemental Tables S1 and
S2, we find that the change of position ordering may lead to slightly increased
number of nodes expanded or leaves visited but saves run time due to much less
time spent on each node for bound estimation. In addition, the lookup tables
are created only once and used multiple times in search, which especially speed
up large designs (twice for double designs).

Reduced iCFN iCFN

Position(s) v0 v1 v0 v0.1 v0.2 v1

26 4.06 1.46 4 0.6 0.62 0.56
28 291 24.5 289 5.88 7.32 6.29
98 32 9.98 26 3.26 4.46 3.38
100 33 19.85 30 4.18 4 4.44
26,28 16 152 1335.95 12 774 676.61 248.26 228
26,98 3540 809.18 2627 283.63 172.89 182.10
26,100 3799 1510.03 3008 686.67 330.68 303.64
28,98 27 252 3707.04 21 809 1522.54 717.25 745.84
28,100 20 521 5603.60 16 605 1785.23 738.04 796.96
98,100 19 808 4384.48 13 726 1257 534.42 526.97

Table S1: Comparing run time (in seconds) between different versions of reduced
iCFN and iCFN for the best global optimum conformation in multi-state design
problems with ensemble of substates per state for TCR.

10



Reduced iCFN iCFN

Position(s) v0 v1 v0 v0.1 v0.2 v1

26 6654 66.69 3700 22.94 31.48 21.86
28 4283 114.22 2222 22.32 29.3 23.55
98 10 612 103.29 6318 40.81 55.72 43.35
100 2109 154.51 1102 21.20 20.05 23.74
26,28 384 997 7454.93 205 656 16 120 1705.68 1063.89
26,98 — 15 449.04 — 27 596 4666.22 3872.32
26,100 502 803 19 780.68 265 185 12 162 2689.77 2226.52
28,98 — 23 378.51 487 360 20 629 3561.14 2810.31
28,100 347 872 24 631.34 177 949 11 452 2956.08 2359.10
98,100 — 17 303.91 323 104 11 781 2700.47 2056.47

Table S2: Comparing run time (in seconds) between different versions of re-
duced iCFN and iCFN for the best ensemble conformations in multi-state de-
sign problems with ensemble of substates per state for TCR. (”—” indicates an
out-of-time error under the 7-day limit.)
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5.2 TCR Design: Accuracy

Results for Multi-substates are shown in the following table.

Mutation AAG (∆∆G) ELA (∆∆G) specificity (∆∆∆G)

αD26Y −1.03 21.90 −22.93
αD26F −1.74 9.04 −10.78
αD26A −2.56 4.41 −6.97
αD26N −0.34 5.49 −5.83
αD26P −3.38 2.27 −5.65
αD26K −0.39 5.14 −5.53
αD26T −2.30 2.33 −4.63
αD26C −2.21 2.00 −4.21
αD26V −1.53 1.48 −3.01
αD26W −4.13 −1.48 −2.65
αD26M −3.32 −0.79 −2.53
αD26H −0.38 1.96 −2.34
αG28L −2.66 38.08 −40.74
αG28E −5.91 22.72 −28.63
αG28D −2.39 16.00 −18.39
αG28T 3.13 21.38 −18.25
αG28I −5.55 8.83 −14.38
αG28M −4.32 9.52 −13.84
αG28R 4.18 16.94 −12.76
αG28V 0.75 11.16 −10.41
αG28C −0.04 9.45 −9.49
αG28Y 4.80 13.96 −9.16
αG28K −0.20 8.94 −9.14
αG28F −3.62 3.18 −6.80

Table S3: TCR designs considering an ensemble of positive or negative substate
(flexible backbone conformation here). Reported for each design is the calcu-
lated relative binding affinities ∆∆G (in Kcal/mol) compared to the wild type
(WT) for the AAG peptide (MART-1 nonameric epitope) and the ELA peptide
(MART-1 decameric epitope), respectively, as well as their difference ∆∆∆G,
or, specificity. Only designs predicted to significantly improve AAG-binding
specificity compared to WT (∆∆∆G 6 −2 Kcal/mol) are reported here. De-
signs highlighted in red and blue were experimentally validated true or false
positives according to a recent study (Pierce et. al. 2014) .
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Mutation AAG (∆∆G) ELA (∆∆G) specificity (∆∆∆G)

αL98K 1.04 6.32 −5.28
αL98R 0.32 4.95 −4.63
αF100Y 7.09 47.79 −40.70
αF100W 15.23 40.39 −25.16
αF100R 13.76 21.90 −8.14
αF100Q 3.34 10.28 −6.94
αF100M 4.08 9.77 −5.69
αF100A 1.73 6.40 −4.67
αF100I 1.71 6.21 −4.50
αF100K 14.61 18.32 −3.71
αF100S 1.70 5.41 −3.71
αF100C 2.39 5.90 −3.51
αF100L 7.07 9.47 −2.40
αF100V 4.36 6.64 −2.28
αF100E 4.97 7.22 −2.25

Table S3: (Continued) TCR designs considering an ensemble of positive or
negative substate (flexible backbone conformation here). Reported for each
design is the calculated relative binding affinities ∆∆G (in Kcal/mol) compared
to the wild type (WT) for the AAG peptide (MART-1 nonameric epitope)
and the ELA peptide (MART-1 decameric epitope), respectively, as well as
their difference ∆∆∆G, or, specificity. Only designs predicted to significantly
improve AAG-binding specificity compared to WT (∆∆∆G 6 −2 Kcal/mol)
are reported here. Designs highlighted in red and blue were experimentally
validated true or false positives according to a recent study (Pierce et. al.
2014).
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Mutation AAG (∆∆G) ELA (∆∆G) specificity (∆∆∆G)

αD26N −1.98 3.76 −5.74
αG28L −1.65 4.69 −6.34
αG28D −3.64 −1.60 −2.04
αL98V 2.54 1.32 1.22
αL98D 1.92 0.62 1.3
αL98I 2.20 0.87 1.33
αL98E 2.29 0.56 1.73
αL98Q 1.88 −0.05 1.93
αF100W 39.53 100.71 −61.18
αF100Y 4.87 28.50 −23.63

Table S4: TCR designs considering a single positive or negative substate (fixed
backbone conformation here). Reported for each design is the calculated rela-
tive binding affinities ∆∆G (in Kcal/mol) compared to the wild type (WT) for
the AAG peptide (MART-1 nonameric epitope) and the ELA peptide (MART-1
decameric epitope), respectively, as well as their difference ∆∆∆G, or, speci-
ficity. Only designs predicted to significantly improve AAG-binding specificity
compared to WT (∆∆∆G 6 −2 Kcal/mol) are reported here with the exception
for position 98 with the top 5 lowest ∆∆∆G. Designs highlighted in red and
blue were experimentally validated true or false positives according to a recent
study (Pierce et. al. 2014).

Mutation AAG (∆∆G) ELA (∆∆G)

αD26W 4 8
αG28L 10 1
αG28I 10 3
αG28Y 10 8
αF100Y 7 1
αF100W 10 2

Table S5: TCR designs considering an ensemble of positive or negative substates
(flexible backbone conformations here). Reported are indices of various back-
bone conformations that were adopted in iCFN for various successful designs
bound to the AAG peptide (MART-1 nonameric epitope) and the ELA peptide
(MART-1 decameric epitope).
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