iCFN: an efficient exact algorithm for multistate protein design (Supplementary Data)

Mostafa Karimi and Yang Shen
Department of Electrical and Computer Engineering and
TEES-AgriLife Center for Bioinformatics and Genomic Systems
Engineering, Texas A\&M University, College Station, 77843, USA.

1 Sequential reading and pruning

Figure S1: Flowchart of the pre-processing for iCFN: sequential reading and pruning

```
Algorithm 1 Pseudocode for sequential reading and pruning.
    for \(\mathrm{i}=1\) : N do
        Read_substate(i)
        Type_Dep_DEE(i, \(\delta\) )
        if Is_it_first_substate() then
            Create_main_substate()
        else
            Substate_Dep_DEE(i, \(\delta\) )
            if Is_new_substate_pruned ()\(==0\) then
                Concat_to_main_substate()
            end if
        end if
    end for
```


2 Across-substate type-dependent DEE

Theorem 1. Rotamer i_{a} of substate 1 provably pruned by rotamer i_{b} of substate 2, is not part of the optimal solution if both substates belong to the same state (positive or negative), both rotamers are of the same amino acid type, and the following criterion holds:

$$
\begin{align*}
& c_{1}+E_{1}\left(i_{a}\right)+\sum_{j, j \neq i} \min _{s_{1}}\left(E_{1}\left(j_{s_{1}}\right)+E_{1}\left(i_{a}, j_{s_{1}}\right)\right) \\
& +\sum_{j>k, k \neq i, j \neq i} \min _{s_{1}, u_{1}} E_{1}\left(j_{s_{1}}, k_{u_{1}}\right) \\
& >c_{2}+E_{2}\left(i_{b}\right)+\sum_{j, j \neq i} \max _{s_{2}}\left(E_{2}\left(j_{s_{2}}\right)+E_{2}\left(i_{b}, j_{s_{2}}\right)\right) \tag{1}\\
& +\sum_{j>k, k \neq i, j \neq i} \max _{s_{2}, u_{2}} E_{2}\left(j_{s_{2}}, k_{u_{2}}\right)
\end{align*}
$$

Proof. Following Eq. 1 in the main text, the energy of substate 1 (used as a subscript) with rotamer i_{a} at residue i and its upper bound can be written as:

$$
\begin{align*}
c_{1}+ & \sum_{m} E_{1}\left(m_{r}\right)+\sum_{m<j} E_{1}\left(m_{r}, j_{s}\right) \\
= & c_{1}+E_{1}\left(i_{a}\right)+\sum_{m \neq i} E_{1}\left(m_{r}\right)+\sum_{j \neq i} E_{1}\left(i_{a}, j_{s}\right)+ \\
& \sum_{m<j, m \neq i, j \neq i} E_{1}\left(m_{r}, j_{s}\right) \tag{2}\\
> & c_{1}+E_{1}\left(i_{a}\right)+\sum_{j, j \neq i} \min _{s}\left(E_{1}\left(j_{s}\right)+E_{1}\left(i_{a}, j_{s}\right)\right)+ \\
& \sum_{j>m, m, j \neq i} \min _{s, r} E_{1}\left(j_{s}, m_{r}\right) \triangleq L_{1}\left(i_{a}\right)
\end{align*}
$$

By doing the same for rotamer i_{b} in substate 2:

$$
\begin{align*}
& c_{2}+ \sum_{m} E_{2}\left(m_{r}\right)+\sum_{m<j} E_{2}\left(m_{r}, j_{s}\right) \\
&= c_{2}+E_{2}\left(i_{b}\right)+\sum_{m \neq i} E_{2}\left(m_{r}\right)+\sum_{j \neq i} E_{2}\left(i_{b}, j_{s}\right)+ \\
& \sum_{m<j, m \neq i, j \neq i} E_{2}\left(m_{r}, j_{s}\right) \tag{3}\\
&< c_{2}+E_{2}\left(i_{b}\right)+\sum_{j, j \neq i} \max _{s}\left(E_{2}\left(j_{s}\right)+E_{2}\left(i_{b}, j_{s}\right)\right)+ \\
& \quad \sum_{j>m, m \neq i, j \neq i} \max _{s, r} E_{2}\left(j_{s}, m_{r}\right) \triangleq U_{2}\left(i_{b}\right)
\end{align*}
$$

Therefore, if $L_{1}\left(i_{a}\right)>U_{2}\left(i_{b}\right)$, then i_{a} is pruned by i_{b} and cannot be part of the global optimum.

A natural extension for the top $\delta \mathrm{kcal} / \mathrm{mol}$ ensemble is that rotamer i_{a} of substate 1 is pruned by rotamer i_{b} of substate 2 if $L_{1}\left(i_{a}\right)>U_{2}\left(i_{b}\right)+\delta$.

3 Global sequence search

```
Algorithm 2 Main algorithm
    best_score \(=\) Max_Value
    best_score \(=\) Global_Search_GMEC( \()\)
    Global_Search_Ensemble()
```

```
Algorithm 3 Global_Search_GMEC()
    if LDS_constraint() then
        return
    end if
    if Is_fully_defined() then
        if Lower_bound_fully_defined ()\(=0\) then
            Backbone_pruning()
            Seq_defined_GMEC()
            if best_score > Lowest_energy_pos - Lowest_energy_neg then
            best_score \(=\) Lowest_energy_pos - Lowest_energy_neg
                end if
        end if
    else
        \(\mathrm{i}=\) Variable_ordering()
        \(\mathrm{a}=\) Amino_ordering ()
        Assign_amino(i,a)
        if Lower_bound_Not_fully_defined ()\(==0\) then
            Global_Search_GMEC()
        else
            Remove_amino(i,a)
            Global_Search_GMEC()
        end if
    end if
```

```
Algorithm 4 Seq_defined_GMEC()
    Update_pos \(=0\)
    Lowest_energy_pos = Max_Value
    for \(\mathrm{i}=1: \mathrm{N}\) do
        if Stability_condition \((\tau)\) then
            temp_best = SCP_GMEC(i)
            if temp_best < Lowest_energy_pos then
                Lowest_energy_pos = temp_best
                Update_pos \(=1\)
            end if
        end if
    end for
    if Update_pos \(==0\) then
        return
    end if
    Lowest_energy_neg = Max_Value
    for \(\mathrm{j}=1\) : M do
        temp_best = SCP_GMEC(j)
        if temp_best < Lowest_energy_neg then
            Lowest_energy_neg = temp_best
        end if
        if best_score < Lowest_energy_pos - Lowest_energy_neg then
            return
        end if
    end for
```

```
Algorithm 5 Global_Search_ensemble()
    if LDS_constraint() then
        return
    end if
    if Is_fully_defined() then
        if Lower_bound_fully_defined ()\(=0\) then
            Backbone_pruning()
            Seq_defined_GMEC()
            Seq_defined_ensemble()
            if best_score \(+\varepsilon>\) Lowest_energy_pos - Lowest_energy_neg then
                print conformation for this sequence
            end if
        end if
    else
        i = Variable_ordering()
        \(\mathrm{a}=\) Amino_ordering()
        Assign_amino(i,a)
        if Lower_bound_Not_fully_defined ()\(==0\) then
            Global_Search_ensemble()
        else
            Remove_amino(i,a)
            Global_Search_ensemble()
        end if
    end if
```

```
Algorithm 6 Seq_defined_ensemble()
    for \(\mathrm{i}=1\) : N do
        if backbone_pruned(i) \(==0\) then
            SCP_ensemble(i)
        end if
    end for
    for \(\mathrm{j}=1\) : M do
        if backbone_pruned \((\mathrm{j})==0\) then
            SCP_ensemble(j)
        end if
    end for
```


4 Bounding in global sequence search

Theorem 2. For any sequence space S, a lower bound of the objective function for multistate protein design with substate ensembles (Formulation in Eq. 5 of main text) is given by

$$
\begin{align*}
& \min _{(k, l) \in \mathcal{P} \times \mathcal{Q}}\left(\Delta c_{k l}+\sum_{i} \min _{\mathbf{a} \in S(i)} \min _{\left(r, r^{\prime}\right)}\left(\Delta E_{k l}\left(i_{r, r^{\prime}}\right)+\right.\right. \\
& \left.\left.\sum_{j>i} \min _{\mathbf{a}^{\prime} \in S(j)} \min _{\left(s, s^{\prime}\right)} \Delta E_{k l}\left(i_{r, r^{\prime}}, j_{s, s^{\prime}}\right)\right)\right), \text { where } \tag{4}\\
& \Delta c_{k l}=c_{k}^{+}-c_{l}^{-} \\
& \Delta E_{k l}\left(i_{r, r^{\prime}}\right)=E_{k}^{+}\left(i_{r}\right)-E_{l}^{-}\left(i_{r^{\prime}}\right) \tag{5}\\
& \Delta E_{k l}\left(i_{r, r^{\prime}}, j_{s, s^{\prime}}\right)=E_{k}^{+}\left(i_{r}, j_{s}\right)-E_{l}^{-}\left(i_{r^{\prime}}, j_{s^{\prime}}\right)
\end{align*}
$$

i.e., differences in constant, singleton, and pairwise energies between a positive substate k (position i and j taking rotamer r and s) and a negative substate l (position i and j taking rotamer r^{\prime} and s^{\prime}).
Proof. For an arbitrary sequence a in the space S, its rotamer vector \mathbf{r} is in the space of $\mathcal{R}_{k}(\mathbf{a})$ for substate k. The highest specificity is thus

$$
\begin{align*}
& \min _{\mathbf{a} \in S}\left(\min _{k \in \mathcal{P}} \min _{\mathbf{r} \in \mathcal{R}_{k}(\mathbf{a})} E_{k}^{+}(\mathbf{r})-\min _{l \in \mathcal{Q}} \min _{\mathbf{r}^{\prime} \in \mathcal{R}_{l}(\mathbf{a})} E_{l}^{-}\left(\mathbf{r}^{\prime}\right)\right) \\
& \geqslant \min _{\mathbf{a} \in S} \min _{(k, l) \in \mathcal{P} \times \mathcal{Q}}\left(\mathbf{r}, \mathbf{r}^{\prime}\right) \in \mathcal{R}_{k}(\mathbf{a}) \times \mathcal{R}_{l}(\mathbf{a}) \\
& \left.\geqslant \min _{\mathbf{a} \in S} \min _{k}(\mathbf{r})-E_{l}^{-}\left(\mathbf{r}^{\prime}\right)\right) \\
& \left.+\sum_{j>i} \Delta c_{k l}+\min _{\left(r, r^{\prime}\right)}\left(\sum_{i} \Delta E_{k l}\left(i_{r, r^{\prime}}, j_{s, s^{\prime}}\right)\right)\right) \\
& \geqslant \min _{\mathbf{a} \in S} \min _{(k, l) \in \mathcal{P} \times \mathcal{Q}}\left(\Delta c_{k l}+\sum_{i} \min _{\left(r, r^{\prime}\right)}\left(\Delta E_{k l}\left(i_{r, r^{\prime}}\right)\right.\right. \\
& \left.\left.+\sum_{j>i} \min _{\left(s, s^{\prime}\right)} \Delta E_{k l}\left(i_{r, r^{\prime}}, j_{s, s^{\prime}}\right)\right)\right) \tag{6}\\
& =\min _{(k, l) \in \mathcal{P} \times \mathcal{Q}}\left(\Delta c_{k l}+\min _{\mathbf{a}} \sum_{i} \min _{\left(r, r^{\prime}\right)}\left(\Delta E_{k l}\left(i_{r, r^{\prime}}\right)\right.\right. \\
& \left.\left.+\sum_{j>i} \min _{\left(s, s^{\prime}\right)} \Delta E_{k l}\left(i_{r, r^{\prime}}, j_{s, s^{\prime}}\right)\right)\right) \\
& \geqslant \min _{(k, l) \in \mathcal{P} \times \mathcal{Q}}\left(\Delta c_{k l}+\sum_{i} \min _{\mathbf{a} \in S(i)} \min _{\left(r, r^{\prime}\right)}\left(\Delta E_{k l}\left(i_{r, r^{\prime}}\right)\right.\right. \\
& \left.\left.+\sum_{j>i} \min _{\mathbf{a}^{\prime} \in S(j)} \min _{\left(s, s^{\prime}\right)} \Delta E_{k l}\left(i_{r, r^{\prime}}, j_{s, s^{\prime}}\right)\right)\right)
\end{align*}
$$

The complexity of evaluating the lower bound for undefined sequences is given as follows:

Theorem 3. The lower bound in Theorem 2 can be computed in $O\left((n R a)^{2} r\right)$, where n is the number of positions, R the average number of rotamers per position, a the average number of substates per state, and r the average number of rotamers per amino acid.

Proof. we prove the complexity by starting with the most inner minimization:

$$
\begin{align*}
& \min _{\left(s, s^{\prime}\right)} \Delta E_{k l}\left(i_{r, r^{\prime}}, j_{s, s^{\prime}}\right) \\
& =\min _{\left(s, s^{\prime}\right)}\left(E_{k}^{+}\left(i_{r}, j_{s}\right)-E_{l}^{-}\left(i_{r^{\prime}}, j_{s^{\prime}}\right)\right) \tag{7}\\
& =\min _{s} E_{k}^{+}\left(i_{r}, j_{s}\right)+\min _{s^{\prime}}\left(-E_{l}^{-}\left(i_{r^{\prime}}, j_{s^{\prime}}\right)\right) \\
& =\min _{s} E_{k}^{+}\left(i_{r}, j_{s}\right)-\max _{s^{\prime}} E_{l}^{-}\left(i_{r^{\prime}}, j_{s^{\prime}}\right)
\end{align*}
$$

So, we can calculate it in $O(r)$. Since the number of amino acids is known, then

$$
\begin{equation*}
\min _{a^{\prime} \in S(j)} \min _{\left(s, s^{\prime}\right)} \Delta E_{k l}\left(i_{r, r^{\prime}}, j_{s, s^{\prime}}\right) \tag{8}
\end{equation*}
$$

will be again $O(r)$, so by summing over positions it will be $O(n r)$. For calculating:

$$
\begin{equation*}
\min _{a \in S(i)} \min _{\left(r_{k}, r_{l}\right)}\left(\Delta E_{k l}\left(i_{r, r^{\prime}}\right)+\sum_{j>i} \min _{a^{\prime} \in S(j)} \min _{\left(s, s^{\prime}\right)} \Delta E_{k l}\left(i_{r, r^{\prime}}, j_{s, s^{\prime}}\right)\right) \tag{9}
\end{equation*}
$$

similar to previous version, we can compute it in $O\left(n R^{2} r\right)$ and summing over all positions it will be $O\left(n^{2} R^{2} r\right)$. Finally, since we are calculating (9) for all a^{2} pairs of substates across the two states, complexity will be $O\left(a^{2} n^{2} R^{2} r\right)$.

When a sequence is specifically defined during search, we have derived a more powerful lower bound as follows:

Theorem 4. For any defined sequence $\mathbf{s}(S=\{\mathbf{s}\})$, a lower bound can be computed by

$$
\begin{equation*}
\min _{k \in \mathcal{P}} L_{k}^{+}(\mathbf{s})-\min _{l \in \mathcal{Q}} U_{l}^{-}(\mathbf{s}) \tag{10}
\end{equation*}
$$

in which $L_{k}^{+}(\mathbf{s})$ is lower bound on all rotamer conformation for sequence \mathbf{s} and $k^{t h}$ substate in positive design and $U_{l}^{-}(\mathbf{s})$ is Upper bound on all rotamer conformation for sequence \mathbf{s} and $l^{\text {th }}$ substate in negative design.

Proof. When sequence is fully defined, a lower bound can be derived by:

$$
\begin{align*}
& \min _{k \in \mathcal{P}} \min _{\mathbf{r}_{\mathbf{k}} \in R_{k}(\mathbf{s})} E_{k}^{+}\left(\mathbf{r}_{\mathbf{k}}\right)-\min _{l \in \mathcal{Q}} \min _{\mathbf{r}_{1} \in R_{l}(\mathbf{s})} E_{l}^{-}\left(\mathbf{r}_{\mathbf{l}}\right) \tag{11}\\
& \geqslant \min _{k \in \mathcal{P}} L_{k}^{+}(\mathbf{s})-\min _{l \in \mathcal{Q}} U_{l}^{-}(\mathbf{s})
\end{align*}
$$

in which $L_{k}^{+}(\mathbf{s})$ can be any lower bound from single-state protein design (we use existential directed arc consistency a.k.a. EDAC) and $U_{l}^{-}(\mathbf{s})$ can be any upper bound from single state protein design (we use limited discrepancy search a.k.a. LDS).

5 Results

5.1 TCR Design: Efficiency

Additional contributions to performance improvement

Beyond substate pruning enabled by interconnected CFNs, three more improvements we made also contribute to the numerical efficiency. The first affects both reduced iCFN and iCFN: (1) variables (positions) are ordered based on the number of rotamers divided by the median of singleton energies only, which affects the nodes and leaves (and ultimately sequences) visited during tree search. The rest two are both for calculating lower bounds of undefined sequences thus only affect iCFN: (2) a lookup table storing intermediate min/max values for each substate reduces calculations in the order of the number of substates, and (3) an upper bounding when minimizing differences over substate pairs can be accomplished with any feasible solution.

To dissect the contributions of these three additional contributions, we start with none and incrementally introduce them into versions 0 (none), 0.1 , and 0.2 , where the latter two only apply to iCFN. The latest version in the main text is regarded version 1. By comparing them in the supplemental Tables S1 and S2, we find that the change of position ordering may lead to slightly increased number of nodes expanded or leaves visited but saves run time due to much less time spent on each node for bound estimation. In addition, the lookup tables are created only once and used multiple times in search, which especially speed up large designs (twice for double designs).

Position(s)	Reduced iCFN		iCFN			
	v0	v1	v0	v0.1	v0.2	v1
26	4.06	1.46	4	0.6	0.62	0.56
28	291	24.5	289	5.88	7.32	6.29
98	32	9.98	26	3.26	4.46	3.38
100	33	19.85	30	4.18	4	4.44
26,28	16152	1335.95	12774	676.61	248.26	228
26,98	3540	809.18	2627	283.63	172.89	182.10
26,100	3799	1510.03	3008	686.67	330.68	303.64
28,98	27252	3707.04	21809	1522.54	717.25	745.84
28,100	20521	5603.60	16605	1785.23	738.04	796.96
98,100	19808	4384.48	13726	1257	534.42	526.97

Table S1: Comparing run time (in seconds) between different versions of reduced iCFN and iCFN for the best global optimum conformation in multi-state design problems with ensemble of substates per state for TCR.

Position(s)	Reduced iCFN		iCFN			
	v0	v1	v0	v0.1	v0.2	v1
26	6654	66.69	3700	22.94	31.48	21.86
28	4283	114.22	2222	22.32	29.3	23.55
98	10612	103.29	6318	40.81	55.72	43.35
100	2109	154.51	1102	21.20	20.05	23.74
26,28	384997	7454.93	205656	16120	1705.68	1063.89
26,98	-	15449.04	-	27596	4666.22	3872.32
26,100	502803	19780.68	265185	12162	2689.77	2226.52
28,98	-	23378.51	487360	20629	3561.14	2810.31
28,100	347872	24631.34	177949	11452	2956.08	2359.10
98,100	-	17303.91	323104	11781	2700.47	2056.47

Table S2: Comparing run time (in seconds) between different versions of reduced iCFN and iCFN for the best ensemble conformations in multi-state design problems with ensemble of substates per state for TCR. ("-" indicates an out-of-time error under the 7 -day limit.)

5.2 TCR Design: Accuracy

Results for Multi-substates are shown in the following table.

Mutation	$\mathrm{AAG}_{(\Delta \Delta \mathrm{G})}$	ELA ($\Delta \Delta \mathrm{G})$	specificity ($\Delta \Delta \Delta \mathrm{G})$
$\alpha \mathrm{D} 26 \mathrm{Y}$	-1.03	21.90	-22.93
α D26F	-1.74	9.04	-10.78
α D26A	-2.56	4.41	-6.97
α D26N	-0.34	5.49	-5.83
α D26P	-3.38	2.27	-5.65
α D26K	-0.39	5.14	-5.53
α D26T	-2.30	2.33	-4.63
α D26C	-2.21	2.00	-4.21
$\alpha \mathrm{D} 26 \mathrm{~V}$	-1.53	1.48	-3.01
$\alpha \mathrm{D} 26 \mathrm{~W}$	-4.13	-1.48	-2.65
$\alpha \mathrm{D} 26 \mathrm{M}$	-3.32	-0.79	-2.53
$\alpha \mathrm{D} 26 \mathrm{H}$	-0.38	1.96	-2.34
$\alpha G 28 L$	-2.66	38.08	-40.74
$\alpha \mathrm{G} 28 \mathrm{E}$	-5.91	22.72	-28.63
α G28D	-2.39	16.00	-18.39
$\alpha \mathrm{G} 28 \mathrm{~T}$	3.13	21.38	-18.25
$\alpha G 28 I$	-5.55	8.83	-14.38
$\alpha \mathrm{G} 28 \mathrm{M}$	-4.32	9.52	-13.84
α G28R	4.18	16.94	-12.76
$\alpha \mathrm{G} 28 \mathrm{~V}$	0.75	11.16	-10.41
$\alpha \mathrm{G} 28 \mathrm{C}$	-0.04	9.45	-9.49
$\alpha^{\prime}{ }^{28} \mathrm{Y}$	4.80	13.96	-9.16
$\alpha \mathrm{G} 28 \mathrm{~K}$	-0.20	8.94	-9.14
$\alpha \mathrm{G} 28 \mathrm{~F}$	-3.62	3.18	-6.80

Table S3: TCR designs considering an ensemble of positive or negative substate (flexible backbone conformation here). Reported for each design is the calculated relative binding affinities $\Delta \Delta G$ (in $\mathrm{Kcal} / \mathrm{mol}$) compared to the wild type (WT) for the AAG peptide (MART-1 nonameric epitope) and the ELA peptide (MART-1 decameric epitope), respectively, as well as their difference $\Delta \Delta \Delta G$, or, specificity. Only designs predicted to significantly improve AAG-binding specificity compared to WT $(\Delta \Delta \Delta G \leqslant-2 \mathrm{Kcal} / \mathrm{mol})$ are reported here. Designs highlighted in red and blue were experimentally validated true or false positives according to a recent study (Pierce et. al. 2014) .

Mutation	AAG $_{(\Delta \Delta \mathrm{G})}$	ELA $_{(\Delta \Delta \mathrm{G})}$	specificity $(\Delta \Delta \Delta \mathrm{G})$
α L98K	1.04	6.32	-5.28
α L98R	0.32	4.95	-4.63
$\alpha F 100 Y$	7.09	47.79	-40.70
$\alpha F 100 W$	15.23	40.39	-25.16
α F100R	13.76	21.90	-8.14
α F100Q	3.34	10.28	-6.94
α F100M	4.08	9.77	-5.69
α F100A	1.73	6.40	-4.67
α F100I	1.71	6.21	-4.50
α F100K	14.61	18.32	-3.71
α F100S	1.70	5.41	-3.71
α F100C	2.39	5.90	-3.51
α F100L	7.07	9.47	-2.40
α F100V	4.36	6.64	-2.28
α F100E	4.97	7.22	-2.25

Table S3: (Continued) TCR designs considering an ensemble of positive or negative substate (flexible backbone conformation here). Reported for each design is the calculated relative binding affinities $\Delta \Delta G$ (in $\mathrm{Kcal} / \mathrm{mol}$) compared to the wild type (WT) for the AAG peptide (MART-1 nonameric epitope) and the ELA peptide (MART-1 decameric epitope), respectively, as well as their difference $\Delta \Delta \Delta G$, or, specificity. Only designs predicted to significantly improve AAG-binding specificity compared to WT $(\Delta \Delta \Delta G \leqslant-2 \mathrm{Kcal} / \mathrm{mol})$ are reported here. Designs highlighted in red and blue were experimentally validated true or false positives according to a recent study (Pierce et. al. 2014).

Mutation	AAG $_{(\Delta \Delta \mathrm{G})}$	ELA $_{(\Delta \Delta \mathrm{G})}$	${\text { specificity }{ }_{(\Delta \Delta \Delta \mathrm{G})}}^{(\alpha \mathrm{D} 26 \mathrm{~N}}$
$\alpha G 28 L$	-1.98	3.76	-5.74
$\alpha \mathrm{G} 28 \mathrm{D}$	-1.65	4.69	-6.34
$\alpha \mathrm{~L} 98 \mathrm{~V}$	-3.64	-1.60	-2.04
$\alpha \mathrm{~L} 98 \mathrm{D}$	1.92	1.32	1.22
$\alpha \mathrm{~L} 98 \mathrm{I}$	2.20	0.62	1.3
$\alpha \mathrm{~L} 98 \mathrm{E}$	2.29	0.87	1.33
$\alpha \mathrm{~L} 98 \mathrm{Q}$	1.88	-0.05	1.73
$\alpha F 100 W$	39.53	100.71	1.93
$\alpha F 100 Y$	4.87	28.50	-61.18
			-23.63

Table S4: TCR designs considering a single positive or negative substate (fixed backbone conformation here). Reported for each design is the calculated relative binding affinities $\Delta \Delta G$ (in Kcal/mol) compared to the wild type (WT) for the AAG peptide (MART-1 nonameric epitope) and the ELA peptide (MART-1 decameric epitope), respectively, as well as their difference $\Delta \Delta \Delta G$, or, specificity. Only designs predicted to significantly improve AAG-binding specificity compared to WT $(\Delta \Delta \Delta G \leqslant-2 \mathrm{Kcal} / \mathrm{mol})$ are reported here with the exception for position 98 with the top 5 lowest $\Delta \Delta \Delta G$. Designs highlighted in red and blue were experimentally validated true or false positives according to a recent study (Pierce et. al. 2014).

Mutation	AAG $_{(\Delta \Delta \mathrm{G})}$	ELA $_{(\Delta \Delta \mathrm{G})}$
$\alpha D 26 W$	4	8
$\alpha G 28 L$	10	1
$\alpha G 28 I$	10	3
$\alpha G 28 Y$	10	8
$\alpha F 100 Y$	7	1
$\alpha F 100 W$	10	2

Table S5: TCR designs considering an ensemble of positive or negative substates (flexible backbone conformations here). Reported are indices of various backbone conformations that were adopted in iCFN for various successful designs bound to the AAG peptide (MART-1 nonameric epitope) and the ELA peptide (MART-1 decameric epitope).

