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A. Benchmarking Feature Interaction Scores on ground-truth motif interactions embedded in simulated 

regulatory DNA sequences 

 

A.1 Simulating regulatory DNA sequences: We simulated regulatory DNA sequences using the simdna 

package (https://github.com/kundajelab/simdna). Simulated sequences were 200 bp in length. Nucleotides at 

each position were sampled independently and randomly from a distribution of [0.27, 0.23, 0.23, 0.27] for A, C, 

G and T respectively. We simulated 60,000 sequences that were divided into three Sets of 20,000 each (Figure 

2A).  

 

We randomly embedded 1 or 2 motif instances of the ELF1 transcription factor (TF) in each sequence in Set 1. 

The embedded motif sequence was the highest affinity sequence from a known ELF1 Position Weight Matrix 

(PWM), called “ELF1_known2” in Kheradpour et al.1. The motif embedding positions were randomly sampled 

(based on a uniform distribution) across the entire sequence. If a location was sampled that already had a motif 

embedded, the location was re-sampled until there was sufficient room for the new motif to be embedded. The 

number of motif instances in each sequence was determined by sampling from a Poisson distribution with mean 

2 but allowing only 1 or 2 instances in each sequence. For each sequence in Set 2, 1 or 2 motif instances from 

the “SIX5_known1” PWM of the SIX5 TF were embedded using the same protocol as for Set 1. For each 

sequence in Set 3, 1 or 2 motif instances of ELF1 and 1 or 2 motif instances of SIX5 were independently 

embedded using the same protocol. Hence, all sequences in Set 3 contained both ELF1 and SIX5 motifs. We 

further independently embedded 0 or 1 instances of the AP1 motif (called  “AP1_disc3” in Kheradpour et al.1) 

and TAL1 motif (called  “TAL1_known1” in Kheradpour et al.1) in sequences from all three Sets. 

 

A.2 Convolutional neural network (CNN) model trained on simulated regulatory DNA sequences: We set 

up a binary classification task where all sequences in Set 3 (ELF1 and SIX5) were labeled as positive and all 

other sequences from Sets 1 and 2 were labeled as negatives. The 60K sequences from Sets 1, 2 and 3 were split 

into 40K, 10K and 10K subsets to be used as the training, validation and test set respectively. 

 

We used the Keras deep learning framework (https://github.com/keras-team/keras) to train a CNN to classify 

the sequences. The sequences were represented using a one-hot encoding with 4 channels (A, C, G and T). The 

CNN architecture is as follows: Layer 1 is a convolutional layer with 40 filters of size 19 and ReLU activation 

operating on one-hot encoded input sequences. Layer 2 is a max pooling layer of pool length 10. Layer 3 is a 

fully connected layer of size 200 with dropout (p=0.5) and ReLU activation. Layer 4 is a fully connected layer 

with a sigmoid activation. The model was trained with the Adam optimizer and binary cross-entropy loss until 

no improvement was seen for 3 epochs on the validation set. The datasets, code and model are available at 

https://github.com/kundajelab/dfim  

 

A.3 DeepLIFT nucleotide importance scores for the simulated regulatory DNA sequences: We computed 

importance scores for each nucleotide in each of the 60K sequences using DeepLIFT2. DeepLIFT importance 

scores quantify the sensitivity of the output logit to finite changes in the input sequence relative to a reference 

sequence. We used a 4-channel probabilistic reference sequence 𝑅 of length 200, with 𝑅[(𝐴, 𝑇), 𝑝] = 0.27 and 

𝑅[(𝐺, 𝐶), 𝑝] = 0.23 for each position 𝑝 ∈ {1…200}. These probabilities match the background nucleotide 

frequencies used to simulate the regulatory DNA sequences.  

 

B. Uncovering epistatic motif interactions of co-binding transcription factors (TFs) from CNN models of 

in vivo TF binding 
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B.1 TF ChIP-seq and DNase-seq datasets: We downloaded pre-processed peak calls (binding locations) in 

hg19 genome coordinates obtained from ENCODE3,4 ChIP-seq data for three TFs GATA1, GATA2 and TAL1 

in the K562 cell-line The URLs for the peak files are  

GATA2: 

http://hgdownload.soe.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeAwgTfbsUniform/wgEncodeAwgTfbs

HaibK562Gata2sc267Pcr1xUniPk.narrowPeak.gz 

GATA1: 

http://hgdownload.soe.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeAwgTfbsUniform/wgEncodeAwgTfbs

SydhK562Gata1UcdUniPk.narrowPeak.gz 

TAL1: 

http://hgdownload.soe.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeAwgTfbsUniform/wgEncodeAwgTfbs

SydhK562Tal1sc12984IggmusUniPk.narrowPeak.gz  

 

FASTQs files for DNase-seq data in K562 were downloaded from the ENCODE5 portal 

https://www.encodeproject.org/experiments/ENCSR000EOY/  . The data processing can be exactly reproduced 

by using our processing pipeline at https://github.com/kundajelab/atac_dnase_pipelines. Briefly, reads from 

both replicates are mapped to the hg19 human reference genome using Bowtie2. After filtering duplicates and 

multi-mapping reads, peaks are called for each replicate and for reads pooled from both replicates using 

MACS26 with p-value threshold of 0.01. We also randomly split the reads from the pooled replicates into two 

equally sized pseudoreplicates. Peaks are called using MACS26 on these pseudoreplicates as well. We only 

retain reproducible peaks from the pooled-replicates that are present in either both individual replicates or 

present in both pseudo-replicates. 

 

B.2 Multi-task Convolutional neural network (CNN) models of TAL1, GATA1 and GATA2 TF binding 

in K562: We trained a multi-task CNN to model DNA sequence determinants of in vivo binding of the TAL1, 

GATA1 and GATA2 TFs in the K562 cell line. Each task was set up as a binary classification problem to 

classify 1kb sequences centered at the TF ChIP-seq peak summits of each TF (positive class) from 1Kb 

sequences centered at the peak summits of all chromatin accessible DNase-seq peaks (negative class) in K562 

that did not overlap the TF’s ChIP-seq peaks. For each task (TF), all positive examples overlapped the factor’s 

ChIP-seq peaks and DNase-seq peaks. Negative examples overlapped DNase-seq peaks but not ChIP-seq peaks. 

 

We used the Keras deep learning framework (https://github.com/keras-team/keras) for training the CNN. The 

sequences were represented using a one-hot encoding with 4 channels (A, C, G and T). The architecture of the 

CNN model is as follows: Layers 1-5 consist of convolutional layers each with 25 convolutional filters of size 

10 and ReLU activations. Layer 6 is a max pooling layer with stride 25. Layer 7 is a final fully connected layer 

for each task with a sigmoid activation. We held out all examples on chromosomes 8 and 9 for our testing set 

and used the rest of the data for training and validation. The model was trained with the Adam optimizer and 

binary cross-entropy loss. Our model achieved mean auROC of 0.953 and mean auPRC of 0.459 on the held-out 

test set across all three tasks. The datasets, code and model are available at https://github.com/kundajelab/dfim. 

 

B.3 GATA1 and TAL1 motif instances for DFIM analysis: For determining motif sites to compare FIS 

between putative TAL1 and GATA1 binding sites, we found all exact matches in the input sequences 

underlying GATA1 and TAL1 ChIP-seq peaks to the pattern ‘GATA’ for GATA1 and to ‘CA**TG’ for TAL1 

where * can be any base {A,C,G,T}. While we do not expect every such location to be bound by its 

corresponding TF, these motifs greatly enrich for bound sites of these factors relative to the rest of the sequence. 

We computed DFIM by mutating the GATA1 motif locations and assessing the FIS of all TAL1 motif 

locations. We also performed the reverse procedure of mutating TAL1 and found a similar effect on GATA1 

motifs. When multiple TAL1 and/or GATA1 motifs appeared in the sequence, we found all combinations of a 

single TAL1 location and a single GATA1 location and performed the analysis for each pair of locations while 

holding the rest of the sequence fixed. 
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C. Discovering interactions between regulatory variants (bindingQTLs) and their target TF motifs from 

CNN models of in vivo chromatin accessibility 

 

C.1 Chromatin accessibility datasets: We obtained FASTQ files for ATAC-seq datasets in 16 primary 

hematopoietic cell types from Corces et al. 7 (available through GEO accession (GSE74912). We also obtained 

FASTQ files for DNase-seq data in the GM12878 

(https://www.encodeproject.org/experiments/ENCSR000EMT/) and K562 

(https://www.encodeproject.org/experiments/ENCSR000EOY/) cell lines from the ENCODE5 portal. The raw 

fastq files were processed using our ATAC/DNase processing pipeline available at: 

https://github.com/kundajelab/atac_dnase_pipelines. Briefly, reads from all replicates in each cell type were 

mapped to the hg19 human reference genome using Bowtie2. After filtering duplicates and multi-mapping 

reads, we randomly subsampled 50M reads. Peaks are called for each replicate and for reads pooled from both 

replicates using MACS26 with p-value threshold of 0.01. We also randomly split the reads from the pooled 

replicates into two equally sized pseudoreplicates. Peaks are called using MACS26 on these pseudoreplicates as 

well. Reproducible peaks were called for cell type using the Irreproducible Discovery Rate framework (IDR < 

5%). 

 

C.2 Multi-task Convolutional neural network (CNN) models of chromatin accessibility in 18 

hematopoietic cell types/cell-lines: We trained an 18-task CNN to model the DNA sequence determinants of 

chromatin accessibility (measured by either ATAC-seq or DNase-seq) in the 16 primary cells and 2 cell-lines. 

Each task was modeled as binary classification problem. For each task (cell-type), positive examples consisted 

of 1Kb DNA sequences overlapping the IDR reproducible DNase-seq/ATAC-seq peaks from that cell type. The 

negative set for each task consisted of 1Kb DNA sequences overlapping the union of peaks from all 18 cell 

types, excluding the positive examples for that task.  

 

We used the Keras deep learning framework (https://github.com/keras-team/keras) for training the CNN. The 

sequences were represented using a one-hot encoding with 4 channels (A, C, G and T). The architecture of the 

CNN is as follows: Layer 1 is a convolutional layer with 300 filters of length 19 with ReLU activation and 

Batch Normalization. Layer 2 is a max pooling layer with pooling width 3. Layer 3 is a convolutional layer with 

200 filters of length 11 with ReLU activation and Batch Normalization. Layer 4 is a max pooling layer with 

pooling width 4. Layer 5 is a convolutional layer with 200 filters of length 7 followed by ReLU activation and 

Batch Normalization. Layer 6 is a max pooling layer with pooling width 4. Layer 7 and 8 are two fully 

connected layers of size 1000 with batch normalization and dropout (p=0.3) after each layer. Layer 9 for each 

task is a fully connected layer with sigmoid activation. We initialized our model with weights learned from a 

multi-task model pre-trained on 900 reference DNase-seq samples from the ENCODE5 and Roadmap 

Epigenomics projects8. The reference DNase-seq datasets were pre-processed using our ATAC/DNase 

processing pipeline available at: https://github.com/kundajelab/atac_dnase_pipelines. The pre-trained model is 

available at https://github.com/kundajelab/dfim. We held out all examples on chromosomes 8 and 9 for our 

testing set and used the rest of the data for training and validation. We trained the model with the Adam 

optimizer and binary cross-entropy loss. The model achieved a mean auROC of 0.9 and a mean auPRC of 0.69 

across all 18 tasks on the test set. The datasets, code and models are available at 

https://github.com/kundajelab/dfim 

 

C.3 bindingQTL analysis: We restricted DFIM analysis of significant bQTLs and other control SNVs from 

Tehranchi et al.9 that overlapped the ATAC-seq/DNase-seq peaks in any of the 18 cell types. We computed 

DeepLIFT and DFIM Feature Interaction Scores using the GM12878 (lymphoblastoid cell-line) task of our 

model since the allelic effects of the bQTLs were estimated from ChIP-seq data in pooled lymphoblastoid lines.  
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Supplementary Figures 

 

 
SFig. 1 The NFKB QTL at chr11:30344883 interrupts a known NFKB binding site. The original importance scores are in the 

top row, the mutated scores after converting the reference allele “G” to a “C.” The delta profile is pictured in the bottom row 

where all non-significant bases (p>0.05) have been omitted leaving just the responding motif. 

 

 

  
SFig. 2A P-values determined from fitting a NULL 

distribution to dinucleotide shuffled sequences using 

DeepLIFT with a fixed GC reference for computing 

importance scores. 

SFig. 2B Q-values – corrected with the Benjamini-

Hochberg FDR procedure – of SFig. 2A. 

  



SFig. 2C P-values determined from fitting a NULL 

distribution to dinucleotide shuffled sequences using saliency 

maps for computing importance scores. 

SFig. 2D Q-values – corrected with the Benjamini-

Hochberg FDR procedure – of SFig. 2C. 

 

 
SFig. 3 Significant differences between positive (significant p<5e-5) and insignificant (p=1) bQTLs are recapitulated using 

importance scores computed with saliency maps, showing robustness of the method across multiple importance score methods.  

 

 

 
SFig. 4 Mutating TAL1 also has an effect on GATA1 

motifs within 20bp in comparison to those that are greater 

than 20bp away, showing generally symmetric results to 

those in Fig. 3B. 

 



 
SFig. 5 This SPI1 QTL appears to modulate the strength of an SPI1 binding site 100 base pairs away from the actual variant site. 

 

 
SFig. 6 We observe weak pairwise interactions between positions in the marginalized aggregate DFIM for Cbf1 across 

the 5K lowest binding affinity sequences. The rows correspond to (source position, source base, argmax mutant base). 

The columns correspond to (target position, target base). 
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