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1 Appendix

1.1 Background: ADAM optimizer

ADAM[7] computes adaptive learning rates η for all parameters from
estimates of first and second moments of the gradients. The first
moment(m̂t) involves the exponentially decaying average of the previous
gradients and the second moment(v̂t) involves exponentially decaying
average of the previous squared gradients. The update rule for epoch t
during training is:

Θt ← Θt−1 −
η

√
v̂t + ε

m̂t (1)

Here, ε is a very small number to prevent division by zero.

1.2 Background: Siamese Network in Deep Learning

The Siamese architecture has been used in many real applications, like face
recognition [8] and dimension reduction [4]. A Siamese network contains
two copies of a deep neural network(DNN) sharing the same weights(W ).
Figure 1 shows a general schema of a siamese architecture. Inputs are pairs
of samples XA and XB . The two twin networks are tied by a distance
measure(DW (XA, XB)) computed at the output representations of the
two twin networks. A meaningful mapping maps similar input vectors
to nearby points on the output manifold and dissimilar vectors to distant
points. Inputs are pairs of samples. By forwarding a pair of similar samples
into the Siamese network and penalizing the outputs (distance) of the pair,
we can intuitively limit the distance between two similar samples in the
learned embedding space to be small.
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Fig. 1. Schematic of a general Siamese Network. Inputs are pairs of samples. By forwarding
a pair into the Siamese network and penalizing the outputs of the pair, this training intuitively
limits the DW distance between two similar samples to be small. Backpropagation is used
to train the network.

1.3 DeepDiff Variations Tried in our Experiments

We focus on the predictive modeling of differential gene expression
given the histone modification profiles of a gene in two cell-types. To
improve the prediction of differential gene expression, we use two types of
auxiliary information. We use the cell-type specific expression prediction
as an auxiliary task to the main task of differential gene expression
prediction. Additionally, we also introduce a contrastive loss term as an
auxiliary regularization term to further aid differential gene expression
prediction. Combining these different auxiliary terms helps the model
build powerful representations to improve differential gene expression
prediction performance. Figure 3 in Section 3.6 presents an overview of
our strategy. We use a number of variations of the DeepDiff model:

Raw Difference Features (Raw:d) First, we predict differential gene
expression using the difference of the corresponding HM signals X =

XA−XB . We use X directly as input to the previously described Level
I Embedding module f1. The outputs from the Level I Embedding module
are used as input to the Level II Embedding module f2. This embedding
v is passed through a linear layer for prediction. Intuitively, this is exactly
like the AttentiveChrome model with input X = XA − XB(shown
in Figure 2 in Section 3.4).

Concatenation of Raw HM features (Raw:c) In this model, we treat the
HM level signals a gene from the two cell-types as different HM features.
We concatenate the HM profiles from the two cell-types into a single matrix
X = [XA,XB ] of size (2×M)×T . This is used as input to the Level
I Embedding module f1 followed by the Level II Embedding module f2.
We use a Level I Embedding module that has one LSTM for each HM
(from both cell-types), bin level attention weights αjt, j ∈ [1 . . . 2×M ]

and t ∈ [1 . . . T ] followed by a Level II Embedding module with HM
level attention weights βj j ∈ [1 . . . 2 ×M ]. Similar to Raw:d model,
we only predict differential expression.

Concatenation and difference of raw HM features(Raw): In addition to the
concatenated HM features, this variation uses an additional set of features
corresponding to the difference of the HM profiles: XA −XB . Thus,
the input matrix is now X = [XA,XB ,XA −XB ],a (3×M)× T
matrix. We use this matrix as the input to the Level I Embedding module f1
followed by the Level II Embedding module f2. This Level II Embedding
v is passed through a linear layer for prediction.

Adding Features from Auxiliary Tasks and Auxiliary Contrastive Loss: We
propose using individual gene expression prediction as an auxiliary task
to help the harder task of differential gene expression prediction. For this
purpose, we propose the following variations:

Concatenation and Difference of HMs + Auxiliary features(Raw+Aux):
This model aims at better feature representations for the Raw model.
For this purpose, we use X = [XA,XB ,XA − XB ] as the input
to a Level I Embedding module fd1 , followed by a Level II Embedding
module fd2 for the DeepDiff main task. We add cell-type specific
gene expression prediction for cell-type A and B as the Cell-Specific
Auxiliary task(Auxiliary-Task-A and Auxiliary-Task-B, respectively). For
this purpose, another Level I Embedding module fA1 takes as input matrix
XA corresponding to the HM profile for cell-typeA. This is followed by a
Level II Embedding module fA2 for cell-type A. Similarly, we use another
Level I Embedding module fB1 followed by the Level II Embedding
module fB2 for cell-type B. To leverage the information from the cell-
type specific expression prediction tasks, additional auxiliary features are
provided to the Level II Embedding module fd2 . Concretely, in addition to
the outputs of fd1 , the Level II Embedding module fd2 also takes as features
outputs from the Level I Embedding modules fA1 and fB1 . Thus, fd2
receives as input the output representations from both the fA1 and fB1 Level
I Embedding units concatenated after the fd1 Level I Embedding module
outputs. Both the Cell-Specific Auxiliary task and the main difference
tasks are trained end to end together.

Only Auxiliary Embedding as Features(Aux): For this variation, at the first
level we use two Level I Embedding modules fA1 and fB1 corresponding
to each cell-type. This is followed by two Level II Embedding modules
fA2 and fB2 that take as input fA1 (XA) and fB1 (XB) respectively.
The output of the Level II Embedding modules gives two final auxiliary
embeddings vA, and vB (Auxiliary-Task-A Embedding and Auxiliary-
Task-B Embedding, respectively). These auxiliary embeddings are
concatenated, v = [vA,vB ], and used as input to an MLP for the final
prediction. For the auxiliary task predictions, the output vA is passed
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Model Input Features Auxiliary Task Target Labels Level I Embedding Level II
Embedding

Loss

Raw:d XA −XB - differential expression f1 f2 `Diff

Raw:c [XA,XB ] - differential expression f1 f2 `Diff

Raw [XA,XB,XA −XB ] - differential expression f1 f2 `Diff

Raw+Aux [XA,XB,XA − XB ] and
XA , XB

Cell-Specific Auxiliary differential expression, gene expression A, gene
expression B

fd
1 , fA

1 , fB
1 fd

2 , fA
2 , fB

2 `Diff + `CellAux

Aux XA , XB Cell-Specific Auxiliary differential expression, gene expression A, gene
expression B

fA
1 , fB

1 fA
2 , fB

2 `Diff + `CellAux

Aux+Siamese XA , XB Cell-Specific Auxiliary +
Siamese Auxiliary

differential expression, gene expression A, gene
expression B

fA
1 , fB

1 (shared
weights)

fA
2 , fB

2 `Diff +`CellAux+`Siamese

Raw+Aux+Siamese [XA,XB,XA −XB ], XA ,
XB

Cell-Specific Auxiliary +
Siamese Auxiliary

differential expression, gene expression A, gene
expression B

fd
1 , fA

1 , fB
1 (shared

weights for A and B)
fA
2 , fB

2 `Diff +`CellAux+`Siamese

Table 1. DeepDiff Variations in detail: The columns represent (a) different combinations of input features, (b) the auxiliary tasks used in the multitasking framework
(Cell-Specific Auxiliary includes both the Auxiliary-Task-A and Auxiliary-Task-B), (c) the corresponding target labels for the tasks, and (d),(e) the model architecture
of the variations: f1 represents Level I Embedding module, and f2 represents Level II Embedding module, and (f) the corresponding loss used to train the models.

through a linear layer for the prediction for cell-type A. Similarly, vB is
used as input to a linear layer for the prediction for cell-type B.

Siamese Auxiliary with Siamese Contrastive Loss(Aux+Siamese): Using
the siamese contrastive loss formulation[4], we introduce a notion
of similarity and dissimilarity based on a gene’s differential gene
expression. We consider the histone modification profiles XA and XB

of two differentially expressed genes(upregulated or downregulated) to
be ‘different’(S = 1) and ‘similar’(S = 0) for genes not differentially
expressed. We introduce a contrastive loss term `Siamese as a regularizer,
based on whether a gene is differentially regulated or not at the output
embedding of the Level I Embedding unit f1. We use the following
formulation `Siamese:

`Siamese = (1− S)×
1

2
×R+ S ×

1

2
max(0,m−R)2 (2)

where:

R =
√

(fA1 (XA)− fB1 (XB))2 (3)

In Eq. 2, m > 0 is the margin in the contrastive loss and S indicates
similarity or dissimilarity of the inputs i.e.,S = 1 if the gene is
differentially expressed, and S = 0 if not differentially regulated.
Contrastive Loss encourages ‘similar’ inputs to map to nearby points in
the output representation space and ‘dissimilar’ inputs to map to distant
points in the representation space. We use this `Siamese as a regularizer.
We classify genes based on log change in differential gene expression<=

−2(downregulated) or differential gene expression>= 2(upregulated) as
differentially regulated(S = 1) and log change in−2 <=differential gene
expression<= 2 as S = 0. For this model, we use the Level I embedding
unit as Siamese twin networks, i.e. fA1 and fB1 share their weights, while
fA2 and fB2 (similar to the aux model) do not share weights.

Raw and Auxiliary Features with Siamese Contrastive Loss(Raw+Aux+Siamese):
We further add the above contrastive loss formulation to the Raw+Aux
model. We use the Level I Embeddings fA1 and fB1 as Siamese twin
networks that share weights, and use the concatenation of the output Level
I embeddings for the contrastive loss `Siamese in Eq. 2. In addition to
fA1 and fB1 , we use fd1 for the Raw features, similar to Raw+Aux model.

For the models with auxiliary tasks, Raw+Aux and Aux, we use
the total loss ` = `Diff + `CellAux. For Aux+Siamese, we use
` = `Diff + `CellAux +`Siamese. For the Raw, Raw:c and Raw:d
models, we only use `Diff for optimizing the network. Table 1 shows the
DeepDiff variations with corresponding architecture, target labels and loss
variations. Figure 3 in Section 3.6 presents the variations as a combination
of the DeepDiff main and Cell-Specific Auxiliary tasks.

1.4 Related Work

Table 2 compares DeepDiff with all the related studies discussed
in Section 2 for the task of quantifying gene expression using HMs.

1.5 More about experimental setup

DeepDiff and baseline hyperparameters: For Level I Embedding, we use
bidirectional LSTMs with hidden state size D = 32. Similarly, for
bidirectional LSTMs in Level II Embedding modules, we use the hidden
state size of 16. Since we implement a bi-directional LSTM, this results
in each hidden state at Level I Embedding hidden state hjt of size 64
and Level II Embedding hidden state sj of size 32. Accordingly, we set
the context vectors, Wbj and W h, to size 64 and 32, respectively. We
also use dropout, a regularization technique based on randomly dropping
units from DNNs during training to prevent overfitting. We use a dropout
probability of 0.5 for our experiments. We use hyperparameter m = 2.0

in our experiments for the Aux+Siamese and Raw+Aux+Siamese models
with Siamese Auxiliary task (Equation (2)). For both the single and two-
layer SVR models, we used cross-validation on varying hyperparameter
values of C ∈ {0.1, 1, 10, 100}. We used radial basis kernel for SVR
models. For the rest of the parameters, we used default settings in sklearn.

Evaluation Metric: We use Pearson Correlation Coefficient (PCC) to
evaluate all our variations and baselines. PCC is a measure of the linear
correlation between two continuous variables (predicted and target values
in our experiments). It ranges between 1 and−1, where 1 is total positive
linear correlation, 0 is no linear correlation, and−1 is total negative linear
correlation.

1.6 More possible experiments: Classification as
Cell-Specific Auxiliary Task

We also evaluate using classification labels for the Cell-Specific Auxiliary
Task as opposed to regression. To formulate the labels in cell-type specific
gene expression prediction in each cell-type as binary classification, we
follow AttentiveChrome. In detail, for each cell type, we choose the cell
type specific median of the rpkm gene expression as the threshold to
classify the expression as 1 or−1. We use the log fold change in rpkm gene
expression values as the regression label for the differential expression task.
If the auxiliary task is classification, v

′
A, defined in Appendix Section 1.3

for Cell-Specific Auxiliary task, will be fed to a softmax output layer.
To train this classification auxiliary task, we minimize the negative log
likelihood loss. Figure 2 shows the PCC for all model variations for
classification of cell-type specific gene expression as auxiliary tasks
and Table 3 shows the relative performance (%) with respect to Pearson
Correlation Coefficient(PCC) when comparing Aux and Raw+Aux models
to two-layer SVR. Because rpkm is a cell type specific normalization, we
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Computational Study Differential Unified Non-
linear

Bin-Info Representation Learning Feature
Inter.

Interpretable Output

Neighbor
Bins

Whole
Region

Linear Regression ([6]) × × × × × X × X Regression
SVR (single layer) ([1]) X × X Bin-specific × X X × Regression
SVR (two layer) ([1]) X × X × × X X × Regression

SVM ([2]) X × X Bin-specific × X X × Classification
Random Forest ([3]) × × X Best-bin × X × × Classification/Regression

ReliefF+Random Forest ([10]) X × X × × X × × Classification
Rule Learning ([5]) × × X × × X X X No prediction

DeepChrome-CNN [11] × X X Automatic X X X × Classification
AttentiveChrome[12] × X X Automatic X X X X Classification
DeepDiff (this study) X X X Automatic X X X X Regression

Table 2. Comparison of previous studies for the task of quantifying gene expression using histone modification marks (adapted from [11]). The columns indicate (a)
whether the it is a differential gene expression or cell type specific gene expression prediction study, (b) whether the study has a unified end-to-end architecture or
not (c) if it captures non-linearity among features (d) how has the bin information been incorporated (e) if representation of features is modeled on local and global
scales, (f) if combinatorial interactions among histone modifications are modeled, (h) if the model is interpretable, and (g) the output formulation of the study.

use rpkm as the target label in this case for consistency with the labels for
Cell-Specific Auxiliary tasks.

Fig. 2. Cell-Specific Auxiliary as classification: Pearson correlation (PCC) for
DeepDiff main task and multi-tasking with Cell-Specific Auxiliary as classification for
six cell-type pairs. The text label for each cell-type pair is the best performing DeepDiff
variation.

Method Mean Median
Aux 173.20 172.58

Raw+Aux 179.17 192.33
Table 3. Relative performance with Cell-Specific Auxiliary asclassification:
Mean and Median of the relative performance (%) with respect to Pearson
Correlation Coefficient(PCC) when comparing DeepDiff multitasking with
classification based Cell-Specific Auxiliary models to one of the best-
performing baselines: two-layer SVR across six cell-type pairs.

Histone Mark Associated with Regions
H3K4me3 Promoter
H3K4me1 Enhancer

H3K36me3 Transcribed
H3K9me3 Heterochromatin

H3K27me3 Polycomb Repression
Table 4. Five core histone modifications as defined by [9] with associated
regions on the genome.

REMC Id Cell type
E123 K562
E116 GM12878
E003 H1 Cell Line
E004 H1 BMP4 Derived Mesendoderm Cultured Cells
E005 H1 BMP4 Derived Trophoblast Cultured Cells
E006 H1 Derived Mesenchymal Stem Cells
E037 CD4 Memory Primary Cells
E038 CD4 Naive Primary Cells
E007 H1 Derived Neuronal Progenitor Cultured Cells

Table 5. The cell-types (and corresponding REMC ID) used in the experiments.
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