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The following sections elaborate on the data, methods, and results from the
main manuscript.

1 Methods

1.1 Definition of similarity matrix S for Hierarchical Hot-
Net

Given a vertex-weighted graph G = (V,E,w) with n vertices and m edges, let
A = [aij ] be an unweighted adjacency matrix with aij = 1 if there is an edge
(vj , vi) ∈ E and aij = 0 otherwise. If the graph is directed and/or weighted,
then the adjacency matrix can be defined accordingly.

Let D = diag(d1, . . . , dn) be a diagonal degree matrix, where

dj =

n∑
i=1

aij , (1)

and let W = [wij ] be the transition matrix for the random walk, where

wij =

{
aij
dj
, dj 6= 0,

0, dj = 0.
(2)

We define the random walk with restart by

s(k+1) = (1− β)Ws(k) + βf, (3)

where s(0) ∈ Rn is the initial distribution of walkers, s(k) ∈ Rn is the distribution
of walkers after k steps, β ∈ (0, 1) is the restart probability for the random walk,
and f ∈ Rn is the preference vector for the random walk.

If G is (strongly) connected, then it can be shown, e.g., with the Perron-
Frobenius theorem, that the random walk with restart in (3) has a unique,
non-trivial stationary distribution s, which is given by

s = Pf, (4)
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where
P = β (I − (1− β)W )

−1
. (5)

For each vj ∈ V , we set s(0) = f = ej , where ej is the standard basis vector,
and we scale (4) by the vertex score w(vj) to construct the jth column of the
joint similarity matrix S = [sij ], which is given by

S = PF, (6)

where F = diag (w(v1), . . . , w(vn)). By expanding (5) into a geometric series,
we have

sij = w(vj)

(
β(1− β)

aij
dj

+ β(1− β)2
n∑
k=1

aik
dk

akj
dj

+ · · ·

)
, (7)

which is the formula given for S in the main manuscript.
If s(0) = f = ej , then it can be shown that the connectivity conditions for

the graph are no longer necessary for the random walk with restart to converge
to the above stationary distribution. Therefore, this definition of a similarity
matrix S in (6) applies to any vertex-weighted graph whether or not the graph
is undirected or directed, unweighted or weighted, or disconnected or connected.

1.2 Parameter selection for the restart probability β for
the similarity matrix for Hierarchical HotNet

For s(0) = f = ej , the restart probability β determines the locality of the
random walk, where smaller values of β preserve more global properties of the
graph and larger values of β preserve more local properties. Many papers that
use the random walk with restart have found that their results are relatively
insensitive to the choice of this parameter over the range of values that they
considered, e.g., [6].

For our heuristic, we choose β to balance the stationary distribution (4)
between the network neighborhood of a vertex and more distant vertices. Since
we choose β based on network topology alone, i.e., with uniform vertex scores,
the same choice of β can be used for the same network with different sets of
vertex scores.

Given a graph G = (V,E), let

N (v) = {v ∈ V : (u, v) ∈ E} (8)

be the first-order network neighborhood of v ∈ V , and let

P (β) = [pij(β)] = β (I − (I − β)W )
−1

(9)

be the topological similarity matrix for G with restart parameter β. We choose
β ∈ (0, 1) as the value of β that satisfies∑

vj∈V

∑
vi∈N (vj)

pij(β) =
∑
vj∈V

∑
vi 6∈N (vj)∪{vj}

pij(β). (10)
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We can solve (10) with a nonlinear root finder. In practice, there exists a unique
solution to (10), and a numerical root finder tends to converges quickly because
the terms in (10) are smooth (see (7)) and few digits of the β are needed.

This procedure is applies to directed and edge-weighted graphs, but it re-
quires minor modifications for complete edge-weighted graphs. In this case, we
suggest replacing N (v) with Nε(vi) = {vj ∈ V : aij ≥ ε}, where ε is the median
edge weight of the complete weighted graph.

2 Data

We used the following datasets in our analysis.

2.1 Somatic mutation data

For our analysis, we used the following sets of pan-cancer somatic mutation gene
scores, which were the most recent versions available as of February 22, 2018.

• MutSig q-value scores [5, 4]:
http://www.lagelab.org/wp-content/uploads/2017/06/NetSig_Code.

zip

• TCGA PanCanAtlas mutation frequency scores [5, 4]:
https://www.synapse.org/#!Synapse:syn7214402

For the mutation frequency scores, we first restricted our analysis to nonsyn-
onymous somatic variants (Frame Shift Del, Frame Shift Ins, In Frame Del,
In Frame Ins, Missense Mutation, Nonsense Mutation, Nonstop Mutation,
Translation Start Site) by omitting synonymous variants (3’Flank, 3’UTR,
5’Flank, 5’UTR, IGR, Intron, lincRNA, RNA, Silent, Splice Site). We then
removed samples with 400 or more mutated genes and genes with mutations
in 2% samples for genes with MutSig q-values q > 0.1, i.e., genes that were
frequently mutated but not statistically significant. We finally defined the mu-
tation frequency of a gene as the fraction of samples with one or more mutations
in the gene.

Altogether, we used MutSig q-values from 4,742 tumors across 21 tumor
types and TCGA PanCanAtlas mutation frequency scores from 9,326 tumors
(down from 10,206 tumors before removing highly mutated samples and genes)
across 33 tumor types.

2.2 Interaction networks

For our analysis, we used the following interaction networks, which were the
most recent versions available as of February 23, 2018.

• HINT+HI [2, 8]:

– HINT binary
http://hint.yulab.org/download/HomoSapiens/binary/hq/
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– HINT co-complex
http://hint.yulab.org/download/HomoSapiens/cocomp/hq/

– HuRI HI:
http://interactome.baderlab.org/download

• iRefIndex 15.0 [7]:
http://irefindex.org/download/irefindex/data/archive/release_

15.0/psi_mitab/MITAB2.6/9606.mitab.22012018.txt.zip

• ReactomeFI 2016 [1, 3]:
http://reactomews.oicr.on.ca:8080/caBigR3WebApp2016/FIsInGene_

022717_with_annotations.txt.zip

For the ReactomeFI interaction network, we considered the set of interactions
with a confidence score of 0.75 (out of 1) or larger. This step is not necessary
for Hierarchical HotNet, which can analyze directed and weighted interaction
networks, but we used this undirected and unweighted version of the network for
each method for a more direct comparison of results between methods. For each
network, we also restricted our analysis to the largest connected component of
the network.

3 Results

Table S1 provides the 128 genes in the Hierarchical HotNet consensus results,
Table S2 provides pathway annotations for the Hierarchical HotNet consensus
results, and Fig. S1 illustrates these Hierarchical HotNet consensus subnetworks.

4 Comparison with HotNet2

HotNet2 [6] uses a random walk-based approach for inferring the pairwise simi-
larity between vertices. It defines the same joint similarity matrix S (see (6) or
(7)), which is denoted as E and described as the “exchanged heat matrix” in [6].
HotNet2 finds a set of similarity thresholds for S using an ensemble of random
graphs, and it clusters the vertices at these thresholds by finding the strongly
connected components of the graph corresponding to the thresholded similarity
matrix. HotNet2 then compares the observed graph against (another) collec-
tion of random graphs by counting the number of strongly components above a
certain size, using this statistic to evaluate statistical significance. It combines
results from multiple networks and vertex scores with a multi-stage consensus
procedure that allows it to remove artifacts from particular network topologies
and sets of vertex scores.

Hierarchical HotNet also uses a random walk-based approach for inferring
the pairwise similarity of the vertices. However, instead of clustering the ver-
tices at a fixed set of similarity thresholds, it finds a hierarchical decomposition
of the vertices that is equivalent to clustering the vertices at all such thresh-
olds. It compares the observed graph against a collection of random graphs by
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ABCA2 CUL9 LAMA4 RASA1
ADAMTS13 CYTH1 LAMA5 RB1
AKT1 DRC1 LAMC3 RIT1
APC DROSHA MAGI2 RPE65
ARHGAP35 DSCAML1 MAP2K4 RPL5
ARID1A E4F1 MAP3K1 RUNX1
ARID2 EGFR MBD6 SCAPER
ASXL1 EP300 MCF2L2 SERPINB5
ASXL2 ERBB2 MEGF10 SMAD4
ATM ERBB3 MERTK SMARCA4
B2M F5 MMRN1 SMARCB1
BAP1 F8 MTOR SPEN
BRAF FBXW7 MYD88 SPOP
C3 FGFR2 MYO7A SPTBN4
CADPS2 FLT3 NF1 STK11
CASP8 HIPK1 NFASC SV2A
CBFB HIPK2 NID2 TBL1XR1
CCDC40 HLA-A NOTCH1 TOPORS
CD1A HRAS NPM1 TP53
CD46 IFT122 NRAS TTBK1
CDH1 IFT140 NRCAM TTBK2
CDKN1B KCNQ2 OTUD3 TTC21B
CDKN2A KCNQ3 PBRM1 UHRF1BP1L
CELSR3 KCNQ5 PCDH1 USP24
CFH KDM6A PIK3CA VHL
CHD4 KIDINS220 PIK3R1 VWA8
CHD8 KMT2C PKD1 VWF
CNKSR1 KMT2D PKD2 WDR19
CNTN1 KMT2E PLCL2 ZNF420
CR2 KRAS PLXNB3 ZNFX1

Table S1: 128 genes in the Hierarchical HotNet consensus results
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Name Genes
BAP ASXL1, ASXL2, BAP1
CBF CBFB, RUNX1
Notch CD46, CDKN1B, CNTN1, CREBBP,

EP300, FBXW7, NOTCH1, SPEN
p53 AKT1, ATM, CDKN2A, CHD4, EP300,

HIPK1, HIPK2, MTOR, STK11, TP53
PI(3)K AKT1, CDKN1B, EGFR, ERBB2, ERBB3,

FGFR2, MTOR, PIK3CA, PIK3R1
Ras/Raf BRAF, CNKSR1, EGFR, ERBB2, ERBB3,

FGFR2, HRAS, KRAS, KSR2, NF1,
NRAS, RASA1, SPTBN4, VWF

Rb CDKN2A, RB1
RTKs ERBB2, ERBB3, EGFR
SWI/SNF SMARCA4, SMARCB1

Table S2: Overlap between Hierarchical HotNet consensus results and several
biological processes and pathways that are known to harbor driver mutations
in cancer.
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Figure S1: Hierarchical HotNet consensus subnetworks Ḡ2 for three interac-
tion networks (HINT+HI, iRefIndex, ReactomeFI) and two gene scores (TCGA
PanCanAtlas mutation frequency, MutSig q-value). Red circles indicate CGC
genes and blue squares indicate non-CGC genes.
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comparing the corresponding hierarchies, and it identifies a region of the hierar-
chy at which the observed hierarchy differs most from the expected hierarchies,
allowing it to find significant clustering of high-scoring vertices at any region
in the hierarchy. It combines results from multiple networks and vertex scores
with a simplified consensus procedure that allows it to further remove artifacts
from network and vertex scores.

Hierarchical HotNet improves upon HotNet2 in the following ways:

1. Hierarchical HotNet introduces a dendrogram of vertex sets. In a biologi-
cal setting, this dendrogram allows us to observe gene sets at different bi-
ological scales and the relationships between those gene sets across biolog-
ical scales. Hierarchical HotNet is able to identify statistically significant
regions of the hierarchy while HotNet2 identifies statistically significant
clusters at over a small set and narrow range of parameter values.

2. Hierarchical HotNet is able to identify statistically significant results on
data sets for which HotNet2 could not find statistically significant results.
In some of these cases, the parameter selection procedure in HotNet2 failed
to identify parameters where statistically significant clustering occurred,
but Hierarchical HotNet uses fewer parameters and has a simpler but more
robust parameter selection procedure for the remaining parameters. In
other cases, the results were not significant in HotNet2, but Hierarchical
HotNet has an improved significance test that evaluates the size of the
clustered sets instead of the number of clustered sets exceeding a certain
size. Hierarchical HotNet also has more options for evaluating statistical
significance.

3. Hierarchical HotNet can be applied more diverse data, including directed
and edge-weighted graphs. HotNet2 can only be applied to graphs undi-
rected and unweighted edges.

4. Hierarchical HotNet has a simpler, more robust consensus procedure for
combining results from different networks and sets of vertex weights. This
simplified procedure allows it to more easily be used with different numbers
of graph topologies and vertex weights. In a biological setting, Hierarchical
HotNet identifies a larger fraction of cancer genes.

5. The Hierarchical HotNet code can produce HotNet [10, 9] and HotNet2
results with less computational cost by changing the parameters and test
statistics to those used by these methods. However, we recommend using
Hierarchical HotNet instead of HotNet or HotNet2 because this method
provides more robust results on a broader range of datasets.
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