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1 Supplementary Materials

1.1 The modified RV coefficient

For data matrices X where the number of variables is much greater than the
number of objects (i.e. p� n), the RV coefficient is known to be biased upwards
[5, 4]. To account for this bias, we remove the diagonal of the configuration
matrix, as in the modified RV coefficient [5].

S̃i = Si − diag(Si)

S̃j = Sj − diag(Sj)

RV (S̃i, S̃j) =
V ec(S̃i)

TV ec(S̃j)√
V ec(S̃i)TV ec(S̃i)× V ec(S̃j)TV ec(S̃j)

We note that for the modified RV coefficient, the average of V ec(S̃) is not
zero. This means that RV (S̃i, S̃j) is actually not equal to the correlation (but

rather to the congruence) between V ec(S̃i) and V ec(S̃j). Regardless, for sim-
plicity, we do describe the RV coefficient in terms of the correlation between
V ec(S̃i) and V ec(S̃j) in the introduction and the first results subsection.

Mayer et al. (2011) [4] have reported that the modified RV coefficient does
not correct all of the abovementioned p � n bias. They propose the adjusted
RV coefficient, based on the adjusted r2 measure. However, the adjusted RV
coefficient requires the data to be column-wise centered and autoscaled (i.e.
scaled such that each column has a standard deviation of one). As we have
shown in the Methods and Materials of the main text, binary datasets can be
centered by kernel centering the configuration matrix (essentially using a set
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of linear transformation to center the kernel space (corresponding to S) rather
than the input space (X)). However, a similar approach cannot be taken with
autoscaling, because determining the standard deviation (by which each column
needs to be scaled) is a non-linear operation and hence cannot be performed
in kernel space. Similarly, the adjusted RV coefficient requires one to take the
adjusted r2 between columns in the input space, which is also a non-linear
operation that hence cannot be performed in kernel space. Finally, the benefit
of the adjusted RV coefficient over de modified RV coefficient is extremely small
when using a sufficient number of objects (e.g. n > 50) [4]. Therefore, we prefer
to use the modified RV coefficient, which does not have the aforementioned
limitations, while practically correcting the same amount of bias.

1.2 Partial Mantel Test

The concept of partial matrix correlations has been explored previously by
Smouse et al. (1986) [6], who based their measure on the Mantel Test [3].
The Mantel test essentially measures the correlation on the vectorized form of
the distance matrices (rather than configuration matrices) corresponding to X1

and X2. We prefer to base the partial matrix correlation on the RV coefficient
instead because of two disadvantages of the Mantel Test. First, the Mantel
Test does not necessarily result in a correlation close to zero for orthogonal
data, while the RV coefficient does. Second, the Mantel Test always results
in high matrix correlations when applied to high-dimensional matrices. While
the original RV coefficient also suffers from the second limitation, the modified
RV coefficient [5] alleviates this problem. Notably, this modification does not
alleviate the problem for the Mantel Test. While both issues do not affect sig-
nificance estimates resulting from a permutation test, they greatly affect the
interpretation of the coefficients. Hence, we prefer to base our work on the RV
coefficient rather than the Mantel Test.

1.3 PC algorithm

We used the order-independent PC algorithm proposed by Colombo and Maathuis
(2014) [2], that was implemented in the R package pcalg. This algorithm uses
partial correlations to infer a topology between variables (or in our work: partial
matrix correlations to infer a topology between datasets). After inferring the
topology, the PC algorithm can also attempt to infer causality between nodes
in the topology, using two additional assumptions: 1) the causality graph un-
derlying the data is a DAG (Directed Acyclic Graph); and 2) all variables are
observed (or in our work: there are no hidden / unobserved datasets). It is im-
portant to keep these assumptions in mind when interpreting causality inferred
by the PC algorithm.
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1.4 Elastic Net regression

We used Elastic Net regression [7] as implemented in the R package glmnet,
with λ set to λmin and α set to 0.5. Predictive performance was assessed
by using nested cross-validation, as implemented in the R package TANDEM,
where the inner cross-validation loop was used to optimize the λ parameters
for each stage, and the outer cross-validation loop was used to determine the
predictive performance.

1.5 TANDEM

TANDEM [1] is a variable selection method that prioritizes variables selection
from certain datasets over others. Consider a response vector y (e.g. drug
response of a single drug) and two datasets X1 and X2. TANDEM performs
the variable selection in two stages. In the first stage, Elastic Net regression
[7] is used to explain as much of y as possible using X1. In the second stage,
Elastic Net regression is used to explain the residuals from the first stage (i.e.
the part of y that could not be explained using X1) using X2.

We used the implementation from the R package TANDEM, with λ set to
λmin for both stages and α set to 0.5. Predictive performance was assessed by
using nested cross-validation, where the inner cross-validation loop was used to
optimize the λ parameters for each stage, and the outer cross-validation loop
was used to determine the predictive performance.

The relative contribution of a dataset was determined by dividing the sum-
of-squares of the prediction from one dataset divided by the sum-of-squares of
the overall prediction. For more information, we refer to Aben et al. (2016) [1].

We determined the variable importance V I of variable j in the same way as
in our previous work on TANDEM [1], using:

V I =
‖xjβ‖22
‖Xβ‖22

Where X is the input matrix for TANDEM, defined as X = [X1,X2]; xj is the
j’th variable of X; and β is the regression coefficients estimated by TANDEM.
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2 Supplementary Figures
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Figure 1: Illustration accompanying Figure 4A. (A) Cartoon of the densities of
X1, X2 and X3 in a two-dimensional space. (B-E) Cartoon of the directions of
the inner products between objects from (B) X1, (C) X2, (D) X3 at α = 0.5,
and (E) X3 at α = 1.
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Figure 2: Drug response prediction models. (A) Predictive performance (Pear-
son correlation between observed and predicted drug response) of either a model
trained on all datasets except drug response (i.e. mutation, CNA, methylation,
cancer type, gene expression and proteomics), or a model trained on on gene
expression and proteomics only, for each of the 217 drugs. (B) Predictive per-
formance (Pearson correlation between observed and predicted drug response)
of GEXunique vs. PROTunique models for each of the 217 drugs. (C&D) Distri-
bution of relative contributions of gene expression and proteomics in GEXunique

and PROTunique models respectively, across all 217 drugs. (E) variable impor-
tance for PROTunique models (averaged across drugs) for two classes of variables
in the proteomics data: phosphorylation status and protein abundance.
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