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1 Methodological Details of IntaRNA2
The next stage is the prediction of RNA-RNA interactions using
IntaRNA2 (Mann et al., 2017) with the modifications outlined above.
IntaRNA is a popular accessibility-based tool known for its highly
competitive performance (Lai and Meyer, 2016). The hybridization
calculation follows that of RNAHybrid (Rehmsmeier et al., 2004) with
a time and space complexity of O(nm). The accessibility is calculated
in O(nL2) using RNAplfold (Bernhart et al., 2006), an algorithm that
computes accessibility in a locally folded region of length L. Both
energy contributions are calculated for every combination of intervals
on both sequences requiring a time and space complexity of O(n2m2).
Using the same restriction on interaction length w as RNAup (Muckstein
et al., 2006), the time and space complexity is O(nmw2). By using
sparsification (Figure 1), this complexity is further reduced to O(nm)

space and O(nm̄) time where m̄ = max(m,L3).

Fig. 1. Heuristic for reducing time complexity of IntaRNA (figure taken from (Busch et al.,
2008)). The top energies are of the hybridization and the two bottom energies are for the
accessibilities. The accessibilities are not additive so the contribution needs to be subtracted
and then added back with the extended region.

2 P-value Computation for Predicted Interactions

2.1 RNA-RNA Interactions

In a previous work, RNA-RNA interaction energies were fitted to
a generalized extreme value (GEV) distribution in order to compute
interaction p-values (Wright et al., 2014). From our recent experience
we found that a gamma distribution fits the data better(data not shown),
so it was used for all experiments. Regardless, we support a CopraRNA-
style GEV approach through a user-specified parameter. We first compute
a background gamma cumulative distribution function (CDF), which has
two parameters: shape (α) and rate (β) (Equation 1- 3). The background
values are obtained by assuming that a top percent (default 3%) are true
interactions and the rest are background. The parameters of the function
are estimated using maximum-likelihood fitting. This is done using the
“fit” function in the python “stats” package from the scipy library (Jones
et al., 01 ). With these estimatedα and β parameters, the p-values for each
energy value (x) can be computed using the survival function (1−cdf(x)).

F (x;α, β) =

∫ x

0
f(u;α, β)du (1)

f(x;α, β) =
βαxα−1e−xβ

Γ(α)
(2)

Γ(α) =

∫ ∞
0

xα−1e−xdx (3)

2.2 RNA-Protien Interactions

P-values for each peak score were calculated based on position-wise
score data from 5000 randomly selected transcripts, using R’s empirical
cumulative distribution function (ECDF). The function returns the p-value
of a given score based on the constructed ECDF and the ecdf() object can be
stored on disk for subsequent recalculations (found together with models
in Supplementary file 1). We chose this non-parametric approach since
the scores did not show a clear unimodal distribution for most models,
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Table 1. Used GraphProt models with model parameters, training set information and filter p-values. GraphProt model parameters are: epochs, lambda, R, D, bitsize,
abstraction. PMID: data source pubmed ID, method: CLIP-seq protocol, filter_p: p-value used for filtering predicted sites, pos_tr: number of positive training sites,
neg_tr: number of negative training sites

RBP PMID method model_type filter_p epochs lambda R D bitsize abstraction pos_tr neg_tr ROC APR
AGO1-4 20371350 PARCLIP structure 0.02376089 20 0.000001 4 1 14 3 36802 31310 0.85584 0.86766
ELAVL1 21723170 PARCLIP sequence 0.001640548 10 0.001 3 5 14 - 7747 7750 0.92887 0.94365
EWSR1 20371350 PARCLIP sequence 0.005115178 50 0.001 1 2 14 - 16292 14720 0.94345 0.9496
FMR1 27018577 eCLIP structure 0.04819012 40 0.0001 4 5 14 3 2587 2587 0.88109 0.87115
FUS 22081015 PARCLIP sequence 0.003591709 40 0.0001 1 1 14 - 34581 31480 0.96988 0.97034

HNRNPC 27018577 eCLIP sequence 0.0006383588 50 0.001 3 6 14 - 2511 2511 0.95636 0.95178
HNRNPK 27018577 eCLIP sequence 0.0011904 10 0.001 2 1 14 - 2674 2673 0.9823 0.98059

IGF2BP1-3 20371350 PARCLIP structure 0.01519445 50 0.0001 4 0 14 3 8539 6838 0.88223 0.89533
KHDRBS1 27018577 eCLIP structure 0.003200621 40 0.001 3 2 14 3 2552 2552 0.9234 0.92122

MOV10 22844102 PARCLIP sequence 0.02331425 20 0.001 4 2 14 - 13793 12987 0.79824 0.7715
PUM2 27018577 PARCLIP sequence 0.002040983 40 0.001 4 4 14 - 9116 8227 0.94144 0.95158
QKI 27018577 eCLIP structure 0.0006862552 40 0.000001 4 2 14 3 2650 2650 0.94722 0.95187

SND1 27018577 eCLIP structure 0.04999487 50 0.0001 3 4 14 3 2413 2413 0.89622 0.88589
TAF15 22081015 PARCLIP sequence 0.003209317 50 0.001 3 2 14 - 7298 6606 0.96794 0.964

TARDBP 27018577 eCLIP sequence 0.0003341065 30 0.001 4 5 14 - 2752 2752 0.98524 0.98712
TIA1 27018577 eCLIP sequence 0.009658455 30 0.001 2 5 14 - 3073 3073 0.84148 0.86061

TNRC6A 27018577 eCLIP structure 0.04627634 50 0.001 3 0 14 3 2653 2653 0.83569 0.85761

which prevented the use of conventional fitting procedures for unimodal
distributions. For each model, we then calculated the top position-wise
score of each positive training site to construct a second ECDF. To get a
threshold for filtering the peak score p-values, the score at 50 % of the
distribution was taken and inserted into the first ECDF to get its p-value.
This way we obtain an individual p-value threshold for each RBP model,
allowing us to select binding sites with scores comparable to the scores
found in the respective positive training sites. The obtained filter p-values
for each model can be found in Supplementary Table 1.

3 Challenges and Limitations
Predicting combined interactions between lncRNAs, RBPs and target
RNAs on a transcriptome-wide scale is an inherently difficult task, due to
several reasons: firstly, the limited number of known lncRNA mechanism
cases makes it difficult to tune the model. Specifically, the selection
of various parameters in terms of distances between interactions and
various cutoffs becomes nearly ad hoc. Moreover, it is unknown to what
extent the studied cases occur in the cell or whether they are typical
representatives of a certain class of interactions. Secondly, even with
the careful filtering applied in this work, RNA-RNA and RNA-protein
predictions are fairly non-specific. With thousands of predicted targets, it
is likely that many are false positives. Given that only the most significant
interaction combinations are included, it is difficult to determine which
are true predictions since they are all plausible. Despite these difficulties,
the presented work provides a solid starting point for further experimental
investigation.

One way to improve the current approach would be the development
of more realistic interaction models. As for the RBP-target prediction,
information on RBP affinities for a range of target RNAs as well as the
relative importance of target sequence, structure and context should help
to design more accurate models. So far, detailed affinity distributions have
only been reported for the E. coli C6 protein, utilizing the high-throughput
sequencing kinetics (HiTS-KIN) protocol (Lin et al., 2016). Lately, a more
simple affinity approach was combined with estimating the sequential and
structural binding properties of 78 human RBPs, using an RNA Bind-n-Seq
variant with 5 different protein concentrations (Dominguez et al., 2017).
In order to improve prediction specificity, it is also possible to use CLIP
data to cluster RBPs with common binding sites and to learn properties

from these sites, as shown by Li et al. (Li et al., 2017). As for the lncRNA-
target prediction, integrating protein binding information directly into the
RNA-RNA interaction calculation might lead to the prediction of more
realistic hybrids. Moreover, incorporating RNA structure probing data of
the involved RNAs, e.g. determined by selective 2-hydroxyl acylation and
profiling (SHAPE), could improve the hybrid prediction. As the number
of studied lncRNA mechanisms gradually increases, machine learning
approaches could further help to improve model performance by learning
optimal parameter combinations from the data.

Another more immediate extension of this work would be the
incorporation of additional data, such as new RBP predictions or miRNA
interaction information. It is conceivable to assume that lncRNAs might
block or sequester miRNAs, just as they do RBPs. Inclusion of miRNA
target sites would therefore broaden the scope of mechanisms MechRNA
can predict. The modular nature of MechRNA makes such extensions
possible, which might open exciting new avenues for lncRNA research.
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Table 2. Selected LncRNAs for MechRNA analysis. The lncRNAs vary in terms of what is known
about their mechanisms, allowing MechRNA to be tested with various amounts of a priori data.
PCAT1 has a question mark indicating that competitive binding is the hypothesis not been validated
yet.

Protein Binding RNA-RNA Interaction

TP53 Transcript HuR S HuR E TP53 S TP53 E 7SL S 7SL E FE

ENST00000618944 1950 1971 1980 2022 256 298 -51.563
ENST00000504937 1817 1838 1847 1889 256 298 -51.563
ENST00000445888 2071 2092 2101 2143 256 298 -51.563
ENST00000420246 2201 2222 2231 2273 256 298 -51.563
ENST00000269305 2125 2146 2155 2197 256 298 -51.563
ENST00000610292 2185 2206 2215 2257 256 298 -51.563
ENST00000620739 2125 2146 2155 2197 256 298 -51.563
ENST00000455263 2128 2149 2158 2200 256 298 -51.563
ENST00000610623 1877 1898 1907 1949 256 298 -51.563
ENST00000504290 1877 1898 1907 1949 256 298 -51.563
ENST00000610538 2128 2149 2158 2200 256 298 -51.563
ENST00000619485 2071 2092 2101 2143 256 298 -51.563
ENST00000510385 1950 1971 1980 2022 256 298 -51.563
ENST00000622645 2201 2222 2231 2273 256 298 -51.563
ENST00000619186 1817 1838 1847 1889 256 298 -51.563
ENST00000617185 2270 2291 2300 2342 256 298 -51.563


