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1 Introduction

This material presents three distinct topics: a brief presentation of the most utilised proper-
ties, so called property patterns, expressing various aspects of behaviour, for a broad range
of systems, including biological systems; an overview of the topological features, expressed
as graph concepts, utilised in predicting the performance of stochastic simulation algorithm
citessapredict and the most suitable model checker for given property patterns; and a short
description of the statistical model checker predictor tool.

2 Property Patterns

Model checking algorithmically analyses whether a system model satisfies its requirements
specification. Models are usually represented by a finite state transition system and the
specification is expressed as a set of logical properties, usually represented by temporal logic
formulas. Model checking has been used in system analysis in many areas. However, the very
well-known state-space explosion problem associated with large non-deterministic systems, as
a result of exhaustive analysis, has prevented it being applied to large systems. Statistical
Model Checking (SMC) [17] is one of the methods introduced to alleviate the state-explosion
problem issue.

The usage of model checking tools also requires a good understanding of the logical for-
malisms which is not easy for non-experts. Some of the most common drawbacks in using
such tools by non-experts are listed below:

o different tools typically use different modelling and property specification languages,
and support the analysis of different collections of properties — users therefore need to
familiarise themselves with a range of different technologies;

e while some tools are self-contained, others depend on the use of external third party
applications for pre-processing, which means that the users need to learn the techniques
involved in using these other tools as well;

e the performance characteristics of any given tool may vary significantly according to
the verifications being performed. Where one tool successfully verifies a model’s prop-
erties efficiently, another may fail; and any given tool may succeed in validating certain
properties of a model, but fail to verify others.

Model checking uses temporal logics as property specification language. In order to query
probabilistic features, probabilistic temporal logics should be used. Several probabilistic prop-
erty specification languages exist, such as Probabilistic Computational Tree Logic (PCTL)
[8], PLTL with numerical constraints (PLTLc) [3] and Continuous Stochastic Logic (CSL)
1, 2, 9].



Table 1: Example biological properties for the quorum sensing system.

Pattern ‘ Example

Eventuall
ventuatly The concentration of the signalling molecule AHL exceeds 0.1 M with more than
90% chance.
Always . . . .
The concentration of the signalling molecule AHL is always below the threshold T
with a probability greater than and equal to 0.8.
Foll
orows The emission of AHL is followed by the production of GFP.
P d
recedes The production of GFP is preceded by a high concentration of AHL.
N
ever The concentration of GFP never reaches 0.1 uM within the first 100 seconds.
Steady-
S t:tae Y In the steady state, the bacteria colony illuminates green fluorescent.
Until . . .
For more than 90% cases, GFP will not be expressed until the concentration of AHL
is greater than 0.2 pM.
R
ecurrence GFP is repeatedly produced as long as AHL is emitted by Pseudomonas.
Next
ex The probability that the concentration of the AHL molecules exceeds 0.1 uM in the
next time instant is less than 0.5.
Rel
clease When the concentration of AHL is greater than 0.2 M, the bacteria colony illumi-
nates green fluorescent.
‘Weak Until
ea 1 GFP will not be produced until the concentration of AHL is greater than 0.2 uM; if
the concentration does not reach 0.2 uM, GFP will never be produced.

In order to ease the property specification process and facilitate the access of non-experts
to these verification tools, a generic framework, called property patterns, to represent common
property specifications expressing various aspects of behaviour has been identified. Patterns
represent recurring properties, and are generally represented by natural language-like nar-
ratives. A number of studies have been conducted in this direction to identify appropriate
pattern systems for biological models [12, 5, 4, 6].

We illustrate the pattern concept using a well-known example in systems biology, quorum
sensing. Quorum sensing (QS) is a mechanism through which bacteria communicate with
each other using some chemical molecules, called signalling molecules. In this way, they can
all synchronise and act together as a group. Each bacterium can sense the signalling molecule,
and responds to it in the same way, which creates a group behaviour. Once the QS process
is activated, the concentration of the signalling molecule is an indicator of the number of
cells in the colony. Here we consider a particular QS system [7], where each bacterium in the
colony can sense other pathogenic Pseudomonas aeruginosa (PA) bacteria by detecting the
AHL molecules (emitted by PA) as signalling molecule; and upon detecting AHL it illuminates
green fluorescent protein (GFP). Table 1 provides some example properties for the QS system
using the patterns selected from the current literature.

Table 1 provides an informal representation of patterns. Table 2 defines the property
patterns formally, provides the corresponding translations into the formal temporal logic
specification, and reports five SMC tools currently supporting the relevant pattern expres-
sions.



Table 2: Property patterns.

Patterns Formal Description ‘ Temporal Logic | Supported by ‘
Eventually . . PRISM,
With probability > 0.9, ¢ (“the concen- | P~gg [F ¢] PLASMA-Lab
tration of the signalling molecule AHL Ymer MRI\’/IC
exceeds 0.1 uM”) will eventually hold. and 1\/7[C2
Always ) o ) PRISM,
With probability > 0.8, ¢ (“the concen- | P>os [G ¢] PLASMA-Lab
tration of the signalling molecule AHL Ymer MRI\;IC
is below T7) continuously holds. and 1\/7[02
Follows . . i . PLASMA-Lab,
With probability > 1, if ¢ (“the emis- | P>1 [G (¢1 — MRMC and
sion of AHL”) holds, then ¢o (“the pro- | P>1 [F ¢2])] MO2
duction of GFP”) must hold.
Precedes . . . PRISM,
With probability > 1, ¢1 (“high concen- | P>q [-¢2 W ¢1] PLASMA-Lab
tration of AHL”) precedes or activates Ymer MRI\;IC
@9 (“the production of GFP”). and 1\/7[C2
Never . . PRISM,
With probability > 1, ¢ (“the concen- | P>1 [G —¢) PLASMA-Lab
tration of GFP reaches 0.1 M within Yimer MRI\;IC
the first 100 seconds”) will never hold. and 1\/7[02
Steady- . . . PLASMA-Lab,
State With probablllty >1, '1n th§ long-run ¢ | S>q [¢] or MRMC and
(“the bacteria colony illuminates green | P>y [F'G ¢] MC2
fluorescent”) must hold.
Until . . ) PRISM,
With probability > 0.9, ¢1 (“GFP will | P>gg [¢1 U ¢2] PLASMA-Lab
not be expressed”) holds continuously Ymer MRl\’/IC
until ¢2 (“the concentration of AHL is and 1\/7[02
greater than 0.2 uM”) eventually hold.
Recurrence PLASMA-Lab
With probability > 1, ¢ (“GFP is pro- | P>1 [GF ¢] and MC2
duced as long as AHL is emitted by
Pseudomonas’) repeatedly holds.
Next . . ) PRISM,
With probability < 0.5, ¢ (“the concen- | P<g5 [X ¢] PLASMA-Lab
tration of the AHL molecules exceeds MRMC z;n d
0.1 pM”) will hold in the next state. MC2
Release ) o PRISM,PLASMA-
With probability > 1, ¢o (“the concen- | P>q [¢1 R ¢2] Lab Ymer
tration of AHL is greater than 0.2 uM”) MRi\/IC an d’
holds continuously until ¢; (“ the bac- MC2
teria colony illuminates green fluores-
cent.”) holds, namely ¢; releases ¢s.
Weak Until ) . PRISM,
With probability > 1, ¢1 (“the concen- | P>1 [¢p1 W ¢2] PLASMA-Lab
tration of AHL is greater than 0.2 uM”) Ymer MRI\’/[C
holds continuously until ¢o (“GFP is and 1\;IC2
produced”) holds, if ¢2 does not hold,
then ¢ holds forever.

In this table, ¢1, and ¢o are state formulas; < is a relation in the set {<,>, <, >}; pisa
probability € [0, 1]; and X is the negation of the corresponding equality, <.



Various standard patterns (Existence, Always, Precedes, Never, Until, Release and Weak
Until) are supported by all five SMC tools, whereas the Next pattern is supported by all tools
except Ymer. The Steady State pattern is supported only by PLASMA-Lab, MRMC and
MC2. The Infinitely Often pattern is only supported by PLASMA-Lab and MC2.

3 Graph Concepts

Network analysis of biological systems is a fundamental component of systems biology, it
helps to get better understanding of molecular interactions. Topological features of species
and reaction graphs have been considered in [15] for predicting the performance of Stochastic
Simulation Algorithm (SSA). Such graph related features and graph theoretical analysis have
been used to identify complex interaction features of the biological systems [13]. Subsequenly
are presented some graph related concepts.

Table 3: Topological features of models.
Graph Features used by [15] New Features

Number of vertices Number of non-constant species:

regular species whose populations can
change, e.g. catalysts cannot be in this

category.
Number of edges Speciesx Reactions: number of species
multiplied by number of reactions
Density of graph Update values: min, mean, max and to-

tal number of variable changes when reac-
tions trigger

Degrees: min, mean and max number of | Sum of the Degrees: total number of
incoming, outgoing and all edges incoming, outgoing and all edges, for each
graph

Weakly connected components
Articulation points
Biconnected components
Reciprocity of graph

The “update values” introduced in this table refer to the number of species whose
populations change when a reaction triggers. For example, if the reaction “2A4A 4+ 3B — C”
triggers, the number of variables updated is 3, namely A, B and C.

A graph consists of vertices and edges. Typically, a verter represents an entity of a
biological system and an edge represents relationships between two entities (vertices). In
undirected graphs, edges do not have direction, therefore, the relationship is symmetric. In
directed graphs, each edge has a direction originating from one vertex and pointing to itself or
to another vertex. One of the basic properties of a vertex is its degree which is the number of
edges connected to it. In directed graphs, the number of edges pointing to a vertex is called
in-degree and the number of outgoing edges is called out-degree. Density of a graph measures
how sparse or dense the vertices are interconnected, which is the ratio between the number
of existing edges and the total number of possible edges [13, 14]. A connected component in a
graph is the maximal subset of vertices in which any two vertices are connected through one
or more paths. Strongly connected components take the direction of the edges into account,
whereas the weakly connected components ignore the directions [13, 10]. A wvertex cut or
articulation point is a vertex in a connected component of a graph whose removal causes the
subgraph becoming disconnected [16]. A biconnected component is a subgraph which does



not have articulation points [16]. Reciprocity in directed graphs measures the proportion of
mutual connections, i.e. reciprocal edges [13].

The graph concepts used in [15] are presented in the left column of Table 3. The right
column has a set of new features presented in our current paper.

4 Experiments

4.1 System and Software

All experiments were conducted on the same desktop computer (Intel i7-2600 CPU @ 3.40GHz
8 cores, 16GB RAM, running under Ubuntu 14.04).

For experimental purposes, we used version 2.0 beta2 of MC2 with the Gillespie2 simu-
lator (which is bundled with the tool) to generate the required simulation traces. We also
used: PRISM, version 4.2.1; PLASMA-Lab, version 1.3.2, with default settings and simula-
tor; Ymer 4.2.1 and MRMC version 1.5 together with PRISM 4.2.1 for MRMC performance
benchmarking.

4.2 Evaluating Different Feature Groups

In order to show how different types of features affect the prediction accuracy and highlight
the quality of the final set of topological features chosen to characterise models, we have
carried out some experiments, for which we have identified three different topological feature
groups. The first group consists of the 32 features proposed by ([15]), the second group added
in the 12 new features we proposed (44 features in total), and the third group is the same as
the second group but excludes the computationally expensive graph-theoretic features (e.g.
reciprocity, weakly connected components, biconnected components and articulation points) —
this third group consists of 36 features.
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Figure 1: Model size distribution. The X-axis plots the (logarithm of) model size and
the Y-axis shows the frequency of models within the corresponding X-axis interval. We take
“size” as the product of species count and reaction count.

In this experiment, we have considered the biomodels obtained from the EBI database.
The distribution of model sizes is presented in Figure 1. Each of the feature groups of
these models was submitted to a linear SVC classifier for predicting the fastest Stochastic
Simulation Algorithm. The prediction accuracies of 10-fold cross-validation for each group
are shown in Table 4. The highest prediction accuracy (69.7%) is achieved by using the
Group 2 features, but, as already stated, this group includes some relatively computationally



expensive properties. By removing these (Group 3), the prediction accuracy dropped just
by 1% relative to Group 2, but with considerable reduction in computation time. Therefore,
to make automated prediction for large system tractable, we have used only the Group 3
features for the rest of experiments reported in this study.

Table 4: SSA simulation accuracies of the three different topological feature groups.
Group 1 | Group 2 | Group 3

Accuracy 63% 69.7% 68.6%
Variance 0.009 0.005 0.004

4.3 Validation of Classifiers

The 10-fold cross validation method is a well known and widely used validation method of clas-
sifiers. However, it is also well known that results tend to be higher than those obtained when
the trained classifiers are put into operation. We have therefore performed two additional
tests to compare the results against cross validation method. In both of the experiments, we
have kept a representative set of models aside for a blind test.

In the first experiment, we have randomly selected 80% of our original data set (i.e. 675
biomodels) for training and kept the remaining 20% for testing. In our second experiment,
we have used the entire data set (i.e. 675 biomodels which were uploaded in 2017 and before)
for training, and used the new bio-models which were uploaded to the EBI repository in 2018
for validation.

As illustrated in Table 5, the performance of the 10-fold cross validation method and that
used in the first experiment is very similar. In 6 cases 10-fold cross validation is slightly
better; whereas in 5 of them is the other way around. As for the second experiment, the
accuracy is better than the other two for most of the patterns. We believe this is due to a
relatively small number of models uploaded in 2018. We expect the accuracy of the blind
validation gets less than the 10-cross validation method, as the size of test data grows.

Table 5: 10-fold cross validation vs blind validation.

Pattern 10-fold cross val. ‘ Experiment 1 ‘ Experiment 2 ‘
Eventually 92.4% 92.6% 100%
Always 90.5% 90.4% 100%
Follows 95.0% 94.8% 92%
Precedes 97.2% 97.0% 100%
Never 91.0% 91.9% 100%
Steady State 94.2% 93.3% 85%
Until 92.8% 91.1% 100%
Infinitely Often 95.0% 94.8% 92%
Next 94.3% 95.6% 100%
Release 94.2% 94.1% 100%
Weak Until 92.3% 92.6% 100%

4.4 Prediction Accuracy vs Model Parameters

In this paper, our main focus was predicting the time performance of a set of available model
checkers. As shown in a previous work [15, 11], we can reliably focus on the model structure
only to make such performance prediction when trying to decide on the fastest simulation



engine, and hence we can ignore the model parameters while still being able to robustly
predict the best simulator to use.

In order to demonstrate that the model parameters do not affect the prediction accuracy,
we have performed an experiment, where we took a subset of 15 models, and evaluated the
accuracy of our prediction tool by verifying them without changing the model parameters.

In this experiment, we have considered two different accuracy scores. The first one reports
the percentage of correct estimation of the fastest SMC tool. The second one considers
a threshold bound for assessing a correct prediction, namely, whenever the relative time
difference between the actual fastest SMC tool and the predicted fastest SMC tool is not
more than 10% of the actual fastest SMC tool time, then the prediction is considered correct.

The results are presented in Table 6 (see Appendix for the full results). The prediction
accuracy for these models is very high, at least 80% in the first case and no less than 93.3%
in the second one.

Table 6: Accuracy scores for models with original parameters.

Pattern prediction | prediction
accuracy accuracy with
threshold
Eventually 80% 100%
Always 80% 93.3%
Follows 93.3% 100%
Precedes 86.7% 93.3%
Never 80% 100%
Steady State 86.7% 93.3%
Until 92.8% 93.3%
Infinitely Often 100% 94.8%
Next 94.3% 93.3%
Release 86.7% 93.3%
Weak Until 93.3% 93.3%
| Average | 87.2 % | 95.7%

4.5 Performance Comparison

Figure 2 illustrates the verification time for each tool with respect to model size. Generally
speaking, MC2 and MRMC require more time for verification, hence they are less efficient
compared to the other tools. Especially, MRMC can verify very few models and its verification
time increases exponentially for the larger models. The verification time for Ymer increases
almost linearly, i.e. it is fast for small models, but the verification time constantly increases
when the model size increases. PLASMA-Lab displays an exponential growth for small size
models but it gets more efficient for large size models. Like PLASMA-Lab, PRISM generally
is not the fastest option for small sized models whereas it can perform better for the larger
models.

5 SMC Predictor Tool

The tool architecture and work-flow are shown in Fig 3. The tool modifies the received input
model using model feature analysis. This is done by fixing the stochastic rate constant and
the number of species to 1.0 and 100, respectively, and removing multiple compartments.
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Figure 2: Performance comparison. For each property pattern, each tool perfor-
mance is compared against the best performance, where, X-axes represent the model size
(speciesxreactions) in logarithmic scale (logs), Y-axes show the relative performance of each
SMC tool in comparison with the fastest one, and Z-axes show (logyo scale) the consumed

time in nanoseconds.



Th

e modified model is passed to the Model Topology Analysis component, which extracts

relevant topological features of the species and reactions graphs (edges, degrees, etc.) as well
as various non-graph features, such as the number of updates. These model features, together
with the required property pattern, are delivered to the Predictor component. The Predictor
component initializes the best classifier identified for use with the given property pattern,
conveys the model features to the classifier to predict the fastest SMC tool, and then returns
the prediction result.
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Figure 3: SMC predictor architecture and work-flow.

The SMC Predictor is available at http://www.smcpredictor.com together with the
ails on how to run it and format of the output produced. A tutorial showing through

some examples how to run the SMC Predictor and then how to verify the models with the

pre

dicted SMC tool is also available.
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Appendix

The table below shows the actual and predicted model checker for individual models. The
‘Rank’ column represents the ranking of the model checker predicted by our tool. For example,
for BIOMDO0000000103 model, the actual fastest model checker is PRISM, but the predicted
one is PLASMA. Although PLASMA is not the fastest tool, it is the 2nd fastest model checker.

ALWAYS EVENTUALLY NEVER RELEASE

ModelName Size Actual |Prediction| Rank | Actual |Prediction| Rank | Actual |Prediction| Rank | Actual | Prediction| Rank
BIOMD0000000030 |4 YMER YMER 1 PLASMA| YMER 2 PLASMA| YMER 2 YMER YMER 1
BIOMDO0000000035 (16 YMER YMER 1 YMER YMER 1 YMER YMER 1 YMER YMER 1
BIOMD0000000046 |49 YMER YMER 1 YMER YMER 1 YMER YMER 1 YMER YMER 1
BIOMD0000000103 |120 PRISM | PLASMA 2 PLASMA| PLASMA 1 |PLASMA| PLASMA 1 PRISM | PLASMA 2
BIOMD0000000159 |156 YMER YMER 1 YMER YMER 1 YMER YMER 1 YMER YMER 1
BIOMD0000000204 |160 YMER YMER 1 YMER YMER 1 YMER YMER 1 YMER YMER 1
BIOMD0000000209 (240 YMER YMER 1 YMER YMER 1 YMER YMER 1 YMER YMER 1
BIOMD0000000219 |240 PLASMA| YMER 2 YMER YMER 1 YMER YMER 1 YMER YMER 1
BIOMD0000000287 [323 YMER YMER 1 |PLASMA| YMER 2 |PLASMA| YMER 2 YMER YMER 1
BIOMD0000000318 [390 YMER YMER 1 YMER YMER 1 YMER YMER 1 YMER YMER 1
BIOMD0000000325 |483 YMER YMER 1 YMER YMER 1 YMER YMER 1 YMER YMER 1
BIOMDO0000000363 (576 YMER YMER 1 YMER YMER 1 YMER YMER 1 YMER YMER 1
BIOMD0000000439 |851 YMER YMER 1 YMER YMER 1 YMER YMER 1 YMER YMER 1
BIOMD0000000479 |1364 PRISM YMER 3 YMER | PLASMA 2 YMER | PLASMA 2 PRISM| YMER 3
BIOMD0000000486 |2013 YMER YMER 1 YMER YMER 1 YMER YMER 1 YMER YMER 1

NEXT FOLLOWS PRECEDES UNTIL

ModelName Size Actual |Prediction| Rank | Actual |Prediction| Rank | Actual |Prediction| Rank | Actual | Prediction| Rank
BIOMD0000000030 (4 PRISM PRISM 1 PLASMA| PLASMA 1 YMER YMER 1 YMER YMER 1
BIOMD0000000035 |16 PRISM PRISM 1 PLASMA| PLASMA 1 YMER YMER 1 YMER YMER 1
BIOMD0000000046 |49 PRISM PRISM 1 |PLASMA| PLASMA 1 YMER YMER 1 YMER YMER 1
BIOMD0000000103 |120 PRISM PRISM 1 |PLASMA| PLASMA 1 |PLASMA| PRISM 3 PRISM | PRISM 1
BIOMD0000000159 |156 PRISM PRISM 1 PLASMA| PLASMA 1 YMER YMER 1 YMER YMER 1
BIOMD0000000204 (160 PRISM PRISM 1 PLASMA| PLASMA 1 YMER YMER 1 YMER YMER 1
BIOMD0000000209 (240 PRISM PRISM 1 PLASMA| PLASMA 1 YMER YMER 1 YMER YMER 1
BIOMD0000000219 |240 PRISM PRISM 1 |PLASMA| PLASMA 1 YMER YMER 1 YMER YMER 1
BIOMD0000000287 |323 PRISM PRISM 1 |PLASMA| PLASMA 1 |PLASMA| YMER 2 YMER YMER 1
BIOMD0000000318 |390 PRISM PRISM 1 PLASMA| PLASMA 1 YMER YMER 1 YMER YMER 1
BIOMD0000000325 (483 PRISM PRISM 1 PLASMA| PLASMA 1 YMER YMER 1 YMER YMER 1
BIOMD0000000363 |576 MC2 PRISM 3 MC2 MC2 1 YMER YMER 1 YMER YMER 1
BIOMD0000000439 |851 PRISM PRISM 1 |PLASMA| PLASMA 1 YMER YMER 1 YMER YMER 1
BIOMD0000000479 |1364 PRISM PRISM 1 |PLASMA| PLASMA 1 YMER YMER 1 PRISM| YMER 3
BIOMD0000000486 |2013 MC2 MRMC 2 MC2 MRMC 2 YMER YMER 1 YMER YMER 1

STEADY_STATE INFINITELY-OFTEN WEAK-UNTIL

ModelName Size | Actual |Prediction| Rank | Actual |Prediction| Rank | Actual |Prediction| Rank
BIOMD0000000030 |4 PLASMA| PLASMA 1 PLASMA| PLASMA 1 YMER YMER 1
BIOMD0000000035 |16 PLASMA| PLASMA 1 |PLASMA| PLASMA 1 YMER YMER 1
BIOMD0000000046 |49 PLASMA| PLASMA 1 |PLASMA| PLASMA 1 YMER YMER 1
BIOMD0000000103 |120 PLASMA| PLASMA 1 PLASMA| PLASMA 1 PRISM PRISM 1
BIOMD0000000159 |156 PLASMA MC2 2 PLASMA| PLASMA 1 YMER YMER 1
BIOMD0000000204 |160 PLASMA| PLASMA 1 PLASMA| PLASMA 1 YMER YMER 1
BIOMD0000000209 |240 PLASMA| PLASMA 1 |PLASMA| PLASMA 1 YMER YMER 1
BIOMD0000000219 |240 PLASMA| PLASMA 1 |PLASMA| PLASMA 1 YMER YMER 1
BIOMD0000000287 |323 PLASMA| PLASMA 1 PLASMA| PLASMA 1 YMER YMER 1
BIOMD0000000318 |390 PLASMA| PLASMA 1 PLASMA| PLASMA 1 YMER YMER 1
BIOMD0000000325 [483 PLASMA| PLASMA 1 PLASMA| PLASMA 1 YMER YMER 1
BIOMD0000000363 [576 MC2 MC2 1 MC2 MC2 1 YMER YMER 1
BIOMD0000000439 |851 PLASMA| PLASMA 1 |PLASMA| PLASMA 1 YMER YMER 1
BIOMD0000000479 |1364 PLASMA| PLASMA 1 PLASMA| PLASMA 1 PRISM YMER 3
BIOMD0000000486 |2013 MC2 PLASMA 3 MC2 PLASMA 2 YMER YMER 1




