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S1 Supplementary Methods

S1.1 Computing the distribution of F

To find the actual distribution (in terms its density fF (· ; E) with the
reaction efficiency E as a parameter) of the normalized family size F for
a particular efficiencyE we resorted to simulation. We simulated the PCR
process for efficiencies from 0.01 to 0.99 (steps of 0.01 up to 0.90, steps
of 0.005 up to 0.94, steps of 0.002 up to 0.99). Each time, we simulated
109 independent trajectories, and ran each simulation until the expected
family size was 107 molecules (i.e. for n = 7/ log10(1 + E) cycles).
At that point the stochasticity further cycles would introduce is negligible
and we may thus assume M̃n ≈ M̃n+1 ≈ F .

For each efficiency E, we normalized the simulated raw family sizes
using Equation (4) to obtain 109 independent samples of F . Using kernel
density estimation, we then estimated values of the density function
fF (λ ; E) of the normalized family size distribution on a grid of 318
values of λ between 0 and 50. The grid points are spaced non-uniformly,
being finest (distance 0.0025) around 0 and 1 and getting coarser
elsewhere.

This procedure resulted in a 123 × 318 matrix of densities, i.e.
fF (λ ; E) evaluated for each combination of one of the 123 simulated
efficiencies E, and one of the 318 normalized family sizes λ. Using this
(pre-computed and stored) matrix, the density function fF (λ ; E) can
be evaluated quickly for arbitrary values of E and λ by two-dimensional
polynomial interpolation (Akima, 1996).

S1.2 Numerical method of moments estimates

To obtain method of moments estimates for model parameters D (reads
per molecules) andE (reaction efficiency) in the general case T ≥ 0 from
the observed mean m̂ and observed variance v̂ of the number of reads per
UMI, we must find D and E such that

m̂ = E(C |C ≥ T ),

v̂ = V(C
∣∣C ≥ T )

We solve this system of equations with an iterative method that starts
with initialization step I and then repeats update step U until the estimates
D̂, Ê and P(C ≥ T ) converge (absolute or relative change less than
10−4).

I: We start by pretending that T = 0, and set

D̂ := m̂,

Ê :=
1− r
1 + r

where r =
v̂ − m̂
m̂2

limited to [0, 1],

U: Using the current model parameter estimates D̂ and Ê, we compute

P(C = k) for k = 0, . . . , T − 1,

P(C ≥ T ) = 1−
T−1∑
k=0

P(C = k).

We then exploit that the uncensored mean (and similarly the variance)
can be partitioned into a sum of the (scaled) censored mean and the
mean (or variance) terms “missing” from the censored mean, i.e. we
compute updated estimates D̂′ of the uncensored mean and v̂′u of the
uncensored variance,

D̂′ := P(C ≥ T ) · m̂+
∑
k<T

k · P(C = k),

v̂′u := P(C ≥ T ) · (v̂ + m̂2)− D̂′2 +
∑
k<T

k2 · P(C = k).

Given the updated estimates of the uncensored moments, the updated
reaction efficiency estimate Ê′ is computed as in the case T = 0 as

Ê′ :=
1− r
1 + r

where r =
v̂′u − D̂′

D̂′2
limited to [0, 1].

S1.3 Multiple initial copies

If each distinct molecules the sample initially contains R > 1 identical
copies (e.g. R = 2 if the initial molecules are double-stranded), each of
these copies can be imagined to be amplified by a separate and independent
PCR processes. But since the molecules are indistinguishable, these
processes cannot be observed individually – we can observe only the (re-
normalized) sum of the resulting family sizes. These observed normalized
family size distribution is thus the average of R independent versions of
F , and its variance is thus one R-th of the variance in Equation (6), i.e.

VF =
1− E
1 + E

·
1

R
, VC = D +D2 ·

1− E
1 + E

·
1

R
. (S1)

The density of distribution of F for R > 1 is the R-fold self-convolution
of the density of F with itself (re-scaled to again have expected value
one), and can thus be computed from the pre-computed matrix for the
single-molecule case without performing additional simulations.

Parameter estimation proceeds just as for R = 1, except that when
computing estimate v′ of VF , we must now account for the reduction of
the observed variance of F by a factor of 1

R
, i.e. we set v′ = R · v̂−m̂

m̂2 .

S1.4 Data Analysis

The reads from each of the downloaded sequenced libraries, were mapped
(ignoring the barcode part) with NGM v0.5.2 (Sedlazeck et al., 2013) to the
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reference transcriptome of D. melanogaster (R6.08) respectively E. coli
(strain K-12 MG1655). To avoid ambiguities during mapping for genes
with multiple isoforms, we filtered the D. melanogaster transcriptome to
contain only a single transcript per gene before mapping. For each gene,
we picked either the single transcript with a FlyBase score of at least
“moderately supported”, or the longest transcript (if multiple ones had
score “moderately supported” or higher). After mapping the reads, we
used the combination of mapping coordinates (both start and end for the
paired-end E. coli data, only start for the single-end D. melanogaster data)
and barcode (on both ends in the case of E. coli) as UMI. To account for
sequencing errors, we merged similar UMIs (barcodes differing at most
in one position, mapping coordinates by at most 30 bases for paired-end,
5 for sing-end libraries) using the graph-based algorithm of Smith et al.
(2017). For the E. coli data we additionally combined reciprocal UMIs
stemming from the two strands of a single template molecule, but stored
the read counts for plus- and minus-strand separately (see Shiroguchi et al.
(2012)).

This yielded, for each of the libraries, a table comprising the gene id,
start- end end position, barcode and read-count(s) of each detected UMI.
Based on this table, the error-correction thresholds (T = 5 for E. coli,
T = 5 for D. melanogaster R1, T = 2 for D. melanogaster R2), and the
initial number of molecules (actually, strands) for each UMI (R = 1 for
E. coli due to the Y-shaped adapters, R = 2 for D. melanogaster due to
secondary strand synthesis before amplification) our algorithm computed
library-wide and raw as well as shrunken gene-specific estimates of the
reaction efficiency, of the average number of reads per UMI, and of the
loss. For the E. coli data, the error-correction threshold was applied to
the plus- and minus-strand read counts separately, filtering out UMIs if
either count lay below the chosen threshold. This increased the loss of
true UMIs, and we modified the definition of the loss accordingly to ` =
1 − (1 − P(C < T ))2 (compare to Equation (12)). (Note that in the
histograms in Fig. 2A, for a lack of other options, we show plus- and
minus-strand counts separately, but omit UMIs where one of the strands
is not detected at all). In addition to the gene-specific parameter and loss
estimates, our algorithm output the observed number of UMIs nobs

g and
the estimated total number of UMIs (i.e. transcript molecules) ntot

g .

S1.5 Simulation

We determined the residual error of the corrected transcript counts using
a simulation approach. We started from the (loss-corrected) estimated
transcript counts ntot

g and (shrunken) gene-specific estimates for reaction
efficiency Êg and sequencing depth D̂g of gene g ∈ {1, . . . ,K} that
we computed for replicate 1 of the D. melanogaster dataset. First we
rounded ntot to the next number in the series 10, 30, 100, 300, . . . and
used the resulting number as the true number ntrue

g of transcripts of gene g.
For each gene g, we then used the amplification+sequencing model (with
parameters Eg , Dg and R = 2 meaning double-stranded molecules) to
simulate the sequencing of ntrue

g UMIs, which yielded for each gene ntrue
g

read counts, one for each UMI. To this list comprising gene id and (for
each gene) ntrue

g read counts, we applied our algorithm, using T = 5 and
R = 2 as before (but passing along no other information from the first run
of the algorithm). The algorithm thus dropped all UMIs with fewer than
T = 5 reads, treated the remaining UMIs for each gene g as the observed
number of UMIs nobs

g , re-estimated the (shrunken) gene-specific losses,
and used them to correct nobs

g for these losses to arrive at an estimated
total transcript count ntot

g . Finally, we computed for each gene the relative
quantification error as

∣∣ntot
g − ntrue

g

∣∣
ntrue
g

. (S2)
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S2 Supplementary Figures
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Fig. S1. Sensitivity of estimates to choice of thresholdT . Shows the estimated efficiency (E, left y-axis), loss (`, left y-axis), number of putative true UMIs (nobs , right y-axis) and estimated
total number of molecules (n̂tot , right y-axis) for different choices for the error-correction threshold T .
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Fig. S2. Length dependence of PCR efficiency. For each experiment, the detected UMIs were binned according to fragment length, and the PCR efficiency estimated independently for
each bin.
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Fig. S3. Variability of the raw (unshrunken) model parameters and resulting loss between genes. Includes parameter for 7481 detected genes in D. mel. R1, 8001 genes in R2, 2380 genes
in E. coli R1 and 2308 genes in R2.
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Fig. S4. Total variance of the raw gene-specific loss estimates. Total observed variance was computed for bins containing 20 genes with a similar number nobs
g of observed true UMIs. The

regression curve s + u/nobs used to infer the optimal gene-specific shrinkage factors λg comprises two components, the variance s of the loss between genes, and the nobs
g -dependent

error of the (raw) gene-specific loss estimates u/nobs
g . See also Gene-specific estimates & corrections.


