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Supplementary Results 

Normality of Matching Scores 

We tested the normality of the distribution of each of 4 sets of scores from 4 non-ensemble 
methods composing EMUDRA. We first tested distributions of enrichment scores calculated 
from random signatures. Each random signature was comprised of 5,000 genes randomly 
sampled from all the genes profiled in CMap, while gene expression changes (logFC) were 
randomly generated from a uniform distribution U[-1, 1]. Enrichment scores from each method 
were then compared to a normal distribution with their mean and standard deviation using K-S 
test. A total of 100 random signatures were tested. As shown in Figure S6A, most of score lists 
calculated from the 100 random signatures followed normal distribution with p-value > 0.05. 
Specifically, only 1, 4, 0 and 4 of the 100 signatures showed a non-normal distribution (i.e. p ≤ 
0.05) for Cosine, XCor, XSpe and EWCos methods, respectively. These result indicated that 
enrichment scores of random signatures followed normal distribution (a typical example shown 
in Fig. S6B). Next, we tested normality of the scores calculated from the TNBC signature. As 
expected, those scores did not follow normal distributions as a few drugs reversed the TNBC 
signature, which formed long tails at the negative parts of the distributions (Fig. S6C). However, 
after excluding enrichment scores less than -0.06, the remaining scores followed normal 
distributions (Fig. S6D). These results supported our assumption that matching scores of the 4 
methods would follow normal distribution except those scores from drugs that matched 
(reversed/enhanced) with query signature.  

Application of EMUDRA to Ovarian Cancer 

We further applied EMUDRA to ovarian cancer. We first identified the genes differentially 
expressed between the stage IV ovarian cancer samples (distant metastasis) and the stage I-III 
samples (without distant metastasis) in the TCGA cohort. This signature included 114 up-
regulated and 109 down-regulated genes in stage IV ovarian cancer. Table S2 shows the top 20 
drugs predicted by EMUDRA. Fifteen of the top 20 drugs have known anticancer effects, such as 
apoptosis, cell cycle arrest and suppress cancer cell growth, suggesting that the top drugs have 
potential effects on suppressing ovarian cancer growth, aggression and metastasis.  Among these 
drugs, only ciclopirox is in the top 20 drugs previously identified for the triple negative breast 
cancer, indicating EMUDRA adapts to input signatures of interest. 

Availability of Additional Data and Scripts 

The data and script for making Figures 2-4 are available from the Synapse 
(https://www.synapse.org/#!Synapse:syn11038303).  

 



Supplementary Tables 

Table S1. Composition scores for the 247 ensemble and 8 non-ensemble methods.  
Ensemble Composit

e.Score 
Ensemble Composit

e.Score 
Ensemble Composit

e.Score 
Cos.XCor.XSpe.EWCos (EMUDRA) 0.479638 Cos.XSum.XSpe.WSS 0.037747 XCos.XCor.EWCos.KS 5.02E-13 
Cos.XCos.XCor.XSpe.EWCos.WSS 0.442958 XSum.XCos.EWCos.WSS 0.036908 XCor.XSpe.KS 5.02E-13 
Cos.XCos.XSpe.EWCos 0.441615 Cos.XSum.EWCos.WSS 0.03521 XSum.XCor.EWCos.KS.WSS 4.88E-13 
Cos.XSpe.EWCos 0.415415 Cos.XSum.EWCos 0.030451 Cos.XSum.XCor.XSpe.KS.WSS 4.88E-13 
Cos.XCos.XCor.EWCos.WSS 0.412619 Cos.XSum.XCor 0.029668 XCor.XSpe.EWCos.KS 4.83E-13 
Cos.XCor.XSpe.EWCos.WSS 0.404975 Cos.XSum.XSpe 0.025822 Cos.XCos.XCor.XSpe.KS.WSS 4.82E-13 
Cos.XCos.XCor.XSpe.EWCos 0.391374 XSum.XCos.XCor.XSpe 0.025749 Cos.XCor.XSpe.EWCos.KS 4.64E-13 
Cos.XCor.EWCos 0.387216 Cos.XSum.XCos 0.025223 XCos.XCor.XSpe.KS.WSS 4.56E-13 
Cos.XCos.XSpe.EWCos.WSS 0.380861 XSum.XCor.EWCos 0.025127 XSum.XCor.KS.WSS 4.50E-13 
Cos.XCos.XCor.EWCos 0.354182 XSum.XCos.XCor.WSS 0.023669 Cos.XSum.XCor.EWCos.KS.WSS 4.43E-13 
Cos.XCor.EWCos.WSS 0.328538 XSum.XCos.EWCos 0.02301 Cos.XCor.XSpe.KS 4.40E-13 
Cos.XCos.EWCos 0.305494 XSum.XCor.XSpe.WSS 0.022735 Cos.XCos.XCor.XSpe.EWCos.KS.WSS 4.39E-13 
Cos.XSpe.EWCos.WSS 0.297396 XSum.XSpe.EWCos.WSS 0.022026 XCos.XCor.XSpe.EWCos.KS.WSS 4.35E-13 
Cos.XSpe 0.283303 XSum.XCos.XSpe.WSS 0.020461 Cos.XSum.XCor.KS.WSS 4.29E-13 
Cos.XSum.XCos.XCor.XSpe.EWCos.WSS 0.282022 XCos.XCor 0.019251 Cos.XSum.XSpe.EWCos.KS 4.05E-13 
Cos.XCos.EWCos.WSS 0.280198 XSum.XSpe.EWCos 0.015053 XSum.XCos.XSpe.EWCos.KS.WSS 4.00E-13 
XCos.XCor.XSpe.EWCos.WSS 0.258072 XSum.XCor.XSpe 0.014159 Cos.XSum.XCos.XSpe.EWCos.KS.WSS 3.86E-13 
Cos.XSum.XCor.XSpe.EWCos.WSS 0.255655 XSum.XCos.XCor 0.013057 XSum.XSpe.EWCos.KS 3.79E-13 
Cos.XCor.XSpe.WSS 0.253148 XSum.XCos.XSpe 0.01252 XSum.XCos.EWCos.KS.WSS 3.54E-13 
Cos.XCos.XCor.XSpe.WSS 0.243792 XCor.WSS 0.011603 Cos.XSum.XCos.XSpe.KS.WSS 3.40E-13 
Cos.XSum.XCos.XCor.EWCos.WSS 0.242628 XCos.WSS 0.010951 XSum.XCos.XSpe.KS.WSS 3.34E-13 
XCor.XSpe.EWCos.WSS 0.241665 XSum.XCor.WSS 0.009483 XSum.EWCos.KS 3.28E-13 
Cos.XSum.XCos.XSpe.EWCos.WSS 0.235064 Cos.WSS 0.007194 Cos.XSum.XCos.EWCos.KS.WSS 3.25E-13 
Cos.XCor.XSpe 0.234406 XSum.XCos.WSS 0.006663 XCos.XCor.EWCos.KS.WSS 3.20E-13 
XCor.XSpe.EWCos 0.228843 XSum.XCor 0.005727 XCos.XSpe.KS 3.13E-13 
XCos.XSpe.EWCos 0.227075 XSpe.WSS 0.005663 Cos.XCos.XCor.EWCos.KS.WSS 3.12E-13 
XCos.XSpe.EWCos.WSS 0.2241 XSum.XCos 0.004724 Cos.XCos.XSpe.EWCos.KS 3.08E-13 
Cos.XCos.XSpe.WSS 0.223103 Cos.XSum.WSS 0.004572 Cos.XSum.EWCos.KS 3.08E-13 
Cos.XCor 0.208147 Cos.XSum 0.003908 Cos.XCos.XSpe.KS 3.06E-13 
Cos.XSum.XCos.XCor.XSpe.EWCos 0.205838 XSum.XSpe.WSS 0.002768 XCos.XSpe.EWCos.KS 2.97E-13 
XCos.XCor.EWCos.WSS 0.20539 XSum.XSpe 0.002243 XSum.XCos.KS.WSS 2.97E-13 
Cos.XCos.XSpe 0.202481 XSum.EWCos.WSS 0.002128 Cos.XSum.XSpe.KS 2.96E-13 
XSpe.EWCos 0.199096 XSum.EWCos 0.001514 Cos.XSum.XCos.KS.WSS 2.89E-13 
Cos.XSum.XCor.XSpe.EWCos 0.19072 EWCos.WSS 0.000575 Cos.XCos.XCor.KS.WSS 2.78E-13 
Cos.XCos.XCor.WSS 0.187936 XSum.WSS 0.00039 XCos.XCor.KS.WSS 2.70E-13 
Cos.XSum.XCor.EWCos.WSS 0.181113 XSpe 4.62E-05 Cos.XCor.KS 2.60E-13 
XCos.XCor.XSpe.EWCos 0.178179 XCor 4.30E-05 XCor.EWCos.KS 2.55E-13 
Cos.XSum.XCos.XSpe.EWCos 0.174028 Cosine 1.63E-05 Cos.XCor.EWCos.KS 2.52E-13 
Cos.XSum.XCos.XCor.EWCos 0.168451 XCos 5.02E-06 XCor.KS 2.45E-13 
Cos.XSum.XCos.EWCos.WSS 0.165931 EWCos 2.34E-06 XSum.XSpe.EWCos.KS.WSS 2.45E-13 
Cos.XCos 0.159098 XSum 3.63E-07 Cos.XSum.XSpe.EWCos.KS.WSS 2.39E-13 
XCor.EWCos 0.156394 KS 3.46E-07 Cos.XSum.KS 2.31E-13 
Cos.XSum.XSpe.EWCos.WSS 0.149852 WSS 2.86E-07 XSum.XSpe.KS 2.22E-13 
Cos.XCos.XCor.XSpe 0.148278 XSum.XCos.XCor.XSpe.KS 1.14E-12 Cos.XSum.XSpe.KS.WSS 1.88E-13 
Cos.XCor.WSS 0.136663 XSum.XCos.XCor.KS 1.10E-12 Cos.XSum.EWCos.KS.WSS 1.81E-13 
Cos.XSum.XCor.EWCos 0.131166 Cos.XSum.XCos.XCor.XSpe.KS 1.09E-12 Cos.XCor.XSpe.KS.WSS 1.81E-13 
XSum.XCos.XCor.XSpe.EWCos.WSS 0.129586 XSum.XCos.XCor.XSpe.EWCos.KS 1.08E-12 Cos.XCor.XSpe.EWCos.KS.WSS 1.67E-13 
Cos.XSum.XCos.XCor.XSpe.WSS 0.129351 Cos.XSum.XCos.XCor.KS 1.04E-12 Cos.XCos.EWCos.KS 1.59E-13 
XCos.XCor.EWCos 0.124327 XSum.XCos.XCor.EWCos.KS 1.03E-12 XSum.XSpe.KS.WSS 1.55E-13 
XCos.EWCos 0.120184 Cos.XSum.XCos.XCor.XSpe.EWCos.KS 9.92E-13 XSum.EWCos.KS.WSS 1.55E-13 
Cos.XSum.XSpe.EWCos 0.119321 Cos.XSum.XCos.XCor.EWCos.KS 9.66E-13 Cos.XCos.KS 1.49E-13 
Cos.XSum.XCos.EWCos 0.110398 XSum.XCor.XSpe.EWCos.KS 9.28E-13 XCor.XSpe.EWCos.KS.WSS 1.47E-13 
Cos.XCos.XCor 0.11011 XSum.XCos.XCor.XSpe.KS.WSS 8.76E-13 XSum.KS 1.42E-13 
Cos.XCos.WSS 0.107638 Cos.XSum.XCor.XSpe.EWCos.KS 8.55E-13 XCos.EWCos.KS 1.34E-13 
Cos.XSpe.WSS 0.101884 XSum.XCor.XSpe.KS 8.40E-13 Cos.XCos.XSpe.EWCos.KS.WSS 1.32E-13 
XCor.EWCos.WSS 0.101805 Cos.XSum.XCor.XSpe.KS 8.33E-13 XCor.XSpe.KS.WSS 1.31E-13 
Cos.XSum.XCor.XSpe.WSS 0.097483 XSum.XCor.EWCos.KS 8.26E-13 Cos.XSum.KS.WSS 1.30E-13 
XSum.XCor.XSpe.EWCos.WSS 0.094811 XSum.XCos.XCor.XSpe.EWCos.KS.WSS 7.73E-13 Cos.XCos.XSpe.KS.WSS 1.12E-13 
Cos.XSum.XCos.XSpe.WSS 0.089156 Cos.XSum.XCor.EWCos.KS 7.52E-13 XCos.XSpe.EWCos.KS.WSS 1.01E-13 
XSum.XCos.XCor.EWCos.WSS 0.088869 Cos.XSum.XCor.KS 7.50E-13 XSum.KS.WSS 9.50E-14 
Cos.XSum.XCos.XCor.WSS 0.087933 XCos.XCor.XSpe.KS 7.49E-13 XCos.KS 9.22E-14 
Cos.EWCos 0.086141 Cos.XSum.XCos.XCor.XSpe.KS.WSS 7.36E-13 Cos.XCor.EWCos.KS.WSS 8.95E-14 
XCos.EWCos.WSS 0.085832 XSum.XCos.XCor.KS.WSS 7.31E-13 XCos.XSpe.KS.WSS 8.03E-14 
XSum.XCos.XSpe.EWCos.WSS 0.085405 XSum.XCos.XSpe.EWCos.KS 7.17E-13 Cos.XCor.KS.WSS 7.05E-14 
XSpe.EWCos.WSS 0.084821 XSum.XCos.XCor.EWCos.KS.WSS 7.13E-13 Cos.XSpe.EWCos.KS 6.72E-14 

 



Table S1. Composition scores for the 247 ensemble and 8 non-ensemble methods. (Continued) 

Ensemble Composit
e.Score 

Ensemble Composit
e.Score 

Ensemble Composit
e.Score 

XSum.XCos.XCor.XSpe.EWCos 0.083244 CombnAll8Scores 7.08E-13 XCor.EWCos.KS.WSS 6.11E-14 
XCos.XCor.XSpe.WSS 0.079339 XSum.XCor.KS 6.92E-13 Cos.XCos.EWCos.KS.WSS 5.75E-14 
Cos.XSum.XCos.XCor.XSpe 0.078543 Cos.XSum.XCos.XSpe.EWCos.KS 6.77E-13 Cos.XCos.KS.WSS 4.13E-14 
Cos.XSum.XCor.XSpe 0.057925 Cos.XCos.XCor.XSpe.KS 6.41E-13 XSpe.EWCos.KS 3.98E-14 
XSum.XCor.XSpe.EWCos 0.057257 XCos.XCor.KS 6.33E-13 Cos.XSpe.KS 3.96E-14 
Cos.XSum.XCos.XSpe 0.052562 XSum.XCos.XSpe.KS 6.24E-13 XCos.EWCos.KS.WSS 3.59E-14 
XSum.XCos.XSpe.EWCos 0.051643 XCos.XCor.XSpe.EWCos.KS 6.19E-13 XCor.KS.WSS 3.36E-14 
Cos.XSum.XCor.WSS 0.051379 Cos.XSum.XCos.XCor.EWCos.KS.WSS 6.18E-13 Cos.XSpe.EWCos.KS.WSS 2.85E-14 
XSum.XCos.XCor.EWCos 0.051273 Cos.XSum.XCos.XSpe.KS 6.18E-13 XCos.KS.WSS 2.12E-14 
Cos.XSum.XCos.XCor 0.051069 Cos.XSum.XCos.XCor.KS.WSS 6.13E-13 Cos.EWCos.KS 1.91E-14 
XCor.XSpe.WSS 0.050402 Cos.XCos.XCor.XSpe.EWCos.KS 6.11E-13 Cos.XSpe.KS.WSS 1.89E-14 
Cos.EWCos.WSS 0.048199 XSum.XCos.EWCos.KS 6.06E-13 XSpe.EWCos.KS.WSS 1.70E-14 
XCos.XSpe.WSS 0.047699 Cos.XSum.XCos.EWCos.KS 5.76E-13 XSpe.KS 1.57E-14 
Cos.XSum.XCos.WSS 0.044673 Cos.XSum.XCos.KS 5.51E-13 Cos.EWCos.KS.WSS 1.15E-14 
XCos.XSpe 0.044441 XSum.XCor.XSpe.EWCos.KS.WSS 5.44E-13 XSpe.KS.WSS 1.04E-14 
XSum.XCor.EWCos.WSS 0.043522 XSum.XCos.KS 5.29E-13 Cos.KS 7.66E-15 
XSum.XCos.XCor.XSpe.WSS 0.042927 Cos.XCos.XCor.KS 5.23E-13 EWCos.KS 5.84E-15 
XCor.XSpe 0.041818 Cos.XCos.XCor.EWCos.KS 5.18E-13 Cos.KS.WSS 5.66E-15 
XCos.XCor.WSS 0.038536 XSum.XCor.XSpe.KS.WSS 5.13E-13 EWCos.KS.WSS 4.13E-15 
XCos.XCor.XSpe 0.038147 Cos.XSum.XCor.XSpe.EWCos.KS.WSS 5.13E-13 KS.WSS 1.24E-15 

 

Table S2. Top 20 drugs targeting ovarian cancer by EMUDRA 

Drug Score Known Effects Evidence type Reference 
ciclopirox -6.74303 Inhibit cell proliferation  direct (Shen, et al., 2017) 
gossypol -6.33088 Induce apoptosis indirect (Volate, et al., 2010) 
perhexiline -6.30989 Inhibit tumor growth direct (Ren, et al., 2015) 
monensin -6.29086 Cell cycle arrest and apoptosis direct (Park, et al., 2003) 
5182598 -6.08998 Novel prediction unclear None 
phenoxybenzamine -5.70601 Novel prediction unclear None 
MG-132 -5.67589 Induce autophagy indirect (Bao, et al., 2016) 
clofilium tosylate -5.62421 Induce apoptosis with pazopanib direct (Chauvin, et al., 2017) 
pararosaniline -5.5809 Novel prediction unclear None 
thioridazine -5.26889 Induce apoptosis indirect (Kang, et al., 2012) 
clomipramine -5.14264 Induce apoptosis indirect (Xia, et al., 1999) 
rescinnamine -5.10425 Induce apoptosis indirect (AbdelHafez, et al., 2013) 
dyclonine -5.06724 Enhance cytotoxic effect indirect (Ju, et al., 2009) 
pimethixene -4.832 Novel prediction unclear None 
clofazimine -4.77852 Inhibit cancer cell growth direct (Koval, et al., 2014) 
niclosamide -4.76828 Suppress cancer cell growth direct (Lu, et al., 2011) 
triamterene -4.72708 Selective tumor cell cytotoxicity direct (Guillotin, et al., 2017) 
withaferin A -4.71359 Kills cancer cells direct (Yu, et al., 2017) 
clioquinol -4.5358 Reduced cancer cell viability direct (Ding, et al., 2005) 
5151277 -4.5082 Novel prediction unclear None 
 

 

 

  



Supplementary Figures 

 
Figure S1. Receiver operator characteristic (ROC) curves and partial area under the curve (pAUC) 
of the 9 methods in the simulation studies. (A) Drug-induced signatures were identified from drug-
treated and vehicle-treated gene expression profiles for each instance in the CMap. Those signatures were 
used as query signatures to calculate scores for each method. Instances treated with a same drug of a 
query signature were taken as positive cases while the other instances were set as negative cases for 
plotting ROC curves and assessing AUC of false positive rate less than 0.1. (B) Partial ROC and AUC of 
signatures identified from the CMap gene expression profiles with adding random noise from a uniform 
distribution.  

 

 



 
Figure S2. ROC curves and whole AUC of the 9 methods in simulations. (A) Drug-induced signatures 
were identified from drug-treated and vehicle-treated gene expression profiles for each instance in the 
CMap. Those signatures were used as query signatures to calculate scores for each method. Instances 
treated with a same drug of a query signature were set as positive cases and other instances were set as 
negative cases for plotting ROC curves and assessing the AUC. (B) ROC and AUC of signatures 
identified from the CMap gene expression profiles with adding random noise from a uniform distribution. 

  



 
Figure S3. ROC curves and partial AUC of simulations with higher noise. (A) Random noise (s = 0.5) 
from a uniform distribution was added to the CMap gene expression profiles to identify query signatures. 
Those signatures were used as query signatures to calculate scores for each method. Instances treated with 
a same drug of a query signature were set as positive cases and other instances were set as negative cases 
for plotting ROC curves and assessing partial AUC of false positive rate less than 0.01. (B) pROC and 
pAUC of s = 0.8 

Figure S4. ROC curve and partial AUC of the 9 methods in independent data sets. (A) ROC curves 
and pAUC of predicting drug pairs sharing at least 1 ATC code. Drug pairs sharing at least 1 ATC level 4 
codes were used as positive cases and other drug pairs between those drugs were set as negative cases. 
Drug-induced signatures identified from the CMap were used as query signatures to calculate scores of 
drug pairs for each method. The positive and negative cases as well as scores were then used to generate 
ROC curves and evaluate pAUC of the 9 methods with FPR less than 0.1. (B) Predicting drug pairs 
sharing at least 2 ATC codes. (C) ROC curves and pAUC of the LINCS validation data set. Drug-induced 
signatures were identified from the LINCS data set and used to calculate scores. Instances treated with the 
same drug of a signature were used as positive cases and other instances were used as negative cases to 
generate ROC curves and calculate pAUC with FPR less than 0.1. 



 

 
Figure S5. ROC curves and whole AUC of 9 methods tested in the independent data sets. (A) ROC 
curves and AUC of predicting drug pairs sharing at least 1 ATC code. Drug pairs sharing at least 1 ATC 
level 4 codes were used as positive cases and other drug pairs among those drugs were set as negative 
cases. Drug-induced signatures identified from CMap were used as query signatures to calculate matching 
scores of drug pairs using each method. The positive and negative cases as well as scores were then used 
to generate ROC curves and estimate AUC. (B) Predicting drug pairs sharing at least 2 ATC codes. (C) 
ROC curves and AUC of the LINCS validation data set. Drug-induced signatures were identified from the 
LINCS data set and used to calculate scores. Instances treated with the same drug of a signature were 
used as positive cases and other instances were used as negative cases to generate ROC curves and 
calculate AUC.  

 

 



 
Figure S6. Distributions of p-values from normality tests of random signatures and distributions of 
matching scores from the four methods composing EMUDRA. (A) Distributions of p-values from 
normality tests of Cosine, XCor, XSpe and EWCos scores calculated from random signatures. (B) 
Distributions of Cosine, XCor, XSpe and EWCos scores from a random signature. (C) Distributions of 
Cosine, XCor, XSpe and EWCos scores from the triple negative breast cancer signature. The p-values 
were calculated by comparing scores of each method with standard normal distribution using the K-S test. 
(D) Distributions of Cosine, XCor, XSpe and EWCos scores from the triple negative breast cancer 
signature without scores < -0.06. The p-values were calculated by comparing scores of each method with 
standard normal distribution using the K-S test.  
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