
Supplementary: Bayesian negative binomial

regression for differential expression with

confounding factors

Siamak Zamani Dadaneh, Mingyuan Zhou and Xiaoning Qian

March 27, 2018

In this supplementary file, we provide the pseudo-code of our inference algorithm

for Bayesian negative binomial regression (BNB-R), the definition of Chinese Restau-

rant Table (CRT) distribution, additional results on synthetic data, and the enlarged

plots for the figures in the main text.

1 BNB-R Pseudo-code

We first provide the pseudo code of BNB-R, including Bayesian inference via Gibbs

sampling and the consequent differential expression (DE) analysis based on the sym-

metric Kullback-Leibler (KL) divergence.

Algorithm 1 BNB-R differential expression analysis

Inputs: gene expression counts, design matrix, N
Outputs: KL-divergence based ranking of DE genes

Initialize model parameters
# Do Gibbs sampling:
for iter = 1 to N do

Sample `kj using Chinese Restaurant Table (CRT) distribution
Update rj using the gamma-Poisson conjugacy
Sample auxiliary variables ωkj, using the Polya-Gamma (PG) distribution
Update regression coefficients
Update αp and h

end for
Calculate KL-divergence between posterior samples
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2 Chinese restaurant table (CRT) distribution

The negative binomial distribution m ∼ NB(r, p) with the probability mass function

fM(m) =
Γ(m+ r)

m!Γ(r)
(1− p)rpm, m ∈ {0, 1, . . .}

can be augmented as a gamma mixed Poisson distribution as

m ∼ Pois(λ), λ ∼ Gamma(r, p/(1− p)),

where the gamma distribution is parametrized by its shape r and scale p/(1− p). It

can be augmented under a compound Poisson representation as

m =
∑̀
t=1

ut, ut ∼ Log(p), ` ∼ Pois(−r ln(1− p)),

where u ∼ Log(p) is the logarithmic distribution with probability generation function

CU(z) = ln(1−pz)/ ln(1−p), |z| < p−1. We denote the conditional posterior distribu-

tion of ` given m and r by (`|m, r) ∼ CRT(m, r) and sample it with the summation of

independent Bernoulli random variables as ` =
∑m

n=1 bn, bn ∼ Bernoulli[r/(n−1+r)]

[7].

3 Results of BNBP and GNBP on synthetic data of

Section 3.1.1

Figure 1 plots the comparison of BNBP and GNBP [1] with other differential expression

analysis methods, edgeR [6], DESeq2 [5], and voom [2], on synthetic data described in

Section 3.1.1 of the main text, in terms of the areas under both the receiver operating

characteristic (ROC) and precision-recall (PR) curves. With Figure 1 in the main

text, we can clearly see that our BNB-R considering the effects of covariates has the

best performance with a significant margin over all the other algorithms.
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Figure 1: Left panel: ROC curve, Right panel: PR curve. Performance comparison
of different methods in detecting differentially expressed genes generated under a negative
binomial regression model with covariates: condition, gender and dosage. The curves corre-
spond to the case that only the condition covariate in used in differential expression analysis.
In particular, the results for BNBP and GNBP, which were omitted in the original paper, are
included here.
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4 Figures in the paper

We plot the figures in the main text with larger size to better visualize the performance

difference between different DE analysis methods.
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Figure 2: Left panel: ROC curve, Right panel: PR curve. Performance comparison
of different methods in detecting differentially expressed genes generated under a negative
binomial regression model with covariates: condition, gender and dosage. Panels in the top
row correspond to the case that full covariate information is used in differential expression
analysis. Panels in the bottom row correspond to the case that only condition covariate is
used in differential expression analysis.
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Figure 3: Left panels: ROC curve, Right panels: PR curve. Performance comparison of
different methods in detecting differentially expressed genes generated under the negative
binomial regression model with covariates: condition, gender, dosage, and interaction of
condition and gender. The panels in the top and middle rows correspond to differentially
expressed genes across conditions for males and females, respectively. The panels in the
bottom row correspond to differentially expressed genes for the case that full covariate
information is not employed, with the interaction term excluded from differential expression
analyses by all the methods.
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Figure 4: Top row: ROC and PR curves for a fixed cut-off, Bottom row: AUC of
ROC and PR curves for different cut-off values. Performance comparison of different
methods in detecting differentially expressed genes on real-world benchmark RNA-seq
data from the SEQC project. edgeR, DESeq2, and voom are applied in conjunction
with SVA with two surrogate variables.
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5 Surrogate Variable Analysis

Figure 5 illustrates the performance of edgeR [6], DESeq2 [5], and voom [2] on the

SEQC benchmark data, with and without surrogate variable analysis [4, 3].
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Figure 5: AUC of ROC and PR curves for edgeR, DESeq2 and voom methods applied
to SEQC benchmark data, with and without surrogate variable analysis.

As shown in Figure 5, edgeR, DESeq2, and voom together with sva indeed achieve

better performance on differential expression analysis compared to the corresponding

original methods. However, as shown in Figure 4 here or Figure 3 of the main text,

their performances are still not as good as BNB-R, which explicitly model the influence

from the covariates of interest.
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