
PBRpredict-Suite: A Suite of Models to Predict

Peptide Recognition Domain Residues from Protein

Sequence (Supplementary Document)

Sumaiya Iqbal and Md Tamjidul Hoque

March 18, 2018

1 Peptide Recognition Domains in the Dataset

A wide range of PRDs were included in the rcp644 dataset of receptor chains
that mediate peptide-protein interactions, for example, the Major Histocom-
patibility Complex (MHC I and II) domain can recognize peptide fragments
derived from the pathogen. The PDZ domain generally binds to C-terminal
peptide-motifs. The Src Homology 2 (SH2) and Phospho-Tyrosine Binding
(PTB) domains recognize phosphorylation of tyrosine (pTyr or pY). The
PTB domain can bind to the N-P-x-Y motif as well. The Src Homology
3 (SH3) domain binds to Pro-rich motifs and peptide-motifs, such as R-x-
x-K. The 14-3-3, WW, Polo-box, BRCA1 C Terminus (BRCT), Forkhead-
associated (FHA) domains recognize different type phosphorylation or post-
translational modifications (PTMs) of threonine (pThr or pT) and serine
(pSer or pS). The chromatin organization modifier (Chromo), Bromodomain
and Tudor domain bind to methylated or acetylated peptides, such as Tu-
dor domain can recognize PTMs on lysine (meLys or meK) and arginine
(meArg or meR) by methylation. Chromo domain can also recognize meLys
and Bromo domain recognize PTMs on lysine by acetylation (acLys or acK).
The Enzyme/inhibitor complexes with hydrolase, kinase, isomerase, phos-
phatase, protease and so on. Further, we included antibody-antigen, amyloid
fibrils, membrane or transmembrane protein and nuclear receptor complexes
in the dataset. The count of sequences with different domains and the distri-
bution of positive (peptide-binding) and negative (non-binding) class type
residues of those sequences are reported in Table 1. The distributions re-
ported in Table 1 show the percentage of different class type residues before
smoothing (see main article, Section 2.2.)
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Table 1: Peptide recognition domains in our dataset.
Count of Sequences and

Distribution of Residue Types

Peptide Recognition Full Set Training Set Test Set
Domains (PRDs) (%b/%n)∗ (Fold 1 + Fold 2)

MHC I/II 81 (11.9/88.1) 60 (30 + 30) 21
PDZ 37 (16.4/83.6) 27 (14 + 13) 10
SH2, PTB 59 (17.2/82.8) 43 (22 +21) 16
SH3 54 (16.8/83.2) 40 (20 + 20) 14
14-3-3, WW, Polo-Box 72 52 (28 + 24) 20
BRCT, FHA (11.5/88.5)
Tudor, Chromo, Bromo 54 (13.0/87.0) 40 (21 + 19) 14
Enzyme/Inhibitor 109 (12.1/87.9) 81 (41 + 40) 28
Antibody/Antigen 88 65 (33 + 32) 23
(Trans)Membrane (10.7/89.3)
Amyloid fibrils
Nuclear, others 90 (10.4/89.6) 67 (34 + 33) 23

Total 644 (12.5/87.5) 475 (243 + 232) 169
∗ %b/%n indicates the proportional distribution of peptide-binding (‘b’) and non-binding

(‘n’) residues beside the count of different domain protein sequences.)

2 Evaluation Criteria

The binary classification output of the PBRpredict is evaluated and com-
pared using the measures listed below. Here, recall is a measure to identify
a predictors completeness in classifying the positive class and precision mea-
sures a predictors exactness. Therefore, the harmonic mean of recall and
precision called F1 score measure a classifiers overall correctness. The miss
rate and fall-out rate measure two complementary types of incorrect pre-
dictions, respectively the misclassification of binding residue as non-binding
and non-binding residue as binding. MCC is considered as another balanced
measure to evaluate binary classification.

• True positive, TP = Correctly predicted peptide-binding residues

• True negative, TN = Correctly predicted non-binding residues

• False positive, FP = Incorrectly predicted peptide-binding residues

• False negative, FN = Incorrectly predicted non-binding residues
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• Recall/Sensitivity/True Positive Rate, TPR = TP
TP+FN

• Specificity/True Negative Rate, TNR = TN
FP+TN

• Fall-out (or over prediction) Rate/False Positive Rate, FPR = FP
FP+TN

• Miss Rate/False Negative Rate, FNR = FN
FN+TP

• Balanced accuracy (Mean of Specificity and Recall),
ACC = 1

2( TP
TP+FN + TN

TN+FP )

• Precision, PPV = TP
TP+FP

• F1 Score (Harmonic mean of precision and Recall) = 2TP
2TP+FP+FN

• Mathews correlation coefficient,
MCC = (TP×TN)−(FP×FN)√

(TP+FP )(TP+FN)(TN+FP )(TN+FN)

Moreover, Area under ROC curve (AUC) is considered as the mea-
sure for probability assignment. We further plotted the ROC curves and
Precision-Recall curves. The AUC values and the curves are generated us-
ing pROC [Robin et al., 2011] and ROCR packages [Sing et al., 2009] in R.

3 Learning Algorithms

We applied stacked generalization [Wolpert, 1992] to develop the peptide-
binding residue predictor (PBRpredict). Stacking is an ensemble technique
to minimize the generalization error and has been successfully applied in sev-
eral machine learning tasks [Frank et al., 2004, Nagi and Bhattacharyya, 2013].
To the best of our knowledge, this study has first explored stacking for iden-
tifying the pattern of protein sequence that induces binding with peptides.

Stacking framework involves two-tier learning. The classifiers of the first
tier and the second tier are called base-learner and meta-learner respectively.
Multiple base-learners are employed in the first tier. In the second tier, the
outputs of the base-learners are combined using another meta-learner. Here,
the underlying idea is: different base-learners can incorrectly learn different
regions of the feature space. A meta-learner is then applied, usually non-
linearly, to correct the improper training of the first tier, thus the meat-
learner is trained to learn the error of the base-learners. Therefore, it is
desirable to use classifiers as base-learners that can generate uncorrelated
prediction outputs.
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We explored six different machine leaning algorithms as base-learners
and logistic regression as meta-learner to combine probability distributions
generated at the base-level. The algorithms including the overall setup are
briefly discussed below:

1) Support Vector Machine (SVM): We used radial basis function (RBF)
kernel SVM [Cortes and Vapnik] as one of the base-learners. SVM is an ef-
fective algorithm for binary prediction that minimizes both the empirical
classification error in the training phase and generalized error in the test
phase. SVM classifies by maximizing the separating hyperplane between
two classes and penalizes the instances on the wrong side of the decision
boundary using a cost parameter, C. The RBF kernel parameter, λ and the
cost, C were optimized to achieve best accuracy using expensive grid search.
We conducted this parameter optimization using a smaller subset of random
samples, specifically 386 receptor chains out of 644 chains. The best values
of the parameters found are, C = 23 and λ = 2−7, and used as represen-
tative parameter values for the full dataset. The optimal setup of C and
makes the SVM model effective for a classification problem with imbalanced
dataset and high-dimensional feature space, such as the one attempted here.

2) Random Decision Forest (RDF): The RDF [Cortes and Vapnik] op-
erates by constructing a multitude of decision trees on sub-samples of the
dataset and outputs the mean prediction of the decision trees. We used
bootstrap samples to construct 1, 000 tress in the forest to develop the RDF
ensemble learner.

3) Extra Tree (ET) Classifier : The extremely randomized tree or
ET [Geurts et al., 2006] is another ensemble method and is explored as a
base-learner here. ET works by constructing randomized decision trees from
the original learning sample. The best split is determined randomly from
the range of values at each split. We constructed the ET model with 1, 000
tress and the quality of a split was measure by gini impurity index.

4) Gradient Boosting Classifier (GBC): Another learning technique that
we used to develop a base-learner is the gradient boosting [Friedman, 2002].
GBC combines weak learners in an iterative fashion into a single learner.
We used 1, 000 boosting stages where a regression tree was fit on the nega-
tive gradient of the deviance loss function. The learning rate was set to 0.1
and the maximum depth of each regression tree was set to 3. GBC gives
robust performance to over-fitting with higher number of boosting stages,
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and we observed that 1, 000 stages provided competitive performance for
this application.

5) K Nearest Neighbors (KNN): The k nearest neighbors (KNN) classi-
fier [Altman, 1992] operates by learning from the k closest training samples
in the feature space around a target point. The classification decision is pro-
duced based on the majority votes coming from the neighbors. In this work,
the value of k was set to 9 and all the neighbors were weighted uniformly.

6) Bagging (BAG): The bootstrap aggregation or bagging [Breiman, 1996]
is another ensemble method, useful for reducing variance in the prediction.
Here, bagging classifier was fit on multiple subsets of data with repetitions
using 1, 000 decision trees, and the outputs were combined by weighted av-
eraging.

7) Logistic Regression (LogReg): To develop the meta-learner that com-
bines the output probabilities generated by the base-learners, we used lo-
gistic regression (LogReg) [Freedman, 2009] with L2 regularization. The
LogReg classifier estimates the probability of binding versus non-binding
residues based on the confidence of multiple independent base-learners.

We tuned the parameters of SVM and developed the model using lib-
SVM package [Chang and Lin, 2011], while the rest of classifier models were
built and tuned using scikit-learn [Pedregosa et al, 2011]. We evaluated the
performance and analyzed the correlation among prospective base-learners.

4 Feature Importance Estimation

Here, we report the results of the feature importance estimation using extra
tree (ET) classifier. ET estimates the feature importance using a method de-
scribed by Breiman [Breiman et al, 1984] which works by maintaining impu-
rity reduction for each feature [Geurts et al., 2006, Louppe et al, 2013]. The
information gain is attributed to each feature to measure the total decrease
of impurity. Finally, the classifier provides an importance value for each
feature, known as Gini importance, which was used to rank the features.

Figure 1 presents the ranked features according to the importance val-
ues. The importance values can be interpreted as the fraction of the test
samples that were correctly classified by that feature. The training and test
were done using rcp tr475 and rcp ts169 datasets with 60 features and win-
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dow size 1. Figure 1 shows that all the features have greater than zero
importance, thus we used all 60 features to develop our predictor.

Figure 1: Estimated feature importance by ET classifier. The importance
values are shown by green bars. The x-axis shows the features in their ab-
breviated form according to Section 2.3. Multiple features of same category
are indexed by their count, i.e., 20 PSSMs are indexed from 1 to 20.

Figure 1 shows that the structural profile (composed of features: f29
(beta), f30 (coil), f31 (helix), f32 (ASA), f33 (phi) and f34 (psi)), the flexi-
bility profile (composed of features: f35 (dphi), f36 (dpsi) and f58 (drp)) and
the energy profile (composed of feature: f59 (PSEE)), are the three most
dominant feature categories.

To further understand the contributions of the dominant features, we
developed separate ET models by subsequently removing the six structural
properties, three flexibility-related properties and one energy-based property
from the feature set. Therefore, these ET models were developed based on
54(60−structural profile), 51(60−structural profile−flexibility profile) and
50(60− structural profile− flexibility profile− energy profile) features. The
performance of these models and the one developed using all 60 features are
reported in Table 2. The training and test were done using rcp tr475 and
rcp ts169 datasets, and the window size was set to 1.

The results show that all MCC, F1 score, precision, and recall continues
to decrease with the removal of the dominant feature categories. Specifically,
we observed no less than 5% decrease in MCC as we removed the structural,
flexibility and energy profile. In addition, the F1 score is decreased by 6.2%,
4.4% and 4.8% after removal of the 6 structural properties, 3 flexibility-
related properties including disorder probability and backbone angle fluctu-
ations, and 1 position specific estimated energy (PSEE), respectively. These
results validate the importance of the top features used to develop our pre-
dictor. Moreover, we want to highlight that the PSSM based evolutionary
properties, secondary structure and accessible surface area based structural
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Table 2: Comparison of different feature sets (training set: rcp tr475 and
test set: rcp ts169).
Metric 60 Features 54 Features 51 Features 50 Features

MCC 0.478 0.454 0.431 0.407
F1 Score 0.505 0.474 0.453 0.431
Precision 0.788 0.787 0.765 0.739
Recall 0.372 0.339 0.322 0.304
Best values are marked in bold.

60 features: all

54 features: all - structural profile

51 features: all - structural profile - flexibility profile

50 features: all - structural profile - flexibility profile - energy profile

properties have been used in the literature [Taherzadeh et al., 2016] for pre-
dicting peptide-binidng residues, however, the flexibility and energy based
properties have been used for the first time in this work.

5 Window Selection

We searched for a suitable size of the sliding window (W ) that determines
the number of residues around a target residue, which can mediate the
interaction between the target residue and a peptide residue. We developed
15 different models with extra-tree (ET) classifier with 15 different window
sizes (1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27 and 29). We chose ET
classifier for this set of runs as this technique is computationally less costly
as well as gives comparable performance (see main article, Table 2). The
models were trained using rcp tr475 dataset, and was independently tested
using rcp ts169 dataset.

The result is shown in Figure 2 in terms of recall, F1 score, MCC and
AUC score. We observed that all the scores were improved with the increase
of window size, which highlights that inclusion of neighborhood residue in-
formation better guides the predictor to learn about a target residue. We
have also observed irregular changes in MCC, which were not very signifi-
cant. However, the scores get flat from window size 19 to higher. Finally,
we picked 25 as an optimum value of window as it gave better MCC, F1
score and recall than the adjacent competitors, size 23 and 27. Therefore,
we took the features of 12 residues on either side of a target residue while
determining if it is interacting or not.
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Figure 2: Performance comparison of different sliding window sizes using
extra-tree classifier. The MCC, F1 score and recall values are reported.
The optimum size of window and the corresponding performance scores are
marked by a black rectangle.

6 Finalizing the PBRpredict-Suite Models

In the proposed PBRpredict-Suite, we included three models to predict pro-
tein’s peptide-binding residues: PBRpredict-strict, PBRpredict-moderate
and PBRpredict-flexible, that use different thresholds for classification. In
this section, we discuss the development of these 3 different predictor mod-
els.

We named the stacked model sM4 with 63 features in the meta-level (see
main article, Section 4.2) as PBRpredict-strict. This model provided a
well-balanced performance when compared with the state-of-the-art predic-
tor which is supported by both statistics (main article, Section 4.4) and
case-studies (main article, Section 4.5). However, we call this model
‘strict ’ in predicting the positive class (peptide-binding residues) as it re-
sulted in fine false positive rate (fall-out rate/FPR) even at the cost of com-
promised recall score (TPR). Moreover, we observed that the PBRpredict-
strict model provides conservative performance in identifying the binding
residues in full-length sequence, relatively longer than the structure-specific
shorter sequence, to avoid the false positive predictions or over-prediction
(see Figure 4). Note that, we included only the structure-specific sequences
from PDB in our training dataset, as we needed the experimental structures
to extract the interaction information and annotate the protein sequence.
However, we intend to design models that can identify peptide-binding sites
in sequences with domains that are not known to the training set as well as
within the full-length protein sequence with no experimentally solved struc-
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ture. Therefore, we tuned our model further to improve the true positive
rate (recall/TPR) or positive-class prediction accuracy of our model.

We attempted to relax the classification threshold to recover the positive-
class type (peptide-binding) residues that are falsely predicted as negative-
class (non-binding). A classification threshold, which is traditionally kept
as 0.5, is used to binarize the real-value probabilities generated by a clas-
sifier algorithm such as the samples with a probability output ≥ thresh-
old is predicted as of positive-class, otherwise labeled as of negative-class.
To understand the probabilistic behavior of the learners, we visualized the
distributions of the probabilities generated by SVM, GBC, KNN for four
different prediction types: true positives (TP), false positive (FP), true neg-
ative (TN) and false negative (FN) using the threshold value 0.5. Figure 3
shows the distribution plots. The plots for SVM, GBC and KNN, shown in
Figure 3(a)–(c), were generated from the independent prediction outputs
on one fold of the rcp tr475 set while trained using the other fold (main
article, Section 3.2). The plot for LogReg in Figure 3(d) was generated
from the prediction outputs on rcp ts169 dataset while trained on the full
rcp tr475 set.

Note that, by tuning the threshold, our purpose is to correct the false
negative (FN) prediction outputs, represented by the blue curve in Figure 3.
However, care must be taken in lowering the threshold from 0.5, which may
convert the corresponding true negatives (TN) under the green curve into
false positives (FP), represented by the red curve. Therefore, we can only
increase the accuracy of positive class (peptide-binding residue) prediction
or decrease the miss rate at a cost of increased over-prediction rate (false
positive rate).

The plots of Figure 3 again highlight the strength of SVM for this ap-
plication. The SVM model correctly predicts the highest mass of binding
(orange curve) and non-binding residues (green curve) with a high confi-
dence, higher (0.85 1.0) and lower (0.0 0.15) probability values respec-
tively. Moreover, Figure 3(a) shows that the SVM model provided the
lowest overlap between TNs (correctly predicted non-binding residues) and
FNs (incorrectly predicted binding residues) near the threshold margin com-
pared to the other base-learners, GBC and KNN. Therefore, we can lower
the threshold of SVM to gain an increase in recall score (TPR) at a cost
of lower increase in the false positive rate (FPR). On the other hand, we
noticed an opposite scenario from the outputs of KNN in Figure 3(c) with
almost overlapped density curves for TNs and FNs. Therefore, we can only
achieve an increase in TPR at a cost of high FPR. To mention, the curves
for GBC in Figure 3(b) were better than those of KNN, however worse
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(a) SVM (b) GBC

(c) KNN (d) LogReg

Figure 3: Probability distributions given by (a) SVM, (b) GBC, (c) KNN
and (d) LogReg for different prediction type: true positives (TP, orange
curve), false positives (FP, red curve), true negatives (TN, green curve) and
false negatives (FN, blue curve) using the threshold value 0.5. The x-axis
and y-axis show the probabilities generated by the corresponding classifier
and the relative density, respectively.

than those given by SVM. Figure 3(d) shows that the density curves given
by LogReg are even better than SVM in terms of overlap between TNs and
FNs near the margin (0.5). It suggests that the application of the meta-
learner improved the performance over the base-learners and we can tune
the threshold of the meta-learner as well to correct the FNs.

To search for appropriate thresholds, we checked 7 different values, which
are 0.45, 0.4, 0.35, 0.3, 0.25, 0.2 and 0.15 for SVM, GBC and KNN. Each
classifier was independently evaluated on one fold of the training set while
trained by the other fold using these 7 different threshold values (results not
shown). This experiment did not result in any certain value of the thresh-
old. For classifiers, i.e., KNN, the recall and balanced accuracy continue to
increase with the lower threshold value at a cost of very high over-prediction
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which is not desirable. Thus, we finally chose the thresholds according to
certain statistics on the probabilities of false negatives (FNs) given by the
classifiers as our aim is to correct FNs by assigning a different threshold to
segregate the positive and negative class.

We quantified the mean probabilities of FNs (mean(FNpr)) along with
the standard deviations (std(FNpr)) which are 0.172 ± 0.122 for SVM, 0.209
± 0.130 for GBC, 0.208 ± 0.138 for KNN and 0.199 ± 0.105 for the LogReg.
We checked the median values (median(FNpr)) as well which are 0.139 for
SVM, 0.187 for GBC, 0.222 for KNN and 0.191 for the LogReg. Then, we
considered the mean(FNpr) + std(FNpr), mean(FNpr) and median(FNpr)
values as different sets of thresholds.

Table 3: Performnace of SVM, GBC and KNN using different thresholds on
rcp ts169 dataset.
Thresholds TPR TNR FPR FNR ACC PPV F1 Score MCC

SVM
Traditional: 0.5 0.547 0.959 0.041 0.453 0.753 0.762 0.637 0.579
mean(FNpr) + std(FNpr): 0.3 0.639 0.926 0.074 0.361 0.782 0.672 0.655 0.576
mean(FNpr): 0.17 0.747 0.854 0.146 0.253 0.800 0.547 0.632 0.538
median(FNpr): 0.14 0.785 0.821 0.179 0.215 0.803 0.509 0.618 0.523

GBC
Traditional: 0.5 0.373 0.977 0.023 0.627 0.675 0.791 0.507 0.480
mean(FNpr) + std(FNpr): 0.34 0.526 0.934 0.066 0.474 0.730 0.652 0.582 0.500
mean(FNpr): 0.21 0.692 0.827 0.173 0.308 0.759 0.486 0.571 0.459
median(FNpr): 0.19 0.722 0.800 0.200 0.278 0.761 0.460 0.562 0.448

KNN
Traditional: 0.5 0.348 0.965 0.035 0.652 0.657 0.701 0.465 0.420
mean(FNpr) + std(FNpr): 0.35 0.440 0.926 0.074 0.560 0.683 0.586 0.502 0.411
mean(FNpr): 0.21 0.744 0.687 0.313 0.256 0.761 0.360 0.458 0.347
median(FNpr): 0.22 0.744 0.687 0.313 0.256 0.716 0.360 0.485 0.347
Best values for each classifier are bold faced.

We report the performances of SVM, GBC and KNN on rcp ts169 dataset
using these modified thresholds in the Table 3. The results showed that for
all the classifiers, the recall, miss-rate and accuracy (ACC) scores improved
with lower threshold values. The models with the traditional threshold
(0.5) produced the most balanced performance for SVM and KNN with
the highest MCC scores. On the other hand, the models with thresh-
olds equal to mean(FNpr) + std(FNpr) provided the best F1 scores for
all the classifiers and the best MCC for GBC. Moreover, the fall-out or
over-prediction rates with these threshold values were reasonable, specifi-
cally no greater than 7.5%. On the other, the median(FNpr) values were
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lower than the mean(FNpr) values for the SVM and GBC. Therefore, the
use of median(FNpr) values as thresholds resulted in outstanding recall
scores, however at a cost of very high fall-out rate which was not desir-
able. In addition, the performances of KNN models with mean(FNpr) and
median(FNpr) as thresholds were similar. Therefore, we did not consider
the median(FNpr) value as the threshold in the meta-level.

In the main article (Table 5), we report the results of the stacked mod-
els with modified threshold values on the rcp ts169 dataset. The stacked
model for which the mean(FNpr) + std(FNpr) and the mean(FNpr) are
used as thresholds for all the base-level and meta-level learners are named
as PBRpredict-moderate and PBRpredict-flexible, respectively. The actual
threshold values are reported in the footnote of Table 5.

The output shows that the PBRpredict-strict with the threshold value
of 0.5 resulted in the lowest fall-out rate with the highest MCC score (a
balanced measure to assess a binary classifier), however, the recall score was
lower as well as the miss rate was higher than those of other models in the
suite. In PBRpredict-moderate, the thresholds were relaxed and set to a rel-
atively lower values, defined by the mean(FNpr)+std(FNpr). Subsequently,
the true positive rate (TPR) was increased by 19.4% at a cost of 4.54% de-
crease in the true negative rate (TNR). In addition, the F1 score and ACC
were also improved by 2.19% and 4.27% for the PBRpredict-moderate than
those of PBRpredict-strict model. In the PBRpredict-flexible model, the
thresholds were even further lowered and set to mean(FNpr). Therefore, all
the false negative predictions (miss rate) of PBRpredict-strict with proba-
bility values greater than or equal to the mean(FNpr) were corrected by the
PBRpredict-flexible at a cost of high fall-out rate of around 16%.

In Figure 4, we illustrate the usefulness of these 3-different prediction
using an example. PBD ID: 2CIA50 stores the structure of a sequence (chain
A) with SH2 domain bound to a phosphopeptide. In Figure 9(a), we present
the structure-specific sequence of chain A (length: 102) and the predicted an-
notation produced by PBRpredict-strict. The peptide-binding residues are
marked in blue on the amino acid sequence. The true and false predictions
are marked respectively in green and red on the predicted annotations (b
for peptide-binding and n for non-binding). We observed that PBRpredict-
strict could recognize most of the binding residues in the structure-specific
sequence. However, the same model failed to recognize those residues when
the input was the full-length sequence (UniProtKB: O43639, length: 380)
containing the shorter structure-specific sequence (Figure 4(b)). On the
other hand, the PBRpredict-moderate and flexible models could identify the
binding residues on the full-length sequence, however with an increased num-
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ber of false predictions of non-binding residues as binding residues. There-
fore, the PBRpredict-Suite contains all the models that serve the purpose
of recognizing peptide-binding residues under different scenarios.

(a) PDB ID: 2CIA, chain A (length: 102)

(b) UniProtKB: O43639 (length: 380)

Figure 4: The outputs of PBRpredict-Suite models on (a) the structure-
specific and (b) the full-length sequence of a same protein. Figure in (a)
shows the protein sequence and predicted annotations given by PBRpredict-
strict on PDB sequence (ID: 2CIA, chain A). Figure in (b) shows the protein
sequence and predicted annotations given by all PBRpredict-Suite models
on the full-length UniProt sequence (ID: O43696) of the same protein. The
peptide-binding residues are marked in blue on the amino acid sequence.
The true and false predictions are marked respectively in green and red on
the predicted annotations (‘b’ for peptide-binding and ‘n’ for non-binding).

7 Performance of PBRpredict-Suite Modles on Structure-
specific Sequences with Unknown Domain

In the main article, we statistically evaluated the performance of three differ-
ent peptide-binding residue predictor models in PBRpredict-Suite separately
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on two different datasets. In Table 5 of Section 4.3, we reported the per-
formance of the models on 169 protein chains, namely rcp ts169 dataset, that
share less than 40% sequence similarity with the chains in the training set.
Moreover, in Table 8 of Section 4.5.2, we outlined the performances of
the PBRpredict-Suite models on 17 protein chains with 3 different peptide-
recognition domains that are not known to the training set. In this section,
we want to further discuss the performance of the models on the protein-
peptide complexes that were deposited in the Protein Data Bank (PDB)
after we accesed the PDB to collect the training dataset, specifically on
September 2016.

Table 4: Comparison of PBRpredict-Suite models on 53 protein chains,
collected in between June 2017 and March 2018.

Metric PBRpredict-strict PBRpredict-moderate PBRpredict-flexible

Recall/TPR 0.453 0.666 0.793
Specificity/TNR 0.992 0.960 0.891
Fall-out rate/FPR 0.008 0.040 0.109
Miss rate/FNR 0.547 0.334 0.207
Accuracy/ACC 0.723 0.813 0.842
Precision 0.895 0.714 0.520
F1 Score 0.604 0.645 0.577
MCC 0.602 0.689 0.628
Best values are bold faced.

PBRpredict-strict thresholds: SVM(0.5), GBC(0.5), KNN(0.5), LogReg(0.5).

PBRpredict-moderate thresholds: SVM(0.3), GBC(0.34), KNN(0.35), LogReg(0.3).

PBRpredict-flexible thresholds: SVM(0.17), GBC(0.21), KNN(0.21), LogReg(0.2).

For this study, we collected 53 structures that were deposited in PDB
in between June 2017 and March 2018 following the similar steps described
in Section 2.1. The performnace of the proposed models while evalu-
ated against the synthetic annotation (with smoothing) is reported in Ta-
ble 4. The result shows that the PBRpredict-strict model with the threshold
value of 0.5 resulted in the lowest false positive rate (FPR) with the highest
precision score (correctness in predicting the positive class/peptide-binding
residues). On the other hand, the PBRpredict-flexible model with the most
relaxed threshold values resulted in the highest true positive rate (TPR),
however, with the lowest specificity which quantifies a classifier’s ability to
predict the negative class/non-bining residues. However, the PBRpredict-
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moderate provided the most balanced performance with the highest Math-
ews correlation coefficient (MCC) and F1 score (harmonic mean of the pre-
cisiona nd sensitivity).

For further visualization of the prediction quality and comparison with
the existing predictor in the literature, SPRINT [Taherzadeh et al., 2016],
we mapped the prediction outputs on three sample structures from this
dataset. Figure 5 shows the actual peptide-binding residues (red) of human
Mst1 kinase with SARAH domain, and the prediction outputs of PBRpredict-
moderate and SPRINT are highlighted in yellow and magenta, respectively.
The PBRpredict-moderate performed quite well with 90.2% accuracy and
80.5% MCC scores here, whereas SPRINT clearly suffered form overpredic-
tion.

(a) Actual (b) PBRpredict-moderate (c) SPRINT

Figure 5: (a) Peptide-binding residues (red) of the SARAH domain (green),
bound to a C8 peptide (cyan) in PDB 5XCR. The prediction outputs of
PBRpredict-moderate (yellow) and SPRINT (magenta) are shown in (b)
and (c), respectively.

Figure 6 shows the structure of a complex containing ROR gamma
ligand-binding domain (LBD) bound with a repressor peptide. In Figure 6
(a), the actual peptide-binding residues are shown in red, and the prediction
outputs of PBRpredict-moderate and SPRINT are highlighted in yellow and
magenta in Figure 6(b) and (c), respectively. In this case, PBRpredict-
moderate resulted in 84.9% accuracy and 75.3% MCC scores, whereas the
comparative visualization shows that SPRINT overpredicted the residues
as peptide-binding which are far apart from the peptide (cyan). We ob-
served similar outputs from PBRpredict-moderate and SPRINT in case of
predicting peptide-binding residues in Lysine-specific histone demethylase
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(a) Actual (b) PBRpredict-moderate (c) SPRINT

Figure 6: (a) Peptide-binding residues (red) of protein with ROR gamma
ligand-binding domain (LBD) (green), bound to a repressor peptide (cyan)
in PDB 5X8U. The prediction outputs of PBRpredict-moderate (yellow)
and SPRINT (magenta) are shown in (b) and (c), respectively.

(a) Actual (b) PBRpredict-moderate (c) SPRINT

Figure 7: (a) Peptide-binding residues (red) of the Lysine-specific histone
demethylase 1A (green), bound to a peptide 9 (cyan) in PDB 5X60. The pre-
diction outputs of PBRpredict-moderate (yellow) and SPRINT (magenta)
are shown in (b) and (c), respectively.

1A, shown in Figure 7.
The above results of the PBRpredict-Suite model suggest the strength

of the proposed models, compared to the existing model, in locating poten-
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tial peptide-binding sites within sequences for which the cognate domains
are not known to the models. Therefore, the predictors can be useful in
determining possible peptide-binding sites from protein sequence when no
putative interaction information is known.

8 Case Study on Full-length Protein Sequences
with Unknown Domain

In this section, we study the full-length protein sequences with PBRpredict-
Suite models. Here, we want to evaluate the ability of the proposed models
in identifying potential peptide-binding residues in proteins for which no
experimental or template structure is available. For this study, we chose the
Gid4 protein. Recently, [Chen et al., 2017] discovered that the Gid4 sub-
unit of the ubiquitin ligase GID in the yeast Saccharomyces cerevisiae tar-
gets the gluconeogenic enzymes, and recognizes the N-terminal proline (P)
residue and the short 5-residue-long adjacent sequence motifs. The authors
[Chen et al., 2017] identified such interactions through in vitro experiments
with two-hybrid assays.

We computationally predicted the potential residues in the Gid4 protein
that may mediate such interactions with gluconeogenic enzymes to degrade
them and down-regulate the gluconeogenesis. We collected 3 Swiss-Prot re-
viewed proteins from UniProt, GID4 YEAST (ID: P38263), GID4 HUMAN
(ID: Q8IVV7) and GID4 MOUSE (ID: Q9CPY6), and ran the PBRpredict-
Suite models on these sequences to identify possible peptide-binding residues.
As PBRpredict-strict model produce conservative output on full-length pro-
teins (Figure 4), here we show the predicted peptide-binding residues given
by PBRpredict-moderate and flexible only. We report the results on GID4 YEAST
in the main article (Fig. 9) and on GID4 HUMAN and GID4 MOUSE be-
low.

GID4 HUMAN (UniProtKB – Q8IVV7): Figure 8(a) and (b)
show the possible binding residues in blue identified by the PBRpredict-
moderate and PBRpredict-flexible model in GID4 HUMAN. The moderate
and flexible model found 8 and 39 binding-residue respectively with an av-
erage confidence of 0.58 and 0.55.

GID4 MOUSE (UniProtKB – Q9CPY6): The potential binding
residues in GID4 MOUSE, predicted by the PBRpredict-moderate and PBRpredict-
flexible model, are shown in Figure 9(a) and (b). The moderate and flex-
ible model found 19 and 67 binding-residues respectively with an average
confidence of 0.56 and 0.55.
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(a) PBRpredict-moderate annotation of GID4_HUMAN

(b) PBRpredict-flexible annotation of GID4_HUMAN

Figure 8: Figure (a) and (b) show the prediction outputs of PBRpredict-
moderate and flexible models that are mapped on to the sequence of
GID4 HUMAN. The predicted binding residues are marked in blue.

(a) PBRpredict-moderate annotation of GID4_MOUSE

(b) PBRpredict-flexible annotation of GID4_MOUSE

Figure 9: Figure (a) and (b) show the prediction outputs of PBRpredict-
moderate and flexible models that are mapped on to the sequence of
GID4 MOUSE. The predicted binding residues are marked in blue.

The above case-studies show that the PBRpredict-Suite can be a useful
tool in revealing the amino acid compositions that mediates crucial inter-
actions with peptide motifs from sequence alone when no structure is avail-
able. Such residue patterns can be further utilized for their cognate peptide
identification. The above outcomes can further guide the experimental de-
termination of the complex structure of these proteins by truncating the
portion of the chain with potential peptide-binding sites.
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