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Methods

Likelihood values are calculated using the following equations, adopted from [1]:
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and Xc
i denotes the number of reads mapping to contig ci under the jth condition (summed

over all replicates of a condition for simplicity). Edges with value 2 (`1 − `0) > 20 are removed
from the graph.

Datasets

We tested our tool on datasets from four organisms. The first dataset we used is from hu-
man, Homo sapiens, (SRA accessions SRR493366-SRR493371) primary lung fibroblast samples,
with and without a small interfering RNA (siRNA) knock down of HOXA1 [2]. The second
sample is from yeast, Saccharomyces cerevisiae, grown under batch and chemostat conditions
(SRA accessions SRR453566 to SRR453571) [3]. Differential expression testing was done on
these two datasets. The third set is from dendritic cells in mice, Mus musculus, (SRA accession
SRR203276) [4], and the last from deep sequencing of Asian rice, Oryza sativa, (SRA acces-
sions SRR037735-SRR037738) [5]. The de novo assemblies were generated using Trinity and
the “true” clustering for each dataset was obtained by running BLAST against the respective
genomes. The genome versions used for each of the species were hg19 for human, R64-1-1 for
yeast, GRCm38 for mouse and IRGSP-1.0 for Asian rice. To test the labeling module, annotated,
closely related species were used. Macaque (Macaca mulatta, assembly MMUL 1), chimp (Pan
troglodytes, assembly CHIMP2.1.4), orangutan (Pongo abelii, assembly PPYG2), gorilla (Gorilla
gorilla gorilla, assembly gorGor3.1), and gibbon (Nomascus leucogenys, assembly Nleu1.0) were
used for human; rat (Rattus norvegicus, assembly Rnor 6.0) was used for mouse; red rice (Oryza
punctata,assembly AVCL00000000) and wild rice (Oryza barthii, assembly ABRL00000000) were
used for Asian rice. All the genomes and annotations for the related species were obtained from
the Ensembl database [6].
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“True” clustering

A genome based analysis is used to determine the “true” clustering of contigs in the de novo
assembly. The mapping between the de novo assembly and reference genome is done using
nucleotide level BLAST . The best possible mappings are filtered such that the percent match is
at least 98 and the length of the match is at least 200 bases. If there are multiple such mappings,
the longest one is selected and ties are broken randomly. Then, contigs with the same gene
label are said to come from the same “true” cluster. Any contig not included in the truth set is
excluded from all the results shown. The precision and recall values are calculated with respect
to this clustering. A true positive is counted when two contigs with the same label under the
genome based labeling are put in the same cluster by the tool. Similarly, a false positive is
counted when two contigs are put in the same cluster but do not have the same label in the truth
set. In the DE tests, this clustering is used to aggregate the quantification estimates to the gene
level for detecting truly differentially expressed genes.

Running tools

All results were generated using Python 2.7.12. The de novo assemblies in all tests were generated
using Trinity v2.2.0, run with default parameters. Salmon v0.8.2 was also run with 4 threads
in all tests, using the flags --dumpEq to write equivalence classes to a file that can then be
processed by Grouper , --writeOrphanLinks to write orphan reads to a file that can optionally
be read by Grouper to improve the mapping ambiguity graph, --discardOrphans which ignores
orphan reads while estimating expression levels of the contigs, and setting --incompatPrior

to 0 in order to ignore reads that disagree with the specified or inferred library format. The
--discardOrphans option improves results of Grouper since the number of orphan reads is
much higher in de novo assemblies and affects the overall quantification estimates that Grouper
uses for various graph filtering steps. Corset v1.05 was also run with default parameters, using 4
threads. The alignment files for Corset were not processed concurrently in the analysis, since we
observed this gave significantly worse accuracy results even though it was much faster. Bowtie
was used to align reads to the reference for Corset , and was run with 4 threads using parameters
suggested in the Corset paper. We use MCL, an off-the-shelf method, for clustering the mapping
ambiguity graph. We performed multiple tests using other clustering methods, with MCL giving
the best results. All experiments were performed on a 64-bit Linux server, running Ubuntu 14.04,
with 4 hexacore Intel Xeon E5-4607 v2 CPUs (with hyper-threading) running at 2.60GHz and
256GB of RAM. Wall-clock time was recorded using the Unix time command.
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Figure 1: Overview of the clustering module in Grouper .
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Figure 2: Overview of the labeling module in Grouper .
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Figure 3: DGE results: The curve represents the accuracy (true positives against false positives)
of calling differentially expressed genes using RSEM counts as ground truth, represented by the
clusters generated by each method in the human (a) and yeast (b) datasets.
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Table 1: Number of contigs clustered by each method in the de novo assemblies. Note that
although both Corset and Grouper have the same underlying principle of removing low count
contigs, the quantification method itself is different in the tools. This is also why the various
filters in Grouper do not significantly alter the count of contigs.

Corset Grouper Grouper (O) Grouper (O+M)
Human 69,107 80,034 80,441 80,441
Yeast 4,145 4,417 4,421 4,421
Mouse 36,627 36,943 37,106 37,106
Rice 73,082 71,853 72,152 72,152

Table 2: Number of contigs clustered by each method in the transcriptomes.
Corset Grouper Grouper (O) Grouper (O+M)

Human 109,232 125,672 125,695 125,695
Yeast 3,592 6,725 6,725 6,725
Mouse 54,931 53,199 53,219 53,219
Rice 33,340 31,022 31,025 31,025

Table 3: Memory usage of each clustering method using the de novo assemblies and the reference
transcriptomes (in Mb).

de novo assembly Transcriptome

Corset Grouper Grouper (O) Grouper (O+M) Corset Grouper Grouper (O) Grouper (O+M)
Human 3561 210 364 363 4765 482 1149 1733
Yeast 897 77 84 84 746 80 90 91
Mouse 8672 123 174 174 8943 189 310 310
Rice 1779 163 253 253 1522 126 162 162

Table 4: Alignment time of each method on the de novo assemblies and the transcriptomes (in
minutes).

De novo assemblies Transcriptomes
Bowtie Salmon Bowtie Salmon

Human 196.2 12.85 354.8 20.31
Yeast 34.33 3.67 32.11 4.38
Mouse 58.3 6.24 178.95 6.82
Rice 24.24 6.72 112.16 7.5
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