
i
i

“main” — 2018/5/1 — 3:55 — page 1 — #1 i
i

i
i

i
i

Bioinformatics
doi.10.1093/bioinformatics/xxxxxx

Advance Access Publication Date: Day Month Year
Application Note

Phylogenetics

Supplement: Two C++ Libraries for Counting Trees
on a Phylogenetic Terrace
R. Biczok 1, P. Bozsoky 1, P. Eisenmann 1, J. Ernst 1, T. Ribizel 1, F. Scholz 1,
A. Trefzer 1, F. Weber 1, M. Hamann 1, and A. Stamatakis 1,2∗

1Institute for Theoretical Informatics, Karlsruhe Institute of Technology, Karlsruhe, 76128, Germany and
2Scientific Computing Group, Heidelberg Institute for Theoretical Studies, Heidelberg, 69118, Germany.

∗To whom correspondence should be addressed.

Associate Editor: XXXXXXX

Received on XXXXX; revised on XXXXX; accepted on XXXXX

Abstract

In this supplement we provide an overview over the SUPERB algorithm. We also show that the number
of rooted trees on a terrace as inferred with SUPERB is identical to the number of unrooted trees on a
terrace if the unrooted input tree can consistently be rooted on a branch leading to a comprehensive taxon.
In addition, we provide details on the test datasets used and discuss some noteworthy implementation
details of terraphast I and terraphast II. Finally, we document the C and C++ interfaces and our compressed
NEWICK format extension for writing all trees on a terrace to file.

1 SUPERB Overview
Terminology First we introduce some terminology and define what the
terms we use mean. With ’SUPERB’ we refer to the original algorithm
by Constantinescu and Sankoff (1995) for reconstructing supertrees. We
use the terms leaf nodes, leaves, and taxa synonymously. We consistently
use ’partition’ for subsets of MSA sites that evolve according to the same
evolutionary model, whereas ’split’ always refers to a split of leaf nodes
(taxa) into subsets. Such splits are denoted by Σ orσ, respectively. The data
presence/absence matrix is denoted by M and the comprehensive taxon
for rooting by taxC . The induced unrooted per-partition trees are denoted
by T |Pi, their rooted counterparts by T ′|Pi. Finally, the comprehensive
input tree is denoted by T .

Original Superb Algorithm The original setting of the SUPERB algorithm
is as follows: Given a set of rooted binary trees, construct – if possible –
all rooted, binary so-called supertrees that are compatible with all given
trees in the input tree set.

For our purposes, we use all induced per-partition trees as input tree
set. These induced per-partition trees T |P1, ..., T |Pp are extracted from
the given input tree T (supertree) by pruning all taxa for which no data
is available for the specific partition. Therefore, we already know that the
algorithm must find at least one such supertree. Note that, the input trees
of the SUPERB algorithm must be rooted. We describe how the unrooted
input trees T |P1, ..., T |Pp can be consistently rooted in Section 2.

SUPERB consists of two steps: Given the tree set as input, it first
constructs a set of constraints that the supertree must fulfill/comply with to
fully describe the induced per-partition trees. Then, given these constraints,
SUPERB enumerates all binary rooted trees that do fulfill them.

1.1 Constraint Construction

For the constraint construction, the two children of each node in a tree
T |Pi are ordered (note that, the actual binary input trees are unordered
leaf-labeled trees) such that there is a clearly determined left and a right
child. The actual order chosen is not relevant as long as it is fixed. By
lca(x, y) we denote the lowest common ancestor of the leaves (taxa) x
and y, that is, the lowest node in the tree that is both in the path from x to
the root of the tree and in the path from y to the root of the tree. Further, for
an inner node x we denote by xl/xr the leftmost/rightmost leaf of x, that
is, the leaf we reach if, starting a tree traversal at x, we always descend
into the leftmost/rightmost child of a node. The constraints are of the form
lca(i, j) < lca(k, l). This form denotes that the lowest common ancestor
of leafs i and j must be below the lowest common ancestor (LCA) of leafs
k and l in the supertree we intend to construct. For a given rooted binary
tree, it is sufficient to generate one constraint per inner edge (commonly
referred to as branches in phylogenetics) (x, y), where x and y are inner
nodes of the tree. This constraint for (x, y), where y is a child of x has
the form lca(yl, yr) < lca(xl, xr). Note that, depending on whether
y is the left or right child of x, yl = xl or yr = xr . Thus, due to
the symmetric nature of the lca, the extracted constraints are actually of
the form lca(i, j) < lca(j, k). Figure 1 shows a simple example of this

© The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 1

i
i

“main” — 2018/5/1 — 3:55 — page 2 — #2 i
i

i
i

i
i

2 Sample et al.

r

l1 c2

l2 l3

lca(l2, l3) < lca(l1, l3)

Fig. 1. Example tree and the corresponding constraint (for the red edge/branch).

constraint construction procedure. In our example, there is only one inner
edge (branch) and therefore just one constraint.

1.2 Tree Enumeration

The main part of the SUPERB algorithm recursively divides the set of
taxa/leaves S of the entire tree set, respectively the input tree T together
with a set of constraints CS on these leaf nodes. The algorithm starts
with all leaves/taxa. Then, for each leaf, it determines if it belongs to
the left or right subtree of the root. In the recursion, the algorithm then
again divides the leaves among the children of the next node. Therefore,
each recursive step corresponds to one node in the supertree we intend to
build. The basic insight for dividing the leaves is that for each constraint
lca(i, j) < lca(j, k) the leaves i and j must be located together in a
subtree while j and k may be separated. Therefore, starting with a trivial
split Σ0 = {{v}|v ∈ Σ}where every node is in its own part, the algorithm
iteratively joins for each constraint lca(i, j) < lca(j, k) the parts σa and
σb that contain i and j, respectively. If a supertree exists, at the end of this
procedure, there will be a split Σk with at least two parts. If there are exactly
two parts, these are the leaves that are located below the two children of
the current node. Otherwise, we must consider all possibilities to combine
these parts such that we obtain exactly two parts. Each of these possibilities
to combine parts results in a different supertree. Thus, enumerating all of
them will generate all possible supertrees. For each of the two parts, we
call the algorithm recursively with only the leaf nodes in the respective part
and the constraints that only contain leaves of that specific part. If there
are no constraints in one of the recursive calls, it suffices to enumerate all
possible binary trees for the corresponding subset of leaf nodes of S. This
can be implemented in a straight-forward way.

Let us consider an example with S = {1, 2, 3, 4, 5} and CS =

{lca(1, 2) < lca(3, 2), lca(4, 5) < lca(4, 2)}. Then Σ0 =

{{1}, {2}, {3}, {4}, {5}}. In the next step, we merge 1 and 2:
Σ1 = {{1, 2}, {3}, {4}, {5}}. Then, we merge 4 and 5: Σ2 =

{{1, 2}, {3}, {4, 5}}. There are now 3 different ways to split these subsets
into two: ({1, 2}, {3, 4, 5}), ({1, 2, 3}, {4, 5}) and ({1, 2, 4, 5}, {3}).
So far, this yields three distinct trees. Now let us consider the recursion
into all three partitions:

1. ({1, 2}, {3, 4, 5}): For {1, 2}, there are no constraints left and we
obtain exactly one tree. For {3, 4, 5} there are also no constraints left.
We therefore need to enumerate all possible rooted binary trees with
3 leaves. Those trees all have the form of the tree in Figure 1 and there
are exactly 3 of them as we have 3 possibilities for choosing l1. Thus
we obtain 3 trees from this recursion.

2. ({1, 2, 3}, {4, 5}): For {1, 2, 3}, there is the constraint that
lca(1, 2) < lca(3, 2). Therefore, we join 1 and 2 and obtain
({1, 2}, {3}) as a new split. From the next recursion we obtain exactly
one result as there is only one binary tree with two leaves and 1 with
one leaf (the leaf itself). For {4, 5} there is also only one tree. Thus,
we obtain exactly 1 tree from this recursive step.

3. ({1, 2, 4, 5}, {3}): For {1, 2, 4, 5} we have the constraint that
lca(4, 5) < lca(4, 2). Thus, we obtain the splits {1}, {2}, {4, 5}.

Again, there are three different ways of splitting these subsets into two:
({1, 2}, {4, 5}), ({1}, {2, 4, 5}), ({2}, {1, 4, 5}). The first yields
exactly one tree from the recursion, the second one also returns only
one as the constraint is being used, and the third yields three subtrees
as there is no constraint left. Thus we obtain 1 + 1 + 3 = 5 trees
from this recursion.

In total, there are 3 + 1 + 5 = 9 possible supertrees for the given set of
constraints.

Next, we address the problem of how to root the unrooted input trees
for executing SUPERB.

2 Rooting by comprehensive taxa
The original SUPERB algorithm is defined on rooted trees. However,
all ’classic’ likelihood- and parsimony-based phylogenetic inference
programs and criteria return unrooted trees, except if an outgroup is
specified, which however, merely constitutes a drawing option. Therefore,
our library function specification explicitly requires a fully bifurcating
unrooted phylogenetic tree as input. Depending on the API (Application
Programming Interface) parameter settings, the output is specified to be
the number of unrooted phylogenetic trees that reside on the same terrace
as the input tree, potentially also including the topologies of all those trees
written to a file in NEWICK format.

As the original algorithm is specified on rooted trees we need to devise
a method to (i) consistently root our unrooted trees and (ii) ensure that the
number of rooted trees reported by the algorithm is identical to the number
of unrooted trees. This can be achieved by requiring the input dataset to
contain at least one so-called comprehensive taxon taxC , that is, a taxon
that has data for all partitions of the MSA. In other words, the binary input
matrix M that contains the presence/absence information about sequence
data per species (rows) and partition (columns) needs to contain at least
one row that entirely consists of 1s.

If a taxC exists, every induced tree T |Pi for each partition i will
contain a branch leading to taxC . Consequently, each T |Pi can be rooted
on the branch/edge leading to taxC and all induced rooted trees T ′|Pi

can therefore be consistently rooted and provided as input to SUPERB.
Given this consistent rooting, we now need to show that the number of

trees and actual tree topologies rooted at taxC as returned by SUPERB
are identical to the number of unrooted trees and unrooted tree topologies
containing taxC . Without loss of generality, we can order the leaves of the
rooted induced trees passed to SUPERB as taxC first and then all other
taxa by some fixed, numerical index (e.g., a lexicographic order).

Given this ordering and rooting the lca(taxC , y) will always be the
root of the tree for any T ′|Pi and any taxon y ∈ S, y 6= taxC in the tree.

To prove the equivalence of rooted and unrooted supertrees, we show
that the mapping πu: T ′ → T is bijective. The function πu maps any
rooted tree to its unrooted counter-part by contracting the root. If we
restrict the mapping to all supertrees that are enumerated by the SUPERB
algorithm, this mapping is surjective onto the set of all unrooted supertrees
of the induced subtrees T |Pi. This is because every unrooted supertree is
also a rooted supertree of T ′|Pi when we place the root into the branch
leading to taxC .

However, the mapping is not necessarily injective (see Section 8.1).
To ensure that it is injective, we need to restrict the SUPERB algorithm
to supertrees where taxC is a direct descendant of the root node. This
can be achieved by fixing the trivial split in the first recursion step such
that taxC is placed in one set and all remaining leaves are placed in
the other set. This modification of the SUPERB algorithm does not alter
the results and is hence correct based on the following observations:
As mentioned above, every constraint involving taxC is of the form

i
i

“main” — 2018/5/1 — 3:55 — page 3 — #3 i
i

i
i

i
i

Counting Trees on a Phylogenetic Terrace 3

lca(i, j) < lca(j, taxC). Thus, taxC will always be placed into a
singleton set when we apply the constraints. Therefore, the fixed split
between taxC and all remaining leaves constitutes a valid split in the
original SUPERB algorithm. Since we ignore all other possible splits,
the modified SUPERB algorithm enumerates exactly all those rooted
supertrees that contain taxC as direct descendant of the root. Note that, the
above modification maintains surjectivity as every tree unrooted at taxC
can be re-rooted at taxC .

Since we have shown injectivity and surjectivity of πu, the set of
unrooted supertrees is equivalent to the set of rooted trees returned by our
modified version of SUPERB.

2.1 Relaxing the Requirement for a Comprehensive Taxon

In practice, and as was observed when integrating terraphast-I with
RAxML-NG as well as in our experiments, a large proportion of empirical
datasets does not contain a comprehensive taxon. In the following, we
sketch how this limitation can be relaxed.

For this, we first introduce some additional definitions:

• Labelled leaf/taxon set L = {1, . . . , n}
• Taxon subsets L̃1, L̃2, . . . , L̃m representing the data that is

present/available for different partitions
• Set of unrooted trees containing all leaves/taxa TL
• Set of rooted trees containing all leaves/taxa T r

L

• A split is a bipartition (S,L \ S) of the leaf/taxon set where S ⊆ L

Next, we define some operations on the above data structures.

• The mapping that takes a rooted tree t ∈ T r
L and unroots it by

contracting the root node is again called πu : T r
L → TL

• Since every branch in an unrooted tree corresponds to a split/bipartition
(S,L\S) (it separates two subtrees with leaf/taxon sets S andL\S),
we can use splits and induced splits to generalize the rooting at leaves
to inner branches:
The mapping that takes an unrooted tree t ∈ TL̃ containing the split
induced by (S,L \ S) in L̃ and inserts a root node in the middle of
the corresponding branch is denoted by πr(S)

• For a split (S,L \ S) of the taxon set and a subset L̃ ⊆ L, we denote
by πL̃(S) = (S ∩ L̃, L̃ \ S) the induced split on L̃

• Constructing induced subtrees: For a given unrooted tree t ∈ TL and a
taxon set L̃ ⊆ L, the mapping πL̃ : TL → TL̃ constructs the induced
subtree as the union of all paths between taxa in L̃ after contracting
all nodes of degree 2. The same operations apply to rooted trees with
the limitation that

1. the root node remains uncontracted
2. there must be a path between taxa/leaves in L̃ that passes through

the root node, that is, the induced split on L̃ at the root must be
non-trivial.

In the following, we sketch a proof that shows the equivalence of this
adapted rooting algorithm to the one requiring a comrehensive taxon.

We know that the (unmodified) SUPERB algorithm enumerates all
rooted supertrees ti ∈ T r

L that are compatible with the input tree
t ∈ T r

L in accordance with the missing data pattern (i.e., ∀p =

1, . . . ,m : πL̃p
(ti) = πL̃p

(t)).
We now need to show that we can establish a correspondence between

these rooted supertrees and the unrooted supertrees.
One ingredient of this proof is that the unrooting and construction

operations of induced subtrees commute, that is, for a rooted tree t ∈ T r
L

we have πu(πL̃(t)) = πL̃(πu(t)). This is true because

1. the unrooting operation contracts the root node and

2. the only difference between the construction of induced subtrees for
rooted and unrooted trees is that the root node remains uncontracted
in the rooted case

The remainder of the proof consists of the following steps:

1. Show that every unrooted supertree has exactly one corresponding
rooted supertree (this requires the existence of a comprehensive
split/bipartition)

2. Show that every rooted supertree has exactly one corresponding
unrooted supertree (this requires a modification of the SUPERB
algorithm to only output rooted supertrees containing this
comprehensive split)

3. Show that unrooting the rooted supertree obtained in step 1 returns
our original input tree.

unrooted to rooted
We require that there exists a comprehensive split (S,L \ S), that is, a
split that corresponds to an edge in every supertree and every induced
subtree. This means that πLi

(S) must be non-trivial for all partitions
Li. This can, for instance, be guaranteed by rooting at the edge leading
to a comprehensive taxon. A more general, sufficient condition for the
existence of a comprehensive taxon is the subject of ongoing research.

Then, for any unrooted supertree ti ∈ TL compatible with the induced
subtrees of t ∈ TL, we can root at the edge that corresponds to the
comprehensive split. If we compute the induced subtrees of this rooted
tree, we observe that they are rooted versions of the induced subtrees of t
where the root corresponds to the induced split πLi

(S). Thus, the rooted
tree πr(S)(ti) is also a (rooted) supertree of πr(S)(t). If we formulate
this with our operators, we obtain:

∀p = 1, . . . ,m : πr(S)(πL̃p
(t)) = πL̃p

(πr(S)(ti))

rooted to unrooted
This is straight-forward as we obtained the rooted tree by rooting our
input tree at an inner edge. The reverse operation simply returns our initial
unrooted tree. However, we also need to ensure that every rooted tree has
exactly one corresponding unrooted supertree. To prove this we need to
proceed in two steps:

1. By the argument in the paragraph ’unrooted to rooted’, the induced
subtrees used as input for SUPERB are rooted versions of the induced
subtrees of our input tree. Thus, if we unroot any tree returned by
SUPERB, it will be compatible with the induced rooted subtrees as
a rooted tree and will therefore also be compatible with the induced
unrooted subtrees as an unrooted tree.

2. To prove that the mapping ’rooted to unrooted’ is injective, we
need to ensure that all output trees of SUPERB are rooted at the
comprehensive split. This can be achieved by fixing the leaf split
during the first recursion level of the SUPERB algorithm to this
comprehensive split.

3 Implementation Overview
We initially discuss the parts that are common to both implementations
before describing some specific implementation details of terraphast
I/II. Algorithm 1 illustrates the unoptimized pseudo code for both
libraries.

3.1 Pre-calculation and Constraint Construction

Before the tree enumerations, our implementations check via function
root_tree if a comprehensive taxon taxC exists. If it exists, we root
the unrooted input tree T on the branch leading to taxon taxC . We unroot

i
i

“main” — 2018/5/1 — 3:55 — page 4 — #4 i
i

i
i

i
i

4 Sample et al.

Algorithm 1: Pseudo code of terraphast I/II
Data: Comprehensive tree T , missing data matrix M
Result: Information R about terrace composition ,

e.g., terrace size, trees in NEWICK format, …
1 begin
2 T ′ ← root_tree(T , M);
3 S ← extract_leaves(T , M);
4 CS ← compute_constraints(T ′, M);
5 R← enumerate_trees(S, CS);
6 end
7 Function compute_constraints(T ′, M)

8 CS ← ∅;
9 foreach Partition Pi in M do

10 T ′|Pi ← extract_partition_tree(T ′,Pi);
11 CS ← CS∪ extract_constraints(T ′|Pi);
12 end
13 return Set of (unique) constraints CS

14 end
15 Function enumerate_trees(S, CS)

16 if CS = ∅ then
17 return enumerate_binary_trees(S)

18 end
19 R← init_result();
20 Σ← apply_constraints(S, CS);
21 foreach split σ = (S′1, S

′
2) in Σ do

// Combine results R′ from each split

22 C′S1
← filter_constraints(S′1, CS);

23 R′1 ← enumerate_trees(S′1, C′S1
);

24 C′S2
← filter_constraints(S′2, CS);

25 R′2 ← enumerate_trees(S′2, C′S2
);

26 R′ ← R′1 �R′2;
// Accumulate per-split results R′ to R

27 R← R⊕R′

28 end
29 return Combined result R of each split σ

30 end

and re-root the tree on taxC if the input tree is given as rooted tree. This
defines a fixed traversal order for the rooted treeT ′. If more than one taxC
exists, we select the first valid taxC that appears when readingM line by
line. The SUPERB algorithm is supposed to operate on a set of leaves S
extracted by the call to extract_leaves. This step is, depending on the
implementation, carried out implicitly by root_tree.

After the comprehensive input tree has been re-rooted, we
extract all constraints by invoking compute_constraints. For
each partition Pi of the missing data matrix M , we first calculate
the induced per-partition tree T ′|Pi via a post-order traversal of
T ′ (extract_partition_tree). Then, we construct the LCA
constraints for each T ′|Pi (extract_constraints) and combine
them into a de-duplicated list.

Duplicate constraints can arise when identical subtrees (see Fig. 1
for an example) are induced by more than one partition. Such duplicate
constraints can be removed because they provide no additional information
on the topology of the T ′|Pi. Avoiding unnecessary constraints is another
reason for de-duplicating the constraint list. Although SUPERB allows
for arbitrary constraints lca(a, b) < lca(c, d), the constraints extracted
from the T ′|Pi can only be of the form lca(a, b) < lca(b, c). Note that,
SUPERB does not need to distinguish between constraints lca(a, b) <

lca(b, c) and lca(b, a) < lca(a, c) as they are applied and filtered

equivalently. By generating constraints for each T ′Pi, we may encounter
a specific subtree x times and thus generate x instances of the constraint
lca(l2, l3) < lca(l1, l3).

3.2 Tree Enumeration

The function enumerate_trees performs the actual terrace analysis.
To support various execution modes, this part of our implementations
is generic. This means that, function init_result, function
enumerate_binary_trees, operator �, and operator ⊕ are
placeholders for specialized variants of enumerate_trees. For
instance, if the user wishes to retrieve the exact terrace size, the result to be
returned is an integer. In this case, function init_resultwill initialize
the result variable R as arbitrary precision integer with a starting value
of 0, function enumerate_binary_trees calculates the number of
binary trees for a leaf set S if no constraint are left, and the operator � /
⊕ adds/multiplies intermediate results from the recursive calls. If the user
wishes to enumerate all tree topologies on the terrace, all aforementioned
functions and operators will generate corresponding tree data structures
instead.

Both, terraphast I andterraphast II provide the following
four enumerate_trees execution modes:

• Terrace detection for checking if the given comprehensive tree T
resides on a terrace or not.

• Tree counting for calculating the number of distinct trees that reside
on the terrace.

• NEWICK tree enumeration for printing all trees on the terrace to file
in NEWICK format.

• Compressed NEWICK tree enumeration for printing the compressed
NEWICK tree format to file (see Section 9.1)

The apply_constraints function in the tree enumeration phase
is important, because it accounts for a large fraction of overall runtime.
Function apply_constraints applies a given set of constraints SC

to a set of sets of leaves generated from the given input set S. It combines,
for instance, a set S1 containing a leaf lx and a set S2 containing a leaf
ly , iff, there is a constraint satisfying lca(lx, ly) < lca(rx, ry) for any
leaf pair (rx, ry). Since combining sets, and checking, if a particular leaf
is present within a specific set of leaves are frequently invoked operations,
they should ideally require constant runtime. To this end, we experimented
with two alternative data structures for this task in both implementations.
One of them is the union-find with the conventional union by rank and path
compression heuristics. As described by Tarjan (1975), the union-find data
structure with both heuristics allows for searching and combining sets in
amortized O(α(n)) time where α(n) is the inverse Ackerman function.
This results in an almost constant time operation as α(n) < 5 for any
relevant number n < 1080 in our context. Alternatively, one can use bit
vectors where a set bit indicates if a specific leaf node is contained in the
set or not.

After applying the constraints, the algorithm iterates over all possible
splits of those leaf sets into pairs of disjunct leaf sets (a specific
split) denoted by Σ. For both parts S′1 and S′2 of a particular split,
filter_constraints determines all constraints C′S1

and C′S2
that

are still applicable. We then recursively apply enumerate_trees on
S′1 and S′2 with their corresponding constraint setsC′S1

andC′S2
Finally,

the� operation combines the results from both recursive calls, while the⊕
operation accumulates the results for all possible splits in a single recursive
call.

i
i

“main” — 2018/5/1 — 3:55 — page 5 — #5 i
i

i
i

i
i

Counting Trees on a Phylogenetic Terrace 5

4 Implementation of terraphast I

4.1 Constraint Construction

We extract the per-partition trees in a two-step process: For every partition
Pi, we determine which subtrees of T ′ occur in the induced tree T ′|Pi.
This is calculated simultaneously for all partitions i and for every inner
node v that represents/roots a subtree. More specifically, we compute the
bitwise or of the entries in matrix M for both children of v via a post-
order traversal. The result is then stored in an augmented presence/absence
matrix M ′.

After extracting the induced per-partition trees, we calculate the
constraints as follows. First, we traverse the T ′|Pi in post-order to
determine the outermost descendant nodes for every node v. These
outermost nodes have the LCA v. We then traverse all edges/branches
of all trees T ′|Pi once more and use the above information to establish
LCA relationships. Constraint calculation is completed by calculating a
de-duplicated list of LCA constraints from the above LCA relationships.

4.2 Tree Enumeration

Before the actual tree enumeration, we first use the extracted LCA
constraints to construct a so-called multitree. A multitree is a single
tree that complies with the constraints and represents all ambiguous
(multi-furcating) nodes in the tree via a dedicated node type. Such
ambiguities/multi-furcations occur when no constraints exist for a specific
subset of nodes. For instance, we represent a three-taxon subtree{a,b,c}
as a single node in the multitree. When we generate all possible supertrees
based on the multitree, for every possible partial topology not containing
{a,b,c}, the {a,b,c} node yields the three subtrees (a,(b,c)),
(b,(a,c)), and (c,(a,b)). In other words, a multitree represents
the set of all possible supertrees (trees on the terrace) that can be generated
from the constraints via SUPERB. A supertree iterator construct (based
on regular C++ Standard Template Library iterators) uses this multitree to
iterate over, and generate all (if the option is set) such supertrees.

4.3 Data Structures

4.3.1 Bitvectors
Subsets of leaves and constraints are represented by packed bitvectors.
We implemented an efficient operation to iterate over all set bits in these
bitvectors by using bitmasks and the BSF (bitscan forward) instruction.
As mentioned above, we calculate the node set of every T ′|Pi via a
post-order traversal. Here, the bit vector of an inner node is the bit-
wise or of its children. The bit vector of a leaf node i contains only
one set bit at position i that corresponds to the respective taxon ID.
Our bitvector implementation also provides efficient set operations like
union, complement, and symmetric difference. They correspond to the
bit-wise operations or, xor, and not which are used throughout our
implementation.

In addition, the leaf bitvector is augmented by a constant-time rank
support data structure, that is, the rank of an element in the set l can be
computed efficiently using but a few CPU cycles. The rank operation index
only needs to be updated once per recursive call.

4.3.2 Union-find
The union-find data structure uses the union by rank heuristic as well
as path compression to achieve almost constant-time operations. We
also implemented an explicit path compression method for the entire
data structure to obtain a thread-safe find operation(simple_find).
Therefore, we do not need to duplicate these data structures for the threads
in the parallel version of the code.

4.4 Memory Allocation

In an early version of terrphast I, memory-management represented
the largest performance bottleneck due to the high number of recursive
calls and the frequent allocation and deallocation of the respective data
structures. Thus, we developed a dedicated memory manager that leverages
the LIFO (Last In First Out) structure of the memory allocations in
conjunction with the predictable size of the allocations. It maintains a
free-list of memory blocks and uses the worst-case (largest) size for every
data structure. Note that, the RAM requirements of our implementation are
generally low (see Table 2) such that this slight over-allocation of memory
is justified.

4.5 Leaf-based Indexing

Since the constraints only contain leaf nodes, we remap all index values
(constraints and comprehensive taxon index) from the original indexing
based on their node index in the tree to leaf-based indexing. More
specifically, we replace every leaf node index by its rank in the leaf set.
This allowed us to reduce the space requirements for the leaf bitvectors
by a factor of two, and thus further improved spatial locality and, as a
consequence, runtime.

4.6 Generalized Implementation

We use an approach similar to the Strategy pattern where the SUPERB
implementation tree_enumerator relies on a Callback object
which implements several callback methods. These callback methods
are used for status information (enter, exit, …), execution
control (fast_return, continue_iteration), or to provide the
elementary operations (combine for �, accumulate for ⊕) and base
cases (base_*, null_result,…). Due to static polymorphism, the
compiler is able to remove all potential overhead induced by empty method
calls.

Analogously to the description in Section 3.2, our implementation
provides four different variants of these callback objects: The
count_callback and clamped_count_callback callbacks
simply count the supertrees. Note that, the results are clamped
in case of an integer overflow in the clamped_ variant. The
multitree_callback callback constructs a multitree structure that
represents all trees on the terrace in a compressed format. Finally, the
check_callback callback only checks if there are at least two trees
on the terrace. This is accomplished by stopping the split iteration either
when the accumulated number of trees is at least two or when a recursive
call returns at least two trees (see below).

4.7 Fast Check Heuristic

When checking whether a tree resides on a terrace, we try to prune the
recursions of the regular tree counting to the largest extent possible. This
is achieved by stopping the iteration over all leaf splits as soon as our
accumulated count is ≥ 2. In fact, it is possible to stop the recursion
even earlier by using a straight-forward lower bound on the number of
equivalent trees generated by a subset of the leaves. Every recursive call
returns at least one tree. Thus, the number of possible leaf splits is a lower
bound on the number of possible trees at every recursion level. Using this
lower bound, we can stop the recursion as soon as we encounter more
than two possible leaf splits after the constraints have been applied in a
recursive call by invoking the fast_return callback.

4.8 Parallelization

The should_resume_parallelmethod decides whether the current
recursive call should enumerate its different splits in parallel. If this is the

i
i

“main” — 2018/5/1 — 3:55 — page 6 — #6 i
i

i
i

i
i

6 Sample et al.

case, it prepares all parameters for the recursive calls and aggregates the
results after completion of the parallel invocations.

Our initial parallelization approach was subsequently improved as
follows:

• All input parameters for the parallel recursive calls were previously
computed in the main thread. By deferring this work to the worker
threads, we were able to reduce the overhead of the parallel
implementation.

• Since the recursive calls often exhibit load imbalance, distributing the
workload from two subsequent recursion levels via more sophisticated
work-stealing approaches yielded improved load balance.

5 Implementation of terraphast II

5.1 Constraint Construction

The function compute_constraints is implemented as described
in the Algorithm 1 except that it also omits taxC and all constraints
containing it. This is a valid optimization, because the first iteration of
the tree enumeration phase will always generate a split between taxC and
all other leaves. The implementation is aware of the fact, that taxC only
exists implicitly, that is, it is added back after enumerate_trees has
been completed.

5.2 Tree Enumeration

We use a conventionalfor loop to iterate over the splitsσ. This is achieved
by enumerating all possible splits for a specific leaf set/constraint set
combination from 1 to 2c−1 − 1 where c is the number of sets that is left
after executingapply_constraints. The methodget_nth_split
computes thenth split by interpreting the numbern as a bit vector of length
c. Each bit i set to 1 means that leaf set ci is supposed to be merged with
the set S′1. Otherwise, if i = 0, the leaf set ci is merged with set S′0
instead. For both parts of the split, filter_constraints determines
all constraints that are still applicable for the respective part.

5.3 Data Structures

Benchmarks comparing the two alternative implementations suggest that
the union-find data structure is on average 24.10% slower in tree counting
mode than the bit vector structure. Therefore, terraphast II uses
bitvectors by default. Users can chose to switch between union-find and
bit vectors by editing the header file leaf_set.h.

5.4 Generalized Implementation

We implemented the four execution modi of the SUPERB algorithm
by using C++ templates and static polymorphism, similar to
terraphast I. There exists one C++ class for each mode, where each
has specialized operator implementations such as
combine_split_results (⊕ operator) or
combine_part_results (� operator).

• CountAllRootedTrees only counts the number of (sub-) trees
by using the arbitrary precision integer type mpz_class. The
implementation of combine_split_results, for example, only
calculates the sum over the terrace sizes for individual splits. The
recursion stops when no additional constraints can be fulfilled by a
leaf set.

• CheckIfTerrace determines if T ′ resides on a terrace. This is the
case when invoking combine_split_results in any step of the
recursion yields more than one split. This version of the algorithm
stops as soon as a recursive step identifies a terrace for a leaf subset.

• FindAllRootedTrees generates all trees residing on the terrace
by representing each tree thereon as a corresponding binary
data structure. Here, each recursion returns a dynamic array
(std::vector) containing these binary trees.

• FindCompressedTree behaves analogously to version FindAll
RootedTrees, but only maintains one dedicated data structure
that represents the compressed NEWICK tree representation (see
Section 9.1) of the terrace.

For each possible split of leaf nodes, the algorithm is then recursively
applied to the respective subset of leaf nodes. The intermediate results
(terrace detection flag, number of subtrees, or subtree structures) are then
combined by combine_split_results. The run time contributions
and return values ofcombine_split_resultsvary with the specified
execution mode.

5.5 Parallelization

Our parallelization approach is straight-forward and fairly similar to the
one used in terraphast I (see Section 4.8). The loop, that iterates
over all splits returned by get_nth_split, is parallelized via the
parallel for OpenMP pragma. This can be done, because every
split represents a different set of trees. Therefore, these iterations are
independent of each other. One performance problem is that, the trees
from the splits assigned to a thread may be easy/fast to compute, so that
this thread finishes long before the others. Hence, parallel efficiency is
reduced by load imbalance. To avoid potential overhead by invoking too
many threads, the OpenMP parallelization is only applied to the first
recursion level at the root. Subsequently, the aforementioned for-loop
is executed sequentially. As for terraphast I, parallel performance
could potentially be improved by deploying work-stealing concepts, but
is outside the scope of this work.

6 Performance Differences of terraphast I & II
In the following, we briefly discuss the reasons for the performance
differences between the two implementations, thatis, whyterraphast I

is about a factor of two faster than terraphast II.
In general, it is difficult to assess the exact reasons for the

performance difference, as both implementations were developed
completely independently. Nonetheless, below, we list some key aspects
which are highly likely to have contributed to the observed performance
discrepancy. We list these aspects in decreasing order of estimated impact:

1. terraphast I relies on a custom memory allocator that reuses
almost all memory (except for GMP integers) by leveraging the LIFO
(Last In First Out) structure of memory allocations and deallocations
in the recursion of SUPERB. Thus, we were able to almost entirely
eliminate the overhead of the highly frequent malloc() and
free() calls. In contrast to this, terraphast II uses the
standard memory allocators that internally rely on malloc() and
free().

2. terraphast I was extensively optimized and almost all
performance-critical functions were inlined.

3. Most data structures used by terraphast I in its performance-
critical functions either deploy branchless (in the sense of not
containing conditional statements) constant-time operations or rely
on dedicated compiler intrinsics (e.g., BSF/TZCNT for iterating over
the set bits in a bitvector).

i
i

“main” — 2018/5/1 — 3:55 — page 7 — #7 i
i

i
i

i
i

Counting Trees on a Phylogenetic Terrace 7

Table 1. Empirical test datasets used

name # partitions # taxa subsampled yes/no terrace size

Allium 4 57 yes 8038035
Allium_Reduced 4 30 yes 730680125
Allium_Tiny 3 6 yes 35
Asplenium.1 3 132 yes 1
Asplenium.2 2 133 yes 95
Bouchenak 3 298 no 61261515
Burleigh.birds.small 29 627 yes 4.12 × 1050

Caryophyllaceae 6 224 yes 7.18 × 1011

Eucalyptus.1 4 136 yes 229
Eucalyptus.2 4 136 yes 267
Euphorbia.1 6 131 yes 759
Euphorbia.2 5 131 yes 759
Ficus.1 4 110 yes 283815
Ficus.2 4 108 yes 851445
Ficus.3 4 110 yes 851445
Iris 4 137 yes 1
Meredith.mammals 26 169 yes 1
Meusemann 97 117 no 1
Miadlikowska.fungi 9 1317 yes 11655
Misof.insects 479 144 yes 1
Primula 5 185 yes 2835
Pyron 5 767 no 2205
Rabosky.scincids 6 213 yes 3
Ranunculus 6 170 yes 3
Rhododendron 4 117 yes 81
Rosaceae 7 529 yes 1.72 × 1023

Shi.bats 25 797 yes 2.42 × 1035

Solanum 6 187 yes 211865625
Springer.primates 77 372 yes 70840575
Szygium.1 3 106 yes 45
Szygium.2 3 106 yes 45
Tolley.chameleons 6 202 yes 1
Wick.1kp.few.genes 8 102 yes 1
Wick.1kp.many.genes 619 102 yes 1
Yang.caryo.1122 1115 95 yes 1
Yang.caryo.209 209 95 yes 1

7 Test Datasets
For testing, we used all empirical test datasets provided at https:
//github.com/BDobrin/data.sets. The repository contains
several recently published partitioned phylogenomic datasets with missing
data. As already mentioned in the main text, some of these datasets did
not contain a comprehensive taxon taxC . To this end, we sub-sampled
the datasets by applying the following procedure: First, we determined the
number of partitions every taxon contains data for. By selecting the taxa
with data for the largest number of partitions, we determined candidate
taxa which are comprehensive for a large subset of the partitions. We then
generated the subsampled data sets by using the cut utility for pruning
partitions.

Overall, we generated 36 test datasets from the 26 empirical datasets
which are described in Table 1.

In addition, we used some simple artificial datasets for initial testing
and verification.

For instance, the following M matrix exhibits a structure where the
terrace comprises all possible trees with 5 taxa:

taxon1 1 0 //taxon1 has data for partition 0 only

taxon2 1 0

taxon3 1 1

Table 2. RAM consumption (MB) in tree counting mode

Dataset terraphy terraphast I terraphast II

Allium 20.7 3.83 4.36
Allium_Reduced 20.3 3.80 4.27
Allium_Tiny 19.7 3.87 4.22
Asplenium.1 23.3 3.96 4.42
Asplenium.2 22.8 3.89 4.34
Bouchenak 28.5 4.01 4.71
Burleigh.birds.small 50.3 4.63 5.77
Caryophyllaceae 28.2 4.00 4.56
Eucalyptus.1 23.7 3.90 4.41
Eucalyptus.2 23.8 3.94 4.78
Euphorbia.1 24.2 3.93 4.27
Euphorbia.2 24.3 3.89 4.81
Ficus.1 23.4 3.89 4.36
Ficus.2 23.3 3.88 8.37
Ficus.3 23.3 3.91 4.38
Iris 23.7 3.96 4.43
Meredith.mammals 61.7 3.99 4.44
Meusemann 99.0 4.18 4.50
Miadlikowska.fungi 76.4 4.68 7.52
Misof.insects 680.1 8.24 4.47
Primula 26.0 3.98 4.46
Pyron 43.7 3.98 5.03
Rabosky.scincids 30.2 3.96 4.53
Ranunculus 25.2 3.95 4.40
Rhododendron 23.4 3.94 4.29
Rosaceae 36.4 4.14 6.11
Shi.bats 59.3 4.75 5.54
Solanum 25.8 4.00 4.45
Springer.primates 130.4 5.36 4.89
Szygium.1 22.8 3.91 4.35
Szygium.2 22.8 3.89 4.41
Tolley.chameleons 31.6 4.02 4.54
Wick.1kp.few.genes 28.0 3.94 4.24
Wick.1kp.many.genes 610.4 7.97 4.54
Yang.caryo.1122 1001.9 12.36 4.70
Yang.caryo.209 210.9 5.21 4.39

taxon4 0 1

taxon5 0 1

The following M matrix does not exhibit any terraces as there is no
missing data:

taxon1 1 1

taxon2 1 1

taxon3 1 1

taxon4 1 1

taxon5 1 1

8 Additional Experimental Results
In Table 2 we show the memory consumption of terraphy and
terraphast I/II for all test datasets in tree counting mode. Note
that, the RAM consumption of terraphast I/II is one to two orders
of magnitude lower than that of terraphy. The larger variance of the
RAM consumption in terraphast I is due to a memory-wise not fully
optimized data structure for storing the induced per-partition subtrees
T |Pi. Therefore, this slight waste of RAM becomes more apparent on
datasets with a larger number of partitions.

i
i

“main” — 2018/5/1 — 3:55 — page 8 — #8 i
i

i
i

i
i

8 Sample et al.

Table 3. Run times in seconds for terrace detection, counting, and enumeration modes.

detection counting enumeration
Dataset terraphast I terraphast II terraphy terraphast I terraphast II terraphy terraphast I terraphast II

Allium 0.00040 0.0041 0.50 0.0088 0.0159 – – –
Allium_Reduced 0.00024 0.0037 54.53 1.7701 3.4969 – – –
Allium_Tiny 0.00014 0.0038 0.34 0.0030 0.0034 0.34 0.0004 0.0038
Asplenium.1 0.00063 0.0045 0.47 0.0030 0.0056 0.49 0.0010 0.0059
Asplenium.2 0.00053 0.0056 0.44 0.0031 0.0079 0.84 0.0047 0.0114
Bouchenak 0.00099 0.0100 0.86 0.0045 0.0189 – – –
Burleigh.birds.small 0.00281 0.0322 4099.76 147.74 301.0850 – – –
Caryophyllaceae 0.00059 0.0076 0.92 0.0096 0.0271 – – –
Eucalyptus.1 0.00037 0.0053 0.66 0.0062 0.0225 1.70 0.0115 0.0273
Eucalyptus.2 0.00034 0.0053 0.65 0.0061 0.0210 1.81 0.0155 0.0372
Euphorbia.1 0.00043 0.0062 0.51 0.0025 0.0068 2.47 0.0264 0.0286
Euphorbia.2 0.00034 0.0050 0.63 0.0030 0.0159 2.92 0.0340 0.0395
Ficus.1 0.00035 0.0054 0.51 0.0020 0.0076 – – –
Ficus.2 0.00032 0.0052 0.47 0.0020 0.0072 – – –
Ficus.3 0.00028 0.0026 0.65 0.0058 0.0159 – – –
Iris 0.00044 0.0059 0.52 0.0021 0.0058 0.51 0.0008 0.0064
Meredith.mammals 0.00134 0.0108 2.13 0.0030 0.0133 2.16 0.0021 0.0132
Meusemann 0.00249 0.0184 3.85 0.0040 0.0199 3.86 0.0037 0.0223
Miadlikowska.fungi 0.00690 0.1289 7.82 0.0155 0.1406 – – –
Misof.insects 0.01560 0.1054 28.53 0.0191 0.0861 28.58 0.0259 0.1033
Primula 0.00083 0.0082 0.67 0.0022 0.0088 11.25 0.1253 0.1254
Pyron 0.00323 0.0223 2.33 0.0042 0.0253 32.59 0.3375 0.2832
Rabosky.scincids 0.00090 0.0096 0.88 0.0027 0.0091 0.91 0.0020 0.0070
Ranunculus 0.00061 0.0073 0.61 0.0033 0.0058 0.65 0.0013 0.0076
Rhododendron 0.00048 0.0060 0.49 0.0026 0.0049 0.72 0.0034 0.0083
Rosaceae 0.00136 0.0122 2.32 0.0334 0.0867 – – –
Shi.bats 0.00402 0.0470 6.34 0.0146 0.0810 – – –
Solanum 0.00057 0.0068 0.77 0.0050 0.0174 – – –
Springer.primates 0.00476 0.0489 8.53 0.0072 0.0489 – – –
Szygium.1 0.00038 0.0056 0.43 0.0020 0.0058 0.56 0.0020 0.0059
Szygium.2 0.00048 0.0042 0.47 0.0020 0.0059 0.57 0.0017 0.0074
Tolley.chameleons 0.00123 0.0091 0.92 0.0025 0.0081 0.97 0.0012 0.0105
Wick.1kp.few.genes 0.00068 0.0064 0.69 0.0020 0.0064 0.67 0.0007 0.0060
Wick.1kp.many.genes 0.01708 0.0981 26.28 0.0222 0.0751 26.34 0.0150 0.0749
Yang.caryo.1122 0.02313 0.1154 43.36 0.0369 0.1282 43.37 0.0324 0.1118
Yang.caryo.209 0.00464 0.0283 7.90 0.0092 0.0255 7.93 0.0079 0.0299

In Table 3 we show run-times for all datasets in terrace detection,
tree counting, and tree enumeration modes for terraphy and
terraphast I/II. Note that, terraphy does not offer a terrace
detection mode. The results for the tree enumeration mode are incomplete
due to excessive run-times.

8.1 Differences between terraphy and our implementations

While conducting our experiments, we noticed that for the Allium_Tiny
dataset, terraphy enumerated 37 rooted trees, while there are only
35 unrooted trees on the terrace. This difference stems from the rooting,
as in these initial tests the terraphy input tree was not rooted at a
comprehensive taxon taxC . When we re-rooted the terraphy input
tree at a comprehensive taxon, terraphy also enumerated 35 rooted
trees which correspond to our 35 unrooted trees due to the consistent
rooting.

To further elucidate this, consider the following small example:

((((s3,s5),s2),s1),(s6,s4));

((((s3,s5),s2),(s6,s4)),s1);

(((s3,s5),s2),(s1,(s6,s4)));

The three trees above become topologically identical if they are
consistently re-rooted at taxon s1.

i
i

“main” — 2018/5/1 — 3:55 — page 9 — #9 i
i

i
i

i
i

Counting Trees on a Phylogenetic Terrace 9

●

●

● ●

●
●

●

●

1 2 3 4 5 6 7 8

0.
8

1.
2

1.
6

number of threads

pa
ra

lle
l s

pe
ed

up

●

●

● ● ●
●

● ●

●

●

●

●
● ●

●
●

●

●

●

● ● ●

●

●

●

●

●

●

a)
b)
c)
d)

Fig. 2. Parallel speedup in tree counting mode for (a) Allium_Reduced with GMP,
(b) Burleigh.birds.small with GMP, (c) Allium_Reduced without GMP and (d)
Burleigh.birds.small without GMP

Parallel performance Finally, in Figure 2 we provide the initial parallel
speedup of terraphast I for up to 4 physical cores and up to 8 threads
(using hyper-threading) on the reference test system.

The highly frequent memory allocations and deallocations in the
algorithm constitute a potential parallel performance bottleneck. To
this end, we deployed the dedicated lockless parallel memory allocator
jemalloc (see http://jemalloc.net/) which yielded up to 25%
run time improvement for the GMP-based version that executes a higher
number of memory allocations to implement arbitrary precision integers.

In addition, we also assessed if thread pinning, that is, specific thread-
to-core assignments, have a notable impact on performance. This is
because it is known that thread pinning can substantially affect parallel
efficiency on distributed shared memory systems (Klug et al., 2011). In
Figure 2 we show speedups for the respective optimal pinning, albeit
distinct pinnings did not exhibit a substantial performance impact.

As mentioned before, parallel efficiency could be further improved via
appropriate load balancing and work stealing concepts.

Following the initial submission of this paper, we took some
steps toward improving parallel performance using the OpenMP task

mechanism. On an Intel Xeon E5-2670 (Sandy Bridge) running at 2.6

GHz with 16 physical cores and equipped with 64 GB RAM, we attained
speedups of up to a factor of 4 as shown in Figure 3.

9 C and C++ Interfaces
In the following we briefly present the C and C++ interfaces.

C interface

int terraceAnalysis(

missingData *m,

const char *newickTreeString,

const int ta_outspec,

FILE *allTreesOnTerrace,

mpz_t terraceSize

);

Here m represents the binary data input matrix M that also contains
a list of taxon/species names for each row. newickTreeString is the

0 5 10 15 20 25
number of threads

1.0

1.5

2.0

2.5

3.0

3.5

4.0

pa
ra

lle
l s

pe
ed

up

Burleigh.birds.small
Allium_Reduced
sequential baseline

Fig. 3. Improved parallel speedup in tree counting mode for (a) Allium_Reduced with GMP,
(b) Burleigh.birds.small with GMP using a system with 16 physical cores and jemalloc

tree string of the comprehensive tree T in NEWICK format that is passed
from the application program to the library. The library will then internally
compute the induced per-partition trees T ′|Pi. ta_outspec specifies
the desired output (execution mode), that is, if the function shall only
determine whether the tree is on a terrace or not, if it shall return the number
of trees on the potential terrace, or if it shall also enumerate and print
to file (in compressed/uncompressed format), all trees on the respective
terrace. allTreesOnTerrace is a file pointer for printing all trees on
the terrace. Finally, terraceSize is used to store the number of trees on
the terrace, where mpz_t is the respective GNU multi-precision library
integer type.

The function returns 0 in case of success and a negative error code to
handle errors (e.g., no taxC could be found, problem parsing NEWICK
tree string, mismatch between taxon names in NEWICK tree and m etc.).

C++ interface The C++-interface consists of four families of functions:

bool is_on_terrace(nwk, matrix)

std::uint64_t get_terrace_size(nwk, matrix)

mpz_class get_terrace_size_bigint(nwk, matrix)

mpz_class print_terrace(nwk, matrix, out)

The argument-types ofnwk andmatrix areconst std::string&

and std::istream& (four overloads are provided with all possible
combinations). The out-argument of the print_terrace-function
has the type std::ostream&. Finally, there is a *_from_file-
variant of every function-family that takes two filenames as
const std::string& and reads its data from those files while the
other arguments remain unchanged.

If the terrace size exceeds the maximum integer value that can be
represented by std::uint64_t, the get_terrace_size family of
functions will simply return the maximum integer value (264 − 1). If the
exact terrace size is required nonetheless, the _bigint-variants of the
functions can be deployed to obtain it. Errors are handled via exceptions.

9.1 Compressed NEWICK representation of a terrace

As enumerating and printing all trees on a terrace to file can easily
dominate run-times and require large amounts of disk space, we propose
a compressed NEWICK representation that defines all trees on the
terrace, but requires substantially less disk space. In Table 4 we provide
the compression ratios for output tree files on three representative

i
i

“main” — 2018/5/1 — 3:55 — page 10 — #10 i
i

i
i

i
i

10 Sample et al.

Table 4. Size of enumerated NEWICK trees in bytes.

Dataset Uncompressed Compressed Space Saving

Allium_Tiny 4,096 1,103 73.071 %
Primula 10,653,930 5,551 99.946 %
Pyron 37,612,890 20,407 99.945 %

empirical test datasets. The compressed representation is an extension
of the NEWICK format. It relies on the following two extension:
First, we use curly brackets to identify a subset of taxa that has no
applicable constraint left. For instance, we write {s1,s2,s3} instead of
(s1,(s2,s3)); (s2,(s1,s2)); (s3,(s1,s2)); to denote
all (rooted) binary trees for these 3 taxa. Second, we use the | symbol
to list all subtrees that can be inserted at a specific position in the
tree. The expression ((a,(b,c)),(d,(e,f))|(e,(d,f))), for
example, is a compressed representation of the two alternative trees
((a,(b,c)),(d,(e,f)); and ((a,(b,c)),(e,(d,f)));.
This compressed NEWICK extension could be used, for instance, by tools
for post-processing terraces.

Acknowledgements
Part of this work was financially supported by the Klaus Tschira
Foundation and the DFG grant WA 654/22-2. We thank Olga Chernomor,
Bui Quang Minh, and Derrick Zwickl for discussions on the interface
definition, Barbara Dobrin for access to her empirical dataset repository,
Alexey Kozlov for integration with RAxML-NG, and support by the state
of Baden-Württemberg through bwHPC.

References
Constantinescu, M. and Sankoff, D. (1995). An efficient algorithm for

supertrees. Journal of Classification, 12(1), 101–112.
Klug, T. et al. (2011). autopin – Automated Optimization of Thread-to-

Core Pinning on Multicore Systems, pages 219–235. Springer Berlin
Heidelberg, Berlin, Heidelberg.

Tarjan, R. E. (1975). Efficiency of a good but not linear set union algorithm.
J. ACM, 22(2), 215–225.

