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In	this	supplementary	note,	we	describe	in	more	details	the	methodological	details	underlying	
the	main	functions	of	the	Palimpsest	package.	
	
S1.	Mutational	signature	analysis	
Palimpsest	 allows	 both	 de	 novo	 analysis	 of	 mutational	 signatures	 and	 quantification	 of	
previously	described	signatures.	In	both	cases,	a	set	of	base	substitutions	from	a	tumor	series	is	
first	imported	from	a	VCF	file	and	each	mutation	is	assigned	to	one	of	96	mutation	categories,	
defined	by	the	6	substitution	types	multiplied	by	16	possible	trinucleotide	contexts	(Alexandrov	
et	 al.,	 2013).	We	 can	 then	 represent	 the	mutational	 catalog	 of	 the	 n	 tumors	 as	 a	mutation	
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	where	𝑚!

! 	 is	the	number	of	mutations	of	category	 j	 in	tumor	 i.	

The	goal	of	mutational	 signature	analysis	 is	 to	deconvolute	 this	matrix	M	as	 the	product	of	a	

matrix	of	mutational	processes	𝑃 =
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	where	𝑝!
! 	is	the	probability	of	the	process	

i	to	cause	a	mutation	of	category	j,	and	a	matrix	of	exposures	𝐸 =
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	where	𝑒!
! 	is	

the	number	of	mutations	attributed	to	process	i	in	tumor	j.	To	solve	this	problem,	we	use	non-
negative	 matrix	 factorization,	 as	 implemented	 in	 the	 NMF	 package	 (Gaujoux	 and	 Seoighe,	
2010).	For	a	de	novo	analysis,	the	number	of	processes	K	can	be	manually	defined	by	the	user	
or	estimated	automatically	considering	the	cophenetic	correlation	coefficients	and	residual	sum	
of	squares	(RSS)	for	each	number	of	signatures.	NMF	then	identifies	the	matrices	P	and	E	that	
verifies	𝑀 ≈ 𝑃×𝐸	 and	minimizes	 a	 Frobenius	 norm	while	maintaining	 non-negativity.	 For	 an	
analysis	 of	 previously	 described	 signatures,	 the	 user	 provides	 the	matrix	 of	 processes	 P,	 and	
NMF	 is	 used	 only	 to	 reconstruct	 the	 exposure	matrix	 E.	 The	 P	 matrix	 for	 the	 30	 signatures	
currently	referenced	in	the	COSMIC	database	is	provided	with	the	Palimpsest	package.	
	
	
S2.	Association	of	mutational	signatures	with	driver	genes	
Once	 a	 cancer	 genome	 has	 been	 deconvoluted	 as	 a	 combination	 of	 several	 mutational	
processes,	we	can	estimate	the	probability	of	each	somatic	mutation	being	generated	by	each	



mutational	 process	 using	 simple	 Bayes	 statistics	 (Letouzé	 et	 al.,	 2017).	 This	 key	 feature	 has	
been	introduced	in	Palimpsest	as	follows:		
	
Consider	a	mutation	category	c	out	of	the	96	mutation	categories,	the	number	of	mutations	of	
category	c	in	a	tumor	t	can	be	expressed	as:	
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where	 the	 product	 𝑝!!×𝑒!! represents	 the	 number	 of	 mutations	 of	 category	 c	 attributed	 to	
signature	s	in	tumor	t.	The	probability	P(m,s)	of	a	mutation	m	of	category	c	in	tumor	t	being	due	
to	signature	s	can	then	be	estimated	as:	

𝑃(𝑚, 𝑠) =
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This	 important	 feature	 of	 Palimpsest	 can	 be	 used	 to	 predict	 the	mutational	 processes	 (point	
mutations	or	structural	variants)	at	the	origin	of	driver	alterations	in	a	cancer	genome.	
	
	
S3.	Structural	rearrangement	signature	analysis	
Palimpsest	 performs	 structural	 rearrangement	 signature	 analysis	 by	 applying	 the	 same	
statistical	framework	used	for	mutational	signature	analysis.	Somatic	structural	rearrangements	
from	 a	 series	 of	 tumors	 are	 first	 classified	 into	 38	 categories	 considering	 the	 type	 (deletion,	
tandem	 duplication,	 inversion,	 interchromosomal	 translocation)	 and	 size	 (<1kb,	 1-10kb,	 10-
100kb,	100kb-1Mb,	1-10Mb,	>10Mb)	of	rearrangements,	as	previously	described	(Nik-Zainal	et	
al.,	2016).	Clustered	events,	defined	by	the	presence	of	≥10	breakpoints	within	a	1Mb	window,	
are	identified	using	the	bedr	package	(Haider	et	al.,	2016)	and	considered	separately	from	non-
clustered	events.	We	then	used	non-negative	matrix	factorization,	as	implemented	in	the	NMF	
package,	 to	 extract	 rearrangement	 signatures	 and	 their	 exposure	 in	 each	 tumor.	 Like	
mutational	signature	analysis,	structural	rearrangement	signature	analysis	can	be	performed	de	
novo	or	using	a	pre-defined	set	of	known	signatures	to	estimate	the	exposure	matrix.	
	
	
S4.	Estimating	the	cancer	cell	fraction	and	clonality	
Using	the	variant	allele	fraction	(VAF),	tumor	cell	content	and	absolute	copy-number	estimates,	
Palimpsest	estimates	the	cancer	cell	fraction	(CCF),	i.e.	the	proportion	of	tumor	cells	harboring	
each	mutation:	
	

𝐶𝐶𝐹 = 𝑉𝐴𝐹×
𝜌𝑁! + 1− 𝜌 𝑁!

𝜌𝑛!!!
	

	
where	ρ	is	the	tumor	cell	content,	Nt	and	Nn	the	copy-number	at	the	locus	in	tumor	and	normal	
cells,	and	nchr	 the	number	of	chromosomal	copies	harboring	the	mutation	 in	tumor	cells	 (also	



called	multiplicity	of	 the	mutation).	ρ	and	Nt	 can	be	estimated	 from	copy-number	data	using	
various	algorithms.	The	multiplicity	of	each	mutation	(nchr)	is	set	to	the	integer	value	closest	to:	
	

𝑚𝑎𝑥 1, 𝑉𝐴𝐹×
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𝜌 	

	
Finally,	Palimpsest	determines	 the	95%	confidence	of	VAF	using	a	binomial	 test	and	converts	
this	interval	to	obtain	the	95%	confidence	interval	of	CCF	using	the	above	formula.	A	mutation	
is	 then	 classified	 subclonal	 if	 the	 upper	 boundary	 of	 the	 95%	 confidence	 interval	 is	 below	 a	
threshold	set	by	the	user	(default	0.95),	and	clonal	otherwise.		
 
	
S5.	Timing	chromosomal	duplications	
When	 a	 chromosome	 is	 duplicated,	 mutations	 harbored	 by	 the	 chromosome	 are	 also	
duplicated	 and	 their	 VAF	 is	 increased	 as	 compared	 to	 mutations	 present	 on	 the	 other	
chromosome	 copy,	 or	 acquired	 after	 the	 duplication.	 The	 ratio	 of	 duplicated/non-duplicated	
mutations	can	thus	be	used	to	time	the	chromosome	duplication	event,	early	events	having	a	
low	 amount	 of	 duplicated	 mutations	 as	 compared	 to	 late	 events	 (Nik-Zainal	 et	 al.,	 2012).	
Palimpsest	 uses	 previously	 described	 formulas	 (Letouzé	 et	 al.,	 2017)	 to	 estimate	 the	 point	
mutation	time	of	each	chromosome	duplication	with	 	a	minimum	of	30	mutations	 located	on	
the	duplicated	segment.	
	
Let	 us	 consider	 the	 simple	 case	 of	 a	 chromosome	 with	 absolute	 copy-number	 Nt=3.	 The	
molecular	time	at	which	the	extra	copy	of	the	chromosome	was	gained	can	be	estimated	as:	
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where	Ndup	and	Nndup	are	the	number	of	duplicated	and	non-duplicated	mutations,	respectively.		
	
We	 extrapolated	 this	 formula	 to	 chromosomes	 with	 Nt≥4.	 In	 this	 case,	 we	 timed	 the	 first	
duplication	event	using:	
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where	 Ndup	 is	 the	 number	 of	 mutations	 at	 the	 maximal	 level	 of	 multiplicity	 and	 Nndup	 the	
number	of	mutations	at	intermediate	levels	of	multiplicity	or	non-duplicated.	
	
For	cases	where	the	two	parental	chromosome	copies	were	duplicated,	e.g.	Nt=4	with	2	copies	
of	each	chromosome	copy,	we	adapted	the	formula	as	follows:	
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S6.	Limitations	of	the	package	–	number	of	mutations	needed	
Palimpsest	can	be	applied	to	both	whole	genome	and	whole	exome	sequencing	data.	However,	
whole	genome	data	are	preferable	for	structural	rearrangement	signature	analysis	and	timing	
chromosome	 duplications.	 Factors	 influencing	 extraction	 of	mutational	 signatures	 have	 been	
extensively	 analyzed	 elsewhere	 (Alexandrov	 et	 al.,	 Cell	 Rep	 2013)	 using	 simulated	 data	with	
varying	 numbers	 of	 signatures,	 similarities	 between	 signatures,	 numbers	 of	 tumors	 and	
numbers	of	mutations	per	 tumor.	 The	authors	 concluded	 that,	 although	both	whole	genome	
and	whole	exome	sequencing	data	are	suitable	to	accurately	extract	mutational	signatures,	the	
number	 of	 required	 mutations/samples	 increases	 with	 the	 number	 of	 signatures,	 and	 it	 is	
preferable	to	have	more	mutations/sample	(e.g.	whole	genome	sequences)	than	more	samples	
with	 less	 mutations	 (e.g.	 large	 whole	 exome	 series).	 However,	 giving	 precise	 limitations	
regarding	a	required	number	of	mutations	per	sample	is	delicate	as	it	also	depends	on	the	type	
of	mutational	 signatures	 analyzed.	 In	our	 experience,	 very	 specific	 signatures	 caracterized	by	
only	 a	 few	 mutation	 categories	 mutated	 at	 high	 frequency	 will	 be	 easily	 identified	 with	
relatively	few	mutations,	whereas	signatures	with	widespread	mutation	spectra	will	by	harder	
to	quantify.	
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