
1

S U P P L E M E N T A L M A T E R I A L

Kathrin M. Seibt, Thomas Schmidt and Tony Heitkam

FlexiDot: Highly customizable, ambiguity-aware dotplots for
visual sequence investigation

Index

1 FlexiDot background ... 3

1.1 FlexiDot requirements and installation .. 3

1.2 Input sequences .. 3

1.3 FlexiDot match calculation .. 5

2 FlexiDot features ... 6

2.1 FlexiDot base ambiguity and mismatch handling .. 6

2.2 FlexiDot plotting modes and output options for multifasta sequences .. 7

2.2.1 Self dotplots (plotting mode -p 0) .. 8

2.2.2 Pairwise dotplots (plotting mode -p 1) ... 8

2.2.3 All-against-all dotplots (plotting mode -p 2) ... 9

2.3 Plotting mode-specific features .. 10

2.3.1 GFF coloring for self dotplots... 10

2.3.2 Longest Common Subsequence (LCS) table for pairwise and all-against-all comparisons 12

2.3.3 FlexiDot all-against-all similarity shading based on the Longest Common Subsequence 13

2.3.4 FlexiDot all-against-all matrix shading .. 17

3 Test of commonly used dotplot software .. 19

3.1 Single dotplot functionality .. 19

3.2 All-against-all functionality ... 20

3.3 Conclusion .. 21

4 Application use cases ... 23

4.1 Use case #1: Structural organization of tandem repeat arrays in SMRT reads 23

4.1.1 Use case #1a: pike 5S rDNA arrays .. 23

4.1.2 Use case #1b: Human alpha satellite .. 24

4.2 Use case #2: Structure and sequence similarity of Beetle-type long terminal repeat retrotransposons . 26

2

4.2.1 Combined depiction of Beetle1 structure and domain annotations .. 26

4.2.2 Similarity of Beetle-type long terminal repeat retrotransposons .. 27

4.3 Use case #3: Comparison of nucleotide consensus sequences in related genomes 28

4.4 Use case #4: FlexiDot amino acid handling ... 30

4.4.1 Use case #4a: Similarity of eight filamin repeat proteins ... 30

4.4.2 Use case #4b: Similarity of potato nucleotide-binding leucine-rich repeat proteins 31

5 Literature .. 34

3

1 FlexiDot background

Dotplots are effective, illustrative and simple tools for sequence investigation, leading to a range of dotplot

applications. Yet, essential features are absent or scattered across available implementations. Our dotplot suite

FlexiDot combines established (reverse complements, all-against-all modes) and new options in one package.

We introduce ambiguity handling, similarity shading modes, and integrate gff3-type sequence annotation, while

retaining high flexibility for customization and automation.

The tool FlexiDot creates informative, high quality dotplots for a wide range of applications in sequence

analysis and comparison. These dotplots allow identification of shared domains, diverged homologous regions,

repetitive DNA classes, or structural rearrangements on a variety of targets, such as short sequences, genome

assembly regions of more than 100 kb or error-prone single molecule real-time (SMRT) reads.

1.1 FlexiDot requirements and installation

FlexiDot is implemented in Python 2.7, using numpy, matplotlib, biopython, regex, colormap, and colour

bindings (Supplemental Table 1). It is started over the command line interface with

python flexidot.py -i input.fas [optional arguments]

Upon its first start, FlexiDot calls all required modules. If absent, it installs them automatically using Python’s

install manager pip. To facilitate the installation process, it is recommended to start FlexiDot with administrator

privileges on its first run.

Supplemental Table 1: FlexiDot requirements

Python module Website

numpy https://pypi.python.org/pypi/numpy

matplotlib https://pypi.python.org/pypi/matplotlib

biopython https://pypi.python.org/pypi/biopython

regex https://pypi.python.org/pypi/regex

colormap https://pypi.python.org/pypi/colormap

easydev (required for color map) https://pypi.python.org/pypi/easydev

colour https://pypi.python.org/pypi/colour

1.2 Input sequences

Both nucleotide and amino acid sequences in fasta format can be used as input for Flexidot. If the sequences

contain gaps, automatic degapping is initiated before proceeding. Please note, that sequence names must be

unique.

There are three possibilities to provide the input fasta sequences:

 as single fasta file (option -i/--in_file)

 as multiple input files (comma-separated list with -i/-in_file or reusing -i/--in_file)

https://pypi.python.org/pypi/numpy
https://pypi.python.org/pypi/matplotlib
https://pypi.python.org/pypi/biopython
https://pypi.python.org/pypi/regex
https://pypi.python.org/pypi/colormap
https://pypi.python.org/pypi/easydev
https://pypi.python.org/pypi/colour

4

 using the automatic detection of all fasta sequence files in the directory in which the Python script is

located (option -a/--auto_fas) – all files with the filename extensions “.fasta”, “.fas”, “.fa”, and “.fna”

are automatically included in the analysis

In order to illustrate FlexiDot features, we use six artificial nucleotide sequences (Supplemental Table 2). These

test sequences harbor forward and reverse matches, sequence ambiguities, repeats and inverted repeats – all

derived from a shared monomeric subunit. The characteristics included in the individual sequences are as

follows:

Supplemental Table 2: Artificial test sequences for FlexiDot performance demonstration and evaluation of commonly used dotplot

software.

Title Sequence Description

Seq1 CGAACCGATATAATCAGTGACAGGATATCGAGTAAAGTGACAGGATAT
CGAGTAAAGTGACAGGATATCGAGTAAAATGAGCTATAGGACAGTGAC
GTGACTTAGAGG

tandem repeat

Seq2 CGAACCGATATAATCAGTGACAGGATATCGAGTAAAGTGACAGGATAT
CGAGTAAAGTGACAGGATATCGAGTAAAATGAGCTATAGGACAGTGAT
TACTCGATATCCTGTCACTTTACTCGATATCCTGTCACTTTACTCGAT
ATCCTGTCACTTTACTCGATATCCTGTCACTTTACTCGATATCCTGTC
ACTTTCGTGACTTAGAGG

tandem repeat structures in forward and reverse

orientation (reverse complement of Seq3)

Seq3 CCTCTAAGTCACGAAAGTGACAGGATATCGAGTAAAGTGACAGGATAT
CGAGTAAAGTGACAGGATATCGAGTAAAGTGACAGGATATCGAGTAAA
GTGACAGGATATCGAGTAATCACTGTCCTATAGCTCATTTTACTCGAT
ATCCTGTCACTTTACTCGATATCCTGTCACTTTACTCGATATCCTGTC
ACTGATTATATCGGTTCG

tandem repeat structures in reverse and forward

orientation (reverse complement of Seq2)

Seq4 CCTCTAAGTCACGDAAGTGACSGGATATCGAGTAAAGTGNCAGGATAT
NGAGYAAAGVGACAGGAKATCGAGTHAAGTGACAGGATATCGAGTAAA
GTGACAGGATBSCGAHTAATCAVTGVCCTATAGRRCATTTTACTCGAT
ATCCVGTYACTTTBSTCGATATCCTGKCACTTMACTCGATATCCTGTC
ACTGATTATATCGGTTCG

tandem repeat structures in reverse and forward

orientation with mismatches and sequence

ambiguities (diverged, ambiguous Seq3)

Seq5 CCAAAGTGACAGGATATCGAGTCCGG monomeric sequence motif from repeats in Seq1

to Seq4

Seq6 AATCAGTGACAGGATATCCTGTCACTGATT inverted repeat derived from repeat monomer

(Seq4)

5

1.3 FlexiDot match calculation

FlexiDot conducts presence/absence matching for sequence inspection and comparison (Supplemental Figure

1 A). Optionally, ambiguity and mismatch handling can be used to allow the comparison of sequences

containing wobble residues and error-prone or diverged sequences, respectively (Supplemental Figure 1 C-D).

Ambiguous residues are treated as matches, if the residues encoded by the ambiguities are present in the other

sequence (or their reverse complement in case of reverse matching).

A matches without ambiguity B dotplot without ambiguity

A C G T A A A C T A C G T A A A C G T A A A C T A C G T A A

A X + X X X + X + X X A

C X + X X + C

G + X + + X G

T + X + + + X + X + + T

A X + X X X + X + X X A

A X + X X X + X + X X A

C X + X X + C

T + X + + + X + X + + T

T + X + + + X + X + + T

A X + X X X + X + X X A

C X + X X + C

G + X + + X G

T + X + + + X + X + + T

A X + X X X + X + X X A

A X + X X X + X + X X A

C matches with ambiguity D dotplot with ambiguity

A C G T A A A C T A C G T A A A C G T A A A C T A C G T A A

A X + X X X + X + X X A

C X + X X + C

G + X + + X G

W Ж Ж Ж Ж Ж Ж Ж Ж Ж Ж W

A X + X X X + X + X X A

A X + X X X + X + X X A

C X + X X + C

T + X + + + X + X + + T

T + X + + + X + X + + T

A X + X X X + X + X X A

C X + X X + C

K + + X X + + + + X + + X X + + K

T + X + + + X + X + + T

A X + X X X + X + X X A

A X + X X X + X + X X A

Supplemental Figure 1: FlexiDot dotplot calculation scheme for wordsize 5. Matches are indicated by “x” (forward; panel A, C), “+”

(complement; panel A, C), and Ж (forward and complement, panel C). Shared subsequences with a wordsize ≥ 5 are shaded and

represented with lines in the dotplot image (B, D). Examples are shown for forward (grey) and reverse matches (green) without (A,

B). Ambiguity handling enables the detection of an additional match (red; C, D).

6

2 FlexiDot features

2.1 FlexiDot base ambiguity and mismatch handling

The matching stringency of FlexiDot can be reduced in two ways: (1) Ambiguity handling (option -w/--

wobble_conversion) treats ambiguous residues as matches, if the ambiguous residues are present in the other

sequence (Supplemental Figure 1 C-D). This allows the comparison of species-specific representations of

multigene or repeat families as well as common variants or sequence subfamilies. (2) Mismatch handling -S, -

-substitution_count) allows a predefined number of substitution mutations, useful for analyzing error-prone

or diverged sequences.

Ambiguity handling is available in all three plotting modes and is switched on or off by option -w/--

wobble_conversion. The considered ambiguities follow the IUPAC notation for nucleic and amino acid

ambiguities as shown in Supplemental Table 3. If poly(N)-stretches contribute half of the wordsize or more,

they are masked to prevent large, uninformative dotplot regions. The same applies to the X-residue in proteins.

Supplemental Table 3: FlexiDot’s implemented ambiguity code

Ambiguity Ambiguity content Comment

nucleic acid sequence
N A, C, G, T any

B C, G, T not A

D A, G, T not C

H A, C, T not G

V A, C, G not T

Y C, T pyrimidine

R A, G purine

W A, T weak

S C, G strong

K G, T keto

M A, C amino

amino acid sequence
X A, R, N, D, C, E, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V, U, O, * any

J I, L ---

Z Q, E ---

B N, D ---

To illustrate the performance of the mismatch and ambiguity handling features, we show FlexiDot pairwise

dotplots of test sequences Seq1 and ambiguity-containing Seq4 (Supplemental Table 2). The resulting dotplots

show reduced matches without wobble recognition (Supplemental Figure 2, upper row). Switching on the

ambiguity handling feature can result in additional and longer matches (Supplemental Figure 2, lower row).

Thereby, similarities in consensus sequences of diverged repeats can be identified, e.g. in case of frequently

observed transition mutation events in nucleotide sequences, such as the common conversion of methylated

cytosine to thymine.

Mismatch toleration is another possibility to obtain longer matches. Increasing the tolerated mismatches leads

to a fast decrease of matching stringency (Supplemental Figure 2, second and third column). The number of

7

accepted mismatches within the search window is specified by option -S, --substitution_count and allows

single nucleotide polymorphisms by substitution. Deletions and insertions are not allowed. This is particularly

helpful when dealing with error-prone SMRT reads, where nucleotide substitution rates can exceed 10%.

Supplemental Figure 2: FlexiDot pairwise sequence comparison of an ambiguity-containing nucleotide sequence without and with

base ambiguity handling. In addition, 0, 1 and 2 mismatches are tolerated, respectively. Recognition of base ambiguities and

mismatches leads to longer and additional diagonals and facilitates identification of diverged repeat motifs.

Used commands Supplemental Figure 2:

Panel tl>> python flexidot.py -i Seq4.fas,Seq1.fas -p 1 -D n -f 0 -c n -k 10 -w n -r y -x n

Panel tm>> python flexidot.py -i Seq4.fas,Seq1.fas -p 1 -D n -f 0 -c n -k 10 -w n -r y -x n -S 1

Panel tr>> python flexidot.py -i Seq4.fas,Seq1.fas -p 1 -D n -f 0 -c n -k 10 -w n -r y -x n -S 2

Panel bl>> python flexidot.py -i Seq4.fas,Seq1.fas -p 1 -D n -f 0 -c n -k 10 -w y -r y -x n

Panel bm>> python flexidot.py -i Seq4.fas,Seq1.fas -p 1 -D n -f 0 -c n -k 10 -w y -r y -x n -S 1

Panel br>> python flexidot.py -i Seq4.fas,Seq1.fas -p 1 -D n -f 0 -c n -k 10 -w y -r y -x n -S 2

2.2 FlexiDot plotting modes and output options for multifasta sequences

FlexiDot allows sequence investigation in three run modes using the option -p/--plotting_modes (see Figure 1,

main manuscript):

 -p 0 self sequence comparison (chapter 2.2.1)

 -p 1 pairwise sequence comparison (chapter 2.2.2)

 -p 2 all-to-all sequence comparison (chapter 2.2.3)

Multiple running modes can be analyzed consecutively by reusing -p/--plotting_modes or by providing

comma-separated integers as argument.

If more than one sequence is used for plotting modes -p 0 and -p 1, FlexiDot can either combine the output to

a dotplot collage (option -c/--collage_output 1 [default]) or save the output in individual files (option -c/--

collage_output 0). For collages, the user can specify the number of columns and rows per page (options -m/--

8

m_col and -n/--n_row). Please note, that in collages all dotplot images are scaled to the same size despite

differing input sequence lengths. The according axis labels are included in the images.

2.2.1 Self dotplots (plotting mode -p 0)

In the self dotplot mode, each sequence is compared with itself. This enables the identification of structural

motifs such as inverted or direct repeats as well as sequence duplications. As mentioned, the resulting dotplots

can be arranged as a collage (default; Supplemental Figure 3) or written to separate files.

Supplemental Figure 3: FlexiDot self comparison with sequence ambiguity handling for all six test sequences as 3x2 collage. The

sequence features, as presented in Supplemental Table 2, are visible. Forward and reverse complementary matches are indicated by

black and green lines, respectively. Parallel lines show tandem repeats. The crossing lines in Seq4 and Seq6 indicate an inverted

repeat.

Used command Supplemental Figure 3:

>> python flexidot.py -i test-seqs.fas -p 0 -D y -f 0 -k 10 -w y -r y -x n -m 3

2.2.2 Pairwise dotplots (plotting mode -p 1)

The pairwise plotting mode can be used to compare each sequence pair individually. This is useful for

identification of similarities like shared structural domains or sequence motifs. To reduce the number of

generated files, we recommend output as a collage. The collage of the six test sequences comprises 15 pairwise

dotplots (Supplemental Figure 4). By default, dotplot images are in square format (Supplemental Figure 4 A).

This maximizes the visibility of matches, if the compared sequences differ drastically in length. To enable

scaling according to the respective sequence lengths, the FlexiDot scaling feature can be executed by option -

9

L/--length_scaling (Supplemental Figure 4 B). If scaling is enabled, a red line indicates the end of the shorter

sequence in the collage output.

A B

Supplemental Figure 4: Pairwise dotplot collage of the test sequences with sequence ambiguity handling. All sequences are compared

against all other sequences. Output options comprise unscaled (A) and scaled (B) dotplot representations. The end of the shorter

sequence is represented as a dotted red line. The unscaled images maximize the visibility of the matches at the cost of distorting the

lines (e.g. Seq5 vs. Seq1).

Used commands Supplemental Figure 4:

Panel A>> python flexidot.py -i test-seqs.fas -p 1 -D y -f 0 -k 10 -w y -r y -m 5 -c y -L n

Panel B>> python flexidot.py -i test-seqs.fas -p 1 -D y -f 0 -k 10 -w y -r y -m 5 -c y -L y

2.2.3 All-against-all dotplots (plotting mode -p 2)

All-against-all dotplots allow comprehensive sequence comparisons. They effectively combine self (middle

diagonal) and pairwise comparisons (Supplemental Figure 5). To enable immediate identification of sequences

sharing long matches, shading can be applied (see chapter 2.3.3).

10

A B

Supplemental Figure 5: FlexiDot all-against-all sequence comparison without (A) and with (B) base ambiguity handling. Ambiguity

matching leads to longer matches to Seq4.

Used commands Supplemental Figure 5:

Panel A>> python flexidot.py -i test-seqs.fas -p 2 -D y -f 0 -t y -k 10 -w n -r y -x n

Panel B>> python flexidot.py -i test-seqs.fas -p 2 -D y -f 0 -t y -k 10 -w y -r y -x n

2.3 Plotting mode-specific features

2.3.1 GFF coloring for self dotplots

In FlexiDot self dotplots, annotated sequence regions can be highlighted by shading to allow clear assignment

of dotplot regions to specific sequence contexts (Supplemental Figure 6). The underlying annotation

information must be provided in general feature format (gff3), either as individual file or comma-separated file

list using the -g/--input_gff_files option. Shadings according to the annotation feature type (column 3 in gff3

files) follow a color scheme, which can be customized. The default coloring scheme defines aesthetics for

predefined feature types, such as “gene”, “exon”, “intron”, “UTR”. Unknown feature types will be treated as

“other” and shaded grey. A color legend is generated as a separate figure file.

To customize GFF-based shading, a user-defined configuration file can be provided with the -G/--

gff_color_config option (exemplary files for Supplemental Figure 6 are shown). The configuration file must

be tab-delimited with the following four columns: feature type, color (e.g. “red” or “#FF00FF”), alpha (floating

point number; 0 = transparent, 1 = opaque), and zoom (floating point number). The alpha value can be used to

illustrate overlapping annotations, whereas a zoom can improve visibility of short annotations. The zoom value

is additive to the specified annotation span and is automatically corrected to not exceed the length of the

11

analyzed sequence. Distinct configurations can be specified depending on the feature orientation, if an

additional feature with the suffix “_rev” is listed. In the configuration file, user-defined comments can be

included as additional columns as well as comment lines starting with “#”. Please note, that the order of the

annotations in the gff3 file determines the order of the drawn highlights (Supplemental Figure 6).

A B C

Supplemental Figure 6: Custom annotation shading of FlexiDot self dotplots. The Seq2 self dotplot is presented without (A), and with

annotation-based shadings (B, C). The modified order of the annotations in the gff3 file changes the plotting order of the shaded

regions around 85 bp – compare panel B and C, where the annotation field of “Spacer3” (grey) is drawn on top or underneath the

“SpacerZoom” shading (red).

Used commands Supplemental Figure 6:

Panel A>> python flexidot.py -i Seq2.fas -p 0 -D y -f 0 -k 10 -w y -r y -x n -m 3 -P 15

Panel B>> python flexidot.py -i Seq2.fas -p 0 -D y -f 0 -k 10 -w y -r y -x n -m 3 -P 15 -g
example1.gff3 -G example.config

Panel C>> python flexidot.py -i Seq2.fas -p 0 -D y -f 0 -k 10 -w y -r y -x n -m 3 -P 15 -g
example2.gff3 -G example.config

example1.gff3 (tab-delimited)

Seq2 manual_annotations Spacer1 1 15 . - . ID=0001
Seq2 manual_annotations repeat_region 16 76 . + . ID=0002
Seq2 manual_annotations Spacer2 77 95 . + . ID=0003
Seq2 manual_annotations SpacerZoom 77 95 . + . ID=0004
Seq2 manual_annotations repeat_region_rev 96 197 . - . ID=0005
Seq2 manual_annotations Spacer3 198 210 . + . ID=0006

example2.gff3 (tab-delimited)

Seq2 manual_annotations Spacer1 1 15 . - . ID=0001
Seq2 manual_annotations repeat_region 16 76 . + . ID=0002
Seq2 manual_annotations SpacerZoom 77 95 . + . ID=0004
Seq2 manual_annotations Spacer2 77 95 . + . ID=0003
Seq2 manual_annotations repeat_region_rev 96 197 . - . ID=0005
Seq2 manual_annotations Spacer3 198 210 . + . ID=0006

12

example.config (tab-delimited)

#annotation_type color alpha zoom (linewidth_adjustment)
repeat_region #2dd0f0 1 0
repeat_region_rev purple 0.6 0
Spacer1 black 0.15 0
Spacer2 grey 1 0
Spacer3 black 0.7 0
SpacerZoom #b41a31 0.3 8

2.3.2 Longest Common Subsequence (LCS) table for pairwise and all-against-all comparisons

During pairwise sequence comparison, quantitative information is acquired on the LCS length. Accordingly, an

output table is provided for pairwise and all-against-all comparisons containing the lengths of forward and

reverse LCS for each sequence pair. For the test sequences (Supplemental Table 2), the overall longest match is

210 bp (all-against-all LCS table, Supplemental Table 4). It is detected for self-comparisons between the

sequences Seq2, Seq3, and Seq4. As expected, a match of the same length in reverse orientation is observed

between Seq2 and Seq3. If self comparisons are excluded, the longest forward match is shorter, with 95 bp only.

Supplemental Table 4: LCS all-against-all table for the example sequences. The longest forward and reverse matches are highlighted

(underlined font; grey (forward) and green shading (reverse complementary), respectively. Rows corresponding to self-comparisons

are presented in grey font.

#seq1 seq2 len_seq1 len_seq2 len_lcs_for %_min_seq_len len_lcs_rev %_min_seq_len

Seq1 Seq1 108 108 108 100.000 6 5.556
Seq2 Seq1 210 108 95 87.963 61 56.481
Seq3 Seq1 210 108 61 56.481 95 87.963
Seq4 Seq1 210 108 48 44.444 33 30.556
Seq5 Seq1 26 108 20 76.923 6 23.077
Seq6 Seq1 30 108 18 60.000 18 60.000
Seq2 Seq2 210 210 210 100.000 61 29.048
Seq3 Seq2 210 210 61 29.048 210 100.000
Seq4 Seq2 210 210 48 22.857 48 22.857
Seq5 Seq2 26 210 20 76.923 20 76.923
Seq6 Seq2 30 210 18 60.000 18 60.000
Seq3 Seq3 210 210 210 100.000 61 29.048
Seq4 Seq3 210 210 48 22.857 48 22.857
Seq5 Seq3 26 210 20 76.923 20 76.923
Seq6 Seq3 30 210 18 60.000 18 60.000
Seq4 Seq4 210 210 210 100.000 34 16.19
Seq5 Seq4 26 210 20 76.923 18 69.231
Seq6 Seq4 30 210 18 60.000 18 60.000
Seq5 Seq5 26 26 26 100.000 6 23.077
Seq6 Seq5 30 26 14 53.846 14 53.846
Seq6 Seq6 30 30 30 100.000 30 100.000

Used commands Supplemental Table 4*:

python flexidot.py -i test-seqs.fas -p 2 -D y -f 0 -t y -k 3 -w y -r y -x n

*every FlexiDot command in plotting mode 1 or 2 generates an LCS table.

13

2.3.3 FlexiDot all-against-all similarity shading based on the Longest Common Subsequence

In all-against-all mode, FlexiDot analyzes each pair from the input sequence set. As an indicator of similarity,

FlexiDot offers dotplot shading based on the LCS length in all-against-all comparisons (switched on/off with

option -x/--lcs_shading). Longer matches are represented by darker background color. A separate shading

legend file is created, written according to mathematical interval notation, where interval boundaries are

represented by a pair of numbers. Consequently, the symbols “(” or “)” represent exclusion, whereas “[” or “]”

represent inclusion of the respective number.

FlexiDot similarity shading is highly customizable with the following parameters:

 Reference for shading (option -y/--lcs_shading_ref, Supplemental Figure 7): The similarity shading

can be based on the LCS length compared to

o the overall longest LCS length for the given input sequences

(option -y 0, Supplemental Figure 7 panel A)

o the longest possible LCS length for each sequence pair, i.e. the length of the shortest input

sequence in pairwise comparisons

(option -y 1, Supplemental Figure 7 panel B)

o manually defined length intervals (in bp or aa)

(option -y 2, which is specified by -Y/--lcs_shading_interval_len, Supplemental Figure 7

panel C and D).

 Number of shading intervals (option -X/--lcs_shading_num, Supplemental Figure 8)

 Considered sequence orientation (for DNA only, option -z/--lcs_shading_ori, Supplemental Figure 9);

o only forward sequence similarity

(symmetric shading, option -z 0, Supplemental Figure 9 panel A)

o only reverse complement sequence similarity

(symmetric shading, option -z 1, Supplemental Figure 9 panel B)

o both forward and reverse complement sequence similarity

(asymmetric shading, option -z 2, Supplemental Figure 9 panel C)

Recommendation for reference choice: The overall longest LCS length (-y 0) facilitates the identification of

the sequence pairs with the longest matches. If sequences differ in length, the shading relative to the sequence

lengths (-y 1) is helpful. If multiple all-against-all dotplots are generated, standardized shading using length

intervals (-y 2) enables comparability.

14

A B

C D

Supplemental Figure 7: Impact of the reference on shading patterns. If the overall longest LCS is used as reference, the tile with the

longest LCS has the darkest shade, here the comparison of Seq1 and Seq2 (LCS=95, panel A). If we compare LCS length relative to

the input sequence length, the shading intensity is increased for the shorter sequences Seq5 and Seq6 (panel B). User-defined intervals

of 10 and 40 bp affect the coloring pattern and intensities (panels C, D).

Used commands Supplemental Figure 7:

Panel A>> python flexidot.py -i test-seqs.fas -p 2 -D y -f 0 -t y -k 10 -w y –X 6 -x y -y 0

Panel B>> python flexidot.py -i test-seqs.fas -p 2 -D y -f 0 -t y -k 10 -w y -X 6 -x y -y 1

Panel C>> python flexidot.py -i test-seqs.fas -p 2 -D y -f 0 -t y -k 10 -w y -X 6 -x y -y 2 -Y 10

Panel D>> python flexidot.py -i test-seqs.fas -p 2 -D y -f 0 -t y -k 10 -w y -X 6 -x y -y 2 -Y 40

15

A B

Supplemental Figure 8: Impact of the shading interval number on the final shading: For shading based on longest forward LCS length,

the shade number reflects the number of color intervals defined (A: three intervals; (B): eight intervals). More intervals allow better

differentiation between multiple sequences.

Used commands Supplemental Figure 8:

Panel A>> python flexidot.py -i test-seqs.fas -p 2 -D y -f 0 -t y -k 10 -r y -x y -y 0 -X 3

Panel B>> python flexidot.py -i test-seqs.fas -p 2 -D y -f 0 -t y -k 10 -r y -x y -y 0 -X 8

Used commands Supplemental Figure 9:

Panel A>> python flexidot.py -i test-seqs.fas -p 2 -D y -f 0 -t y -k 10 -w n -X 6 -x y -y 0 -z 0

Panel B>> python flexidot.py -i test-seqs.fas -p 2 -D y -f 0 -t y -k 10 -w n -X 6 -x y -y 0 -z 1

Panel C>> python flexidot.py -i test-seqs.fas -p 2 -D y -f 0 -t y -k 10 -w n -X 6 -x y -y 0 -z 2

16

shading according to

longest forward diagonal

shading according to

longest reverse diagonal

C

BA

Supplemental Figure 9: FlexiDot shading is possible in symmetric forward (A), or symmetric reverse mode (B). Alternatively, forward

and reverse LCS shading can be combined (C). In asymmetric shading, the diagonal is always shaded according to the reverse LCS.

Please note that the overall longest match occurs in reverse comparison. All shades are scaled in reference to this longest match.

17

2.3.4 FlexiDot all-against-all matrix shading

In order to expand customization possibilities, we implemented matrix-based shading. The user can provide a

tab-delimited or comma-separated matrix file via the command -u/--input_user_matrix_file. If the matrix

contains numbers, the number range is translated into shading intervals and a separate legend figure file is

created (Supplemental Figure 10 A). It is possible to complement matrix shading with LCS shading. In the

example illustrated in Supplemental Figure 10, a matrix of pairwise sequence identities from a multiple

sequence alignment is used together with the LCS shading. Please note, that the behavior of LCS shading

considering both orientations (-z/--lcs_shading_ori 2) is changed. As matrix shading is applied in the top

right panels, a combined LCS representation for both orientations is used. In detail, forward and reverse LCS

are calculated, but only the best is used for shading (Supplemental Figure 10 A, B).

With the additional command -U/--user_matrix_print y the matrix content will be printed and replaces the

upper right dotplots (Supplemental Figure 10 B). If the matrix contains strings, the corresponding field is not

shaded, but the matrix content can be displayed (see comparison of Seq2 and Seq3 in Supplemental Figure 10 B).

A

Matrix shading

B

LCS shading

Supplemental Figure 10: All-against-all dotplots with a combination of LCS- and matrix-based shading. The bottom left part of the

dotplot is shaded according to the longest overall LCS (comparison of Seq2 and Seq3), whereas the upper part is shaded according to

the overall highest sequence similarity provided as matrix (comparison of Seq3 and Seq4). The upper part of the visualization can

contain the dotplots (A), or the matrix values (B). If strings are used, shading is not possible, but the string can be printed (see

comparison of Seq2 and Seq3 in panel B).

18

Used commands Supplemental Figure 10:

Panel A>> python flexidot.py -i test-seqs.fas -p 2 -D y -f 2 -t y -k 10 -w y -r y -x y -y 0 –z 2 -
u custom_matrix.txt -U n

Panel B>> python flexidot.py -i test-seqs.fas -p 2 -D y -f 2 -t y -k 10 -w y -r y -x y -y 0 –z 2 -
u custom_matrix.txt -U y

Custom matrix* Supplemental Figure 10:

* FlexiDot uses a tabulator as delimiter.

Panel A>>

 Seq1 Seq2 Seq3 Seq4 Seq5 Seq6

Seq1 100

Seq2 51 100

Seq3 37 66 100

Seq4 35 62 92 100

Seq5 81 81 81 78 100

Seq6 25 11 11 10 65 100

Panel B>>

 Seq1 Seq2 Seq3 Seq4 Seq5 Seq6

Seq1 100

Seq2 51 100

Seq3 37 reverse complement 100

Seq4 35 62 92 100

Seq5 81 81 81 78 100

Seq6 25 11 11 10 65 100

19

3 Test of commonly used dotplot software

We compare FlexiDot performance with Dotmatcher, Dotter, Dottup, Gepard, and the YASS webserver

(Sonnhammer and Durbin 1995, Rice et al. 2000, Noé et al. 2005, Krumsiek et al. 2007, listed in Table 1, main

manuscript), using the six test sequences introduced in chapter 1.2. The output of the tools is assessed in their

pairwise (section 3.1) and all-against-all functionality (section 3.2).

3.1 Single dotplot functionality

Dotplots for pairwise sequence comparisons can be created using FlexiDot, Dotmatcher, Dotter, Dottup, Gepard

and YASS (Sonnhammer and Durbin 1995, Rice et al. 2000, Krumsiek et al. 2007) (Supplemental Figure 11).

The input sequences contain forward and reverse matches as well as sequence ambiguities.

Forward and reverse complimentary matches: All tools recognize forward matches, whereas reverse diagonals

are recognized by four tools only (FlexiDot, Dotter, Gepard and YASS). In contrast, reverse diagonals are absent

for Dotmatcher and Dotter (Supplemental Figure 11 C and E). Surprisingly, Dotmatcher shows additional forward

diagonals in the region with the reverse matches (Supplemental Figure 11 C).

Match lengths: With FlexiDot’s sequence ambiguity and mismatch handling (Supplemental Figure 11 B), longer

matches are detected. Sequence ambiguities are only recognized by FlexiDot and YASS. Due to their fuzzy

matching algorithm, Dotmatcher and Dotter (Supplemental Figure 11 C, E) find nearly as long matches as

FlexiDot does in the ambiguity mode. Fuzzy matching as implemented in YASS leads to the longest diagonals

(Supplemental Figure 11 G)

Labeling: Unexpectedly, Dotmatcher switches the axis labels.

Reproducibility: FlexiDot, Dotmatcher, Dottup, Gepard and YASS dotplots are reproducible with the given

parameters. Dotter provides a user-friendly, but intransparent tuning tool to regulate match stringency/intensity.

Hidden parameterization limits Dotter’s reproducibility.

Interactive graphical user interface (GUI): Only Dotter, Gepard and YASS provide interactive GUIs. Clicking

on the diagonals toggles display of the underlying sequence alignment.

Output formats: Dotmatcher, Dottup and FlexiDot support raster and vector images. In addition, FlexiDot allows

collage outputs and annotation-based shading. Gepard also allows to integrate functional annotations. Gepard and

YASS solely support raster graphics whereas for Dotter output image generation is only possible by screenshot or

by installation of the JDotter java wrapper (Brodie et al. 2004).

20

A B

E F

C D

G

Supplemental Figure 11: Pairwise sequence comparisons by different dotplot tools. (A) FlexiDot without ambiguity handling, (B)

FlexiDot with ambiguity handling, (C) Dotmatcher, (D) Dottup, (E) Dotter, (F) Gepard, (G) YASS. Output of Dotmatcher and Dottup

had to be mirrored for comparability (C, D). For better visibility, axes labels were manually adjusted (E).

3.2 All-against-all functionality

FlexiDot, Dotter, Gepard, and PolyDot can be used to generate all-against-all dotplots (Supplemental Figure 12).

Forward and reverse complimentary matches: Forward and reverse complementary matches are identified by

FlexiDot, Dotter, and Gepard, whereas PolyDot lacks the reverse complementary information.

21

Match lengths: Since FlexiDot recognizes base ambiguities and can tolerate substitutions, it detects longer

stretches of similarities than Gepard and PolyDot. Due to fuzzy matching, Dotter finds nearly as long matches (see

chapter 3.1).

Shading options: FlexiDot evaluates sequence similarity and translates the length of the longest shared

subsequence into differential shading (Supplemental Figure 12 panel A-C). Here, above the diagonal of the

dotplot shading is based on the longest forward match, whereas for self comparisons and for pairwise comparisons

below the diagonal, shading reflects the longest reverse complementary match. Matrix shading further expands the

set of dotplot annotation tools.

Reproducibility: FlexiDot, PolyDot, and Gepard dotplots are reproducible with the given parameters. As

mentioned, hidden parameters limit Dotter’s dotplot reproducibility.

Labeling: In contrast to the other tools, Gepard does not indicate sequence borders.

Output formats: FlexiDot and PolyDot allow raster and vector outputs. Gepard supports only raster graphics, and

Dotter output can only be saved using screenshots.

3.3 Conclusion

In sum, only FlexiDot combines the visualization of informative forward and reverse diagonals with suitable

output formats. Extra features (such as collages, annotation shading, and ambiguity consideration) allow further

customization. This enables a clear, reproducible visualization of internal sequence structures and shared motifs

or regions.

22

A B

C D

Supplemental Figure 12: All-against-all view of pairwise and self comparisons of different tools. (A) FlexiDot, (B) Dotter, (C)

Gepard, (D) PolyDot. Output of PolyDot had to be rotated for comparability (D).

23

4 Application use cases

In order to show FlexiDot application areas, we emulate studies referenced in Supplemental Table 5 and show

how FlexiDot performs with the chosen datasets. For use cases #1a and #1b, we create self dotplots of long,

error-prone reads generated by single molecule real-time sequencing (SMRT) to investigate organization of

coding (use case #1a) and non-coding (use case #1b) tandem repeats as reported in recent studies (Sevim et al.

2016, Symonova et al. 2017). Use case #2 focuses on repetitive transposable elements. Firstly, we illustrate

their structural motifs by combining a dotplot with functional annotations (use case #2a). Secondly, FlexiDot’s

all-against-all mode is used to compare consensus representations of repetitive sequences across retroelement

families (use case #2b) and different species (use case #2c). The LCS shading feature and a complementary

shading according to a multiple sequence alignment similarity matrix is exemplified. Use case #3 illustrates the

application of FlexiDot on amino acid sequences for filamin repeat containing proteins (use case #3a) and

nucleotide binding leucine-rich repeat proteins (use case #3b).

Supplemental Table 5: Use case overview

Use

case

Title Referred study Accession numbers

#1a SMRT reads for structural analysis of pike 5S rDNA arrays Symonova et al. 2017 NCBI SRA: SRR1930096

#1b SMRT reads for alpha satellite higher order arrangements Sevim et al. 2016 NCBI SRA: SRR4016879

#2a Combined depiction of retrotransposon structure and

domain annotations

Weber et al. 2013 paper supplement

#2b Similarity of long terminal repeat retrotransposons Weber et al. 2013 paper supplement

#2c Comparison of degenerated consensus sequences across

genomes (example sugar beet SINE consensuses)

Schwichtenberg et al.

2016

paper supplement

#3a Similarity of eight filamin-containing proteins PFAM download PFAM: I3JPF4, R7VQ48, U4UN69,

A0A164QD41, W5K5V4, W5NZD8,

U3KF39, A0A0Q3X9J3

#3b Similarity of six nucleotide-binding leucine-rich repeat

proteins in Solanaceae

PFAM download PFAM: M1C459, M1BKT1, M1BKT0,

M1CR22, K4BXZ6, M1B1V4

4.1 Use case #1: Structural organization of tandem repeat arrays in SMRT reads

FlexiDot is able to generate self dotplot collages of multiple input sequences (plotting mode 0). This feature is

especially useful for investigation of potential tandem repeat higher order structures. According to two recent

studies, we downloaded SMRT read data and used BLAST to preselect 250 SMRT read sequences with

similarities to a representative query. Nine FlexiDot self dotplots are chosen for illustration of structural patterns.

4.1.1 Use case #1a: pike 5S rDNA arrays

Based on the study by Symonová et al. (2017), 5S rDNA-containing SMRT reads (NCBI SRR1930096) were

selected with a pike 5S rDNA clone (NCBI KX950799). FlexiDot generates self dotplots of each read and

arranges them as a collage for visual inspection. The dotplots of nine representative SMRT reads (Supplemental

Figure 13) allow to categorize the 5S rDNA arrays according to their organization, such as “continuous arrays”

24

(first row), “array interruptions” (second row), “association with other repeats” (third row dotplot 1) and “array

inversions” (third row dotplot 2 and 3).

Supplemental Figure 13: FlexiDot self dotplots of nine 5S rDNA-containing pike SMRT reads. FlexiDot has been run in self mode,

with a wordsize of 9 bp and a combined 3x3 collage output has been chosen. Dependent on the line pattern, the reads are characterized

as “continuous arrays” (first row), “array interruptions” (second row), “association with other repeats” (third row dotplot 1) and “array

inversions” (third row dotplot 2 and 3).

Used commands Supplemental Figure 13:

python flexidot.py -i Selected_SMRT_reads.fas -m 3 -n 3 -f 0 -k 9 -p 0

4.1.2 Use case #1b: Human alpha satellite

Similar to 5S rDNA in use case #1a, non-coding satellite arrays can also be organized in various structures.

More often than rDNA arrays, satellite arrays form higher order arrangements in the kilobase scale, easily

25

visualized by dotplots. Similar to Sevim et al. (2016), we preselected human SMRT reads from the

SRR4016879 data set with the alpha satellite monomer (NCBI: X07685). We observe four different structural

categories of alpha satellite arrays. Supplemental Figure 14 shows examples for each category: “continuous

arrays of higher order arrangements” (first row), “short arrays (second row dotplot 1)”, “array interruptions”

(second row dotplot 2 and 3), and “array inversions” (second row dotplot 3, third row).

Supplemental Figure 14: FlexiDot self dotplots of nine alpha satellite-containing human SMRT reads. FlexiDot has been run in self

mode, with a wordsize of 9 bp and a combined 3x3 collage output has been chosen. Evenly-spaced diagonals indicate conventional

arrays. Irregularities in line spacing and intensities indicate higher order structures. Absence of parallel diagonal lines results from

interruptions of the arrays. Head-to-head structures are result of monomer orientation changes and are indicated by a color switch

(black = forward, green = reverse complement matches).

Used commands Supplemental Figure 14:

python flexidot.py -i Selected_SMRT_reads.fas -m 3 -n 3 -f 0 -k 9 -p 0

26

4.2 Use case #2: Structure and sequence similarity of retrotransposons

FlexiDot is able to combine visualizations of sequence structure and corresponding functional annotations. In

addition, it can be used to compare members of a gene or repeat family. Here, we present an example on how to

use FlexiDot features to characterize a repeat family. We first focus on different families of Beetle-type

retrotransposons, illustrating the structure of a single family member (chapter 4.2.1) and then comparing several

members to each other (chapter 4.2.2). These sugar and wild beet retrotransposons contain open reading frames

and are flanked by long terminal repeats (LTRs, Weber et al. 2009, 2013). In a second approach, we compare

non-coding retrotransposons from a single family between different species. Representative, ambiguity-

containing consensus sequences are used to demonstrate FlexiDot’s ambiguity handling (chapter 4.2.3).

4.2.1 Use case 2a: Combined depiction of Beetle1 structure and domain annotations

To get an overview of the structural organization of Beetle retrotransposons, a Beetle1 self dotplot was generated

and FlexiDot’s gff-mediated annotation shading was used to mark positions of retrotransposon domains

(Supplemental Figure 15).

Supplemental Figure 15: Dotplot (wordsize 10) and schematic representation of the Beetle1 retrotransposon. Long terminal repeats are

visible as short parallel diagonals in the upper right and lower left corners. Retrotransposon domains are highlighted. Long terminal

repeat (LTR , grey), protease (PR, orange), reverse transcriptase (RT, red), ribonuclease H (RH, blue), integrase (INT, green), primer

binding site, and polypurine tract (PBS/PPT, violet).

27

Beetle1 is flanked by LTRs, present as additional diagonals in the upper right and lower left corners. Strikingly,

the integrase region (INT, green) extends into the LTR (grey) as visible by overlapping green and grey

annotations. In order to visualize short sequence stretches, such as PBS and PPT (violet regions), we magnified

the annotated region with an additive zoom as defined in the color configuration file Beetle1_color.config.

Used commands Supplemental Figure 15:

python flexidot.py -i Beetle1.fas -g Beetle1_anno.gff3 -G Beetle1_color.config -p 0 -c n -r n -k
10 -A 1.5 -E 15

Beetle1_anno.gff3 (tab-delimited)
Beetle1 manual_annotations LTR 0 1091 . + . ID=1
Beetle1 manual_annotations PBS 1093 1105 . + . ID=2
Beetle1 manual_annotations PROT 2528 2777 . + . ID=3
Beetle1 manual_annotations RT 3203 3878 . + . ID=4
Beetle1 manual_annotations RNH 4019 4364 . + . ID=5
Beetle1 manual_annotations INT 4574 5780 . + . ID=6
Beetle1 manual_annotations PPT 5638 5647 . + . ID=7
Beetle1 manual_annotations LTR 5647 6736 . + . ID=8

Beetle1_color.config (tab-delimited)
#annotation_type color alpha zoom (linewidth_adjustment)
LTR grey 0.7 0
PPT #984ea3 0.7 50
PBS #984ea3 0.7 50
PROT #ff7f00 0.7 0
RT #e41a1c 0.7 0
RNH #377eb8 0.7 0
INT #4daf4a 0.7 0

4.2.2 Use case 2b: Similarity of Beetle-type long terminal repeat retrotransposons

In order to demonstrate usability of FlexiDot for a composite illustration of Beetle retrotransposon family

relationships, we combined a dually shaded dotplot with a schematic Neighbor Joining tree (Supplemental

Figure 16). Using the pol regions of representative Beetle elements from Weber et al. (2013), we performed a

nucleic acid multiple sequence alignment with MAFFT and calculated sequence identity values and the

Neighbor Joining tree with MEGA7 (Katoh and Standley, 2013, Tamura et al., 2016).

The flanking LTRs are visible as short diagonals in the top right and the bottom left corners of each self dotplot

(arranged on the main diagonal). The continuous LTR diagonals reflect intact LTRs, whereas for Beetle5 and

Beetle6 interruptions illustrate internal deletions. In pairwise comparisons between different Beetle copies,

matches are mainly restricted to the internal, coding region implying a higher variability in the LTR than in the

untranslated regions. Sequence similarity shading according to the LCS (grey) and sequence identity (orange)

consistently show that Beetle1 and Beetle7 share the longest match (dark grey) and the highest sequence identity

(dark orange). In particular, Beetle1 from Patellifolia procumbens and Beetle7 from Beta vulgaris share

28

considerable sequence identity and are both suggested to play a significant role in the formation of functional

centromeres (Weber et al., 2013).

Supplemental Figure 16: Dotplot analysis shows relationship between seven Beetle retrotransposon families. A schematic Neighbor

Joining tree is combined with shadings according to LCS length (grey) and sequence identity (orange). Pairwise comparison of

Beetle1 and Beetle7 shows both the longest match and the highest sequence identity. All Beetle retrotransposons are flanked by long

terminal repeats, visible by short diagonals parallel to the main diagonal of each dotplot. On a side note, the Beetle5 and Beetle6 self

dotplot depicts a deletion in the LTR region.

Used commands Supplemental Figure 16:

python flexidot.py -i Beetle.fas -p 2 -x y -k 10 -S 1 -r n -u custom_matrix.txt -U y

4.2.3 Use case #2c: Comparison of nucleotide consensus sequences in related genomes

Since FlexiDot recognizes base ambiguities (see chapter 2.1), it is possible to use species-specific and ambiguity-

containing consensus sequences for dotplot inspection. Exemplarily, we analyzed sequence divergence of

evolutionarily old, non-coding repetitive elements. The short interspersed nuclear element (SINE) family AmaS-

XIII was described in sugar beet and related Amaranthaceae species by Schwichtenberg et al. 2016 (Supplemental

Figure 17). Due to FlexiDot’s similarity shading, we easily deduce, that the consensus elements of Beta vulgaris,

Beta patula and Beta lomatogona share long sequence stretches, whereas SINEs retrieved from distantly related

29

species (Chenopodium quinoa and Spinacia oleracea) differ from the Beta elements. Also the SINE from

Patellifolia procumbens, a former member of the genus Beta, shows a high similarity to the Beta consensus

elements. LCS shading was chosen for the dotplots below the main diagonal (grey), whereas shading based on

sequence identities has been applied to the upper right part (orange). Consideration of sequence ambiguities

increases dotplot sensitivity, thus revealing family similarities between more diverged consensus sequences. LCS

lengths are correlated with identity values derived from their multiple sequence alignment.

Supplemental Figure 17: All-against-all dotplot showing sequence similarity of the SINE family AmaS-XIII in seven related

Amaranthaceae. Similarity shading highlights that the AmaS-XIII SINEs from Beta vulgaris, Beta patula and Beta lomatogana are

highly similar with shading according to the longest LCS in grey and the overall pairwise sequence identity in orange. Interpretation

of ambiguities makes similarity in more distantly related genomes visible and leads to high LCS lengths. Dotplots above the diagonal

are replaced by pairwise sequence identities.

Used commands Supplemental Figure 17:

Panel A>> python flexidot.py -i SINEs.fas -p 2 -k 7 -r n -D y -P 12.5 -y 0 -x y -w n -U n –u
id_matrix.txt

Panel B>> python flexidot.py -i SINEs.fas -p 2 -k 7 -r n -D y -P 12.5 -y 0 -x y -w y -U y –u
id_matrix.txt

30

4.3 Use case #4: FlexiDot amino acid handling

In order to demonstrate FlexiDot’s handling of protein sequences, we analyze two protein groups in all-against-

all mode. We first compare highly repetitive filamin proteins (chapter 4.3.2) and then analyze different

nucleotide-binding leucine-rich proteins (chapter 4.3.1).

4.3.1 Use case #4a: Similarity of eight filamin repeat proteins

Filamins are eukaryotic proteins belonging to the actin-binding proteins (van der Flier, 2001). They contain a

variable number of repeat modules (filamin domains) and are thus ideally suited to demonstrate FlexiDot’s

handling of amino acid sequences. The protein architecture of eight selected filamin-containing proteins from

the PFAM database (Finn et al. 2016) is summarized in Supplemental Table 6. It is noteworthy that the varying

structural architectures and differences in repeat numbers complicate filamin protein analysis by multiple

sequence alignment. Alternatively, analysis using all-against-all dotplots enables the comparison of all

monomeric units with each other and facilitates the observation of patterns otherwise hidden in a standard

alignment.

Supplemental Table 6: Filamin-contain proteins used for our comparison

Organism PFAM accession Architecture

1 Oreochromis niloticus I3JPF4_ORENI (I3JPF4) CH x 2, Filamin x 23

2 Columba livia R7VQ48_COLLI (R7VQ48) CH x 1, Filamin x 23

3 Dendroctonus ponderosae U4UN69_DENPD (U4UN69) CH x 2, Filamin x 19

4 Daphnia magna A0A164QD41_9CRUS (A0A164QD41) CH x 2, Filamin x 20

5 Astyanax mexicanus W5K5V4_ASTMX (W5K5V4) zf-B_box x 1, Filamin x 1, NHL x 6

6 Ovis aries W5NZD8_SHEEP (W5NZD8) zf-RING_UBOX, zf-B_box, Filamin x 1, NHL x 6

7 Ficedula albicollis U3KF39_FICAL (U3KF39) zf-RING_UBOX, zf-B_box, Filamin x 1, NHL x 5

8 Amazona aestiva A0A0Q3X9J3_AMAAE (A0A0Q3X9J3) Filamin x 1, NHL x 5

Regarding domain architecture, sequences #1 to #4 (I3JPF4, R7VQ48, U4UN69 and A0A164QD41) and #5 to

#8 (W5K5V4, W5NZD8, U3KF39 and A0A0Q3X9J3) are similar, respectively. The first four sequences contain

one or two CH-domains and 19-23 filamin domains. This is visualized by the overall dotplot organization

(Supplemental Figure 18), where multiple filamin domains are represented by parallel lines shared by sequences

#1 through #4.

In addition to a single filamin domain, sequences #5 to #8 contain repetitive NHL domains, visible as filamin-

unrelated repeated structures in the dotplot. The filamin monomer in the second sequence group is visible as a thin

band of short parallel lines shared with the sequences of the first group. The highest sequence similarities occur

between I3JPF4 and R7VQ48 as well as W5NZD8 and U3KF39, respectively, as indicated by LCS similarity

shading.

31

Supplemental Figure 18: Eight filamin-containing proteins are compared by all-against-all dotplots. The repetitive filamin region is

visible in the dotplots as parallel lines in pairwise sequence comparison of the first four sequences (I3JPF4, R7VQ48, U4UN69 and

A0A164QD41). The remaining four sequences (W5K5V4, W5NZD8, U3KF39 and A0A0Q3X9J3) contain a single filamin domain,

only, as well as multiple, filamin-unrelated NHL domains visible as additional repeat patterns in pairwise comparison.

Used commands Supplemental Figure 18:

python flexidot.py -t n -k 10 -S 5 -p 0 -i Filamin_proteins.fas -p 2 -x y -P 10.5

4.3.2 Use case #4b: Similarity of potato nucleotide-binding leucine-rich repeat proteins

We compared the amino acid sequences of six Solanaceae (nightshades) nucleotide-binding leucine-rich repeat

(NB-LRR) proteins in all-against-all dotplots (Supplemental Figure 19). A high global similarity between all

NB-LRR genes is visible as long diagonal in each pairwise comparison. On the basis of a multiple sequence

alignment (not shown), we extracted sequence identities for all NB-LRR pairs and use these for matrix shading

(Supplemental Figure 19, orange shading). The identity values largely agree with the pattern observed in the

dotplot analysis with LCS shading (Supplemental Figure 19, grey shading).

32

The two most similar proteins (NCBI accessions K4BXZ6 and M1B1V4) are immediately discernible with

wordsize 5 (Supplemental Figure 19 panel A). The accompanying LCS information (Supplemental Table 7)

shows that they share the longest LCS (17 amino acids). Toleration of two mismatches creates visible diagonals

in all pairwise comparisons and reveals high sequence similarity and LCS in a second pair (M1BKT0 and

M1BKT1, Supplemental Figure 19 panel B, Supplemental Table 7).

A B

Supplemental Figure 19: All-against-all sequence comparison of six NB-LRR proteins. For window size 5 diagonals in dissimilar

proteins are barely observed and general noise is repressed (A). If the window size is kept, but two mismatches are allowed all

pairwise comparisons create visible diagonals (B). In (A) and (B) we combine LCS shading (grey) with custom-matrix shading

(orange). The custom values represent pairwise sequence identities. Both shadings highlight the most similar protein pairs (M1B1V4

and K4BXZ6 as well as M1BKT0 and M1BKT1) sharing the overall longest LCS lengths and highest sequence identities.

Used commands Supplemental Figure 19:

Panel A>> python flexidot.py -i PF12061_seed.fas -f 0 -k 5 -p 2 -x Y -t n -y 0 -z 0 -D y -S 0 -U n
-u custom_matrix.txt

Panel B>> python flexidot.py -i PF12061_seed.fas -f 0 -k 5 -p 2 -x Y -t n -y 0 -z 0 -D y -S 2 -U y
-u custom_matrix.txt

Used commands (Supplemental Table 7)*:

python flexidot.py -i PF12061_seed.fas -f 0 -k 3 -p 2 -x Y -t n -w n -y 0 -z 0 -D Y

*every FlexiDot command in plotting mode 1 or 2 generates an LCS table. Minimal LCS considered are
dependent on the wordsize. Here, for the sake of the LCS table, a small wordsize of 3 was chosen.

33

Supplemental Table 7: LCS table for the NBL-RR protein analysis. The forward LCS column is shaded in grey. The sequence pair

with the longest forward LCS (K4BXZ6 and M1B1V4) is highlighted (bold, underlined).

#seq1 seq2 len_seq1 len_seq2 len_lcs_for

(exact match)

%_min_seq_len len_lcs_for

(2 mismatches

allowed)

%_min_seq_len

M1C459 M1C459 404 404 404 100.000 404 100.000
M1BKT1 M1C459 381 404 11 2.887 35 9.186
M1BKT0 M1C459 369 404 8 2.168 32 8.672
M1CR22 M1C459 388 404 6 1.546 33 8.505
K4BXZ6 M1C459 372 404 7 1.882 26 6.989
M1B1V4 M1C459 382 404 11 2.880 29 7.592
M1BKT1 M1BKT1 381 381 381 100.000 381 100.000
M1BKT0 M1BKT1 369 381 12 3.252 61 16.531
M1CR22 M1BKT1 388 381 7 1.837 24 6.299
K4BXZ6 M1BKT1 372 381 9 2.419 26 6.989
M1B1V4 M1BKT1 382 381 6 1.575 27 7.087
M1BKT0 M1BKT0 369 369 369 100.000 369 100.000
M1CR22 M1BKT0 388 369 6 1.626 23 6.233
K4BXZ6 M1BKT0 372 369 10 2.710 24 6.504
M1B1V4 M1BKT0 382 369 10 2.710 28 7.588
M1CR22 M1CR22 388 388 388 100.000 388 100.000
K4BXZ6 M1CR22 372 388 6 1.613 29 7.796
M1B1V4 M1CR22 382 388 6 1.571 25 6.545
K4BXZ6 K4BXZ6 372 372 372 100.000 372 100.000
M1B1V4 K4BXZ6 382 372 17 4.570 59 15.860
M1B1V4 M1B1V4 382 382 382 100.000 382 100.000

34

5 Literature

Brodie,R., Roper,R., Upton,C. (2004) JDotter: a Java interface to multiple dotplots generated by dotter.

Bioinformatics, 20, 279-281

Finn,R.D., Coggill,P., Eberhardt,R.Y., Eddy,S.R., Mistry,J., Mitchell,A.L., Potter,S.C., Punta,M., Qureshi,M.,

Sangrador-Vegas,A., Salazar,G.A., Tate,J., Bateman,A. (2016) The Pfam protein families database: towards a

more sustainable future. Nucleic Acids Research 44 D279-D285

Katoh,K., and Standley,D.M. (2013) MAFFT multiple sequence alignment software version 7: Improvements in

performance and usability. Molecular Biology and Evolution 30, 772-780

Krumsiek,J., Arnold,R., Rattei,T. (2007) Gepard: a rapid and sensitive tool for creating dotplots on genome

scale. Bioinformatics, 23, 1026-1028

Noé,L., Kucherov,G. (2005) YASS: enhancing the sensitivity of DNA similarity search, Nuc. Acids. Res., 33,

W540-W543

Rice P., Longden I., Bleasby A. (2000) EMBOSS: The European Molecular Biology Open Software Suite.

Trends in Genetics. 16 (6), 276–277

Schwichtenberg,K., Wenke,T., Zakrzewski,F., Seibt,K.M., Minoche,A.E., Dohm,J.C., Weisshaar,B.,

Himmelbauer,H., and Schmidt,T. (2016) Diversification, evolution and methylation of Short Interspersed

Nuclear Element families in sugar beet and related Amaranthaceae species. Plant Journal 85, 229-244

Sevim,V., Bashir,A., Chin,C.S. and Miga,K.H. (2016) Alpha-CENTAURI: Assessing novel centromeric repeat

sequence variation with long read sequencing. Bioinformatics. 32(13):1921-1924

Sonnhammer,E.L. and Durbin,R. (1995) A dot-matrix program with dynamic threshold control suited for

genomic DNA and protein sequence analysis. Gene, 167, GC1–GC10

Symonová,R., Ocalewicz,K., Kirtiklis,L., Delmastro,G.B., Pelikánová,S., GarciaS., and Kovařík,A. (2017)

Higher-order organisation of extremely amplified, potentially functional and massively methylated 5S rDNA in

European pikes (Esox sp.). BMC Genomics, 18, 391

Tamura,K., Stecher,G. and Kumar,S. (2016) MEGA7: Molecular Evolutionary Genetics Analysis version 7.0

for bigger datasets. Molecular Biology and Evolution 33, 1870-1874

Van der Flier,A., Sonnenberg,A. (2001) Structural and functional aspects of filamins. Biochimica et Biophysica

Acta (BBA) - Molecular Cell Research. 1538(2-3) 99-117

Weber,B., and Schmidt,T. (2009) Nested Ty3-gypsy retrotransposons of a single Beta procumbens centromere

contain a putative chromodomain. Chromosome Research 17, 379-396

Weber,B., Heitkam,T., Holtgräwe,D., Weisshaar,B., Minoche,A.E., Dohm,J.C., Himmelbauer,H., and

Schmidt,T. (2013) Highly diverse chromoviruses of Beta vulgaris are classified by chromodomains and

chromosomal integration. Mobile DNA 4, 8

