
SUPPORTING INFORMATION
bcSeq : An R Package for Fast Sequence Mapping in

High-Throughput shRNA and CRISPR Screens

Jiaxing Lin1, Jeremy Gresham2, Tongrong Wang1, So Young Kim3, James Alvarez4, Jeffrey S.
Damrauer5, Scott Floyd2,6, Joshua Granek1,7, Andrew Allen1,2,7, Cliburn Chan1,2,7, Jichun

Xie1,2,7, Kouros Owzar ∗1,2,7

1Biostatistics and Bioinformatics, Duke University Medical Center, Durham, 27710, USA
2Duke Cancer Institute, Duke University Medical Center, Durham, 27710, USA

3Molecular Genetics and Microbiology, Duke University Medical Center, Durham, 27710, USA
4Pharmacology, Duke University Medical Center, Durham, 27710, USA

5Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel
Hill, 27599, USA

6Radiation Oncology, Duke University Medical Center, Durham, 27710, USA
7Duke Center For Statistical Genetics and Genomics, Duke University Medical Center, Durham,

27710, USA

Contents

1 Overview 2

2 Analysis Tools for High-Throughput Barcode Screens 2

3 Trie Data Structure 2

4 Alignment Probability and Read Classifier 4

5 Simulation Study 6

6 Performance Assessment 7

7 bcSeq Benchmark Analysis 9

8 Measurement Error Model for Statistical Inference 10

9 Data Availability 11

10 Code Availability 11

∗Corresponding author

1

1 Overview

High-throughput sequencing screening assays using short hairpin RNA interference (shRNA)
libraries and single-guide RNA CRISPR/Cas9 knockout (sgRNA) libraries are powerful tools
that are used to study gene function in multiple diseases [1, 2, 3]. Mapping each observed read
in a sequenced library back to its originating barcode from a reference library is a key step in
the analysis. This mapping step poses computational and statistical challenges. One approach is
to repurpose existing tools for mapping short reads to large genomes (e.g., bowtie [4], bwa [5],
and STAR [6]). This approach induces large overhead due to library indexing and determination
of starting position for the alignment of each read. Other mapping tools designed for mapping
short reads to short barcodes (e.g., shALIGN [7], barcas [8], edgeR [9], and MAGeCK [10]) lack the
capability to handle ambiguous mappings.

We have developed bcSeq, an open-source R [11] extension package for fast mapping of reads
from high-throughput shRNA and sgRNA sequencing assays with multi-threading support. The
package uses a Trie [12] data structure implemented in C++ and resolves ambiguous mappings
on the basis of a statistical model.

This supporting information (SI) document provides additional technical details and results for
“An R Package for Fast Sequence Mapping in High-Throughput shRNA and CRISPR Screens” by
Lin et al.. This document provides an overview and comparison to other packages and tools avail-
able for mapping for barcode screens, and provides information about code and data availability
for reproducing the simulation study and for replicating the benchmarking study referenced in
the paper.

2 Analysis Tools for High-Throughput Barcode Screens

In Table S1, we provide a list of published tools and software packages for read mapping in
barcode sequencing screens. For each tool, we provide a citation for the paper and the theoretical
computational cost of the alignment. We also provide details about the programming language
environment and whether the package supports multithreading. It is noted that among the tools
considered, bcSeq is the only tool that tolerates errors, resolves ambiguities, has a cost of O(n)
and supports multithreading.

3 Trie Data Structure

A Trie is a tree-like data structure commonly adapted in string searching algorithms. They feature
fixed-time searching complexity with respect to the size of the library of strings represented in
the Trie [12], and combine common prefixes to reduce memory usage. A Trie data structure is
suitable for performing short DNA or shRNAs sequence mapping [17]. A schematic of a Trie
data structure representing a library of DNA barcodes is shown in Figure S1. Pseudocode for
adding a new barcode to the Trie data structure is provided by Algorithm 1. Mapping a read to
the barcodes based on Trie data structure is a “down Trie” comparing process and pseudocode
is provided by Algorithm 2. The comparison is usually implemented in a recursive way [8]. The
algorithm for exact mapping is the same as Algorithm 1 without adding the sequence. A schematic

2

Tool
Error
Tol

Resolve
Ambiguity

Cost Environment MT

bcSeq Yes Yes O(n) R/C++ Yes
barcas[8] Yes No O(n) Java Yes
MAGeCK[10] No No O(n) python No
shALIGN[13] Yes No O(nL)∗ perl Yes
BiNGS!LS-seq[14] Yes No O(nL)∗ mixed Yes
PinAPL-Py[15] Yes No O(nL)∗ web service N/A∗∗

edgeR[9] Yes No O(nKL)∗∗∗ R No

Table S1: This table provides details for a list of published tools and software packages for anal-
ysis of barcode sequencing screens. Error Tol: Indicates if the tool allows errors in the alignment;
Resolve Ambiguity: Indicates if the tool resolves ambiguous mappings, or provides methods to
detect the barcode that a read should be mapped to from candidate barcodes (Please refer to
formal definition of ambiguous mappings in Section 4); Cost: Indicates the tool’s theoretical com-
putational complexity for alignment; Environment: Indicates the programming and development
environment for the tool; MT: Indicates if the tool supports multithreading for the mapping
∗Theoretical computational cost for the BWT [16] algorithm based on the number of reads n and
the average read length L. ∗∗PinAPL-Py is a server-based service that appears to use Bowtie2
internally, but there is no mechanism given for a user to control multithreading in the mapping.
∗∗∗edgeR compares each read to the library sequences one by one and stops at the first matched
barcode. The computational cost is proportion to the number of reads n, average read length L,
and the number of barcodes in the library K. For the worst case, the computational cost can be
written as O(nKL) for edgeR.

of mapping a read to a barcode library is also shown in Figure S1. bcSeq tolerates mismatches
as well as internal insertion and deletion.

Algorithm 1 Pseudocode for adding a sequence to a Trie data structure.
1: Node Current = Root

2: for i=1 to seq.length() do

3: Node Child = Current.findChild(seq[i])

4: if Current != NULL then

5: Current = Child

6: else

7: Node tmp = new Node(seq[i])

8: Current.addChild(Child)

9: Current = tmp

10: end if

11: end for

12: Current.setLeaf()

3

Figure S1: Schematic example of a Trie data structure for a library consisting of 5 unique DNA
barcodes: {TGC,TCG,AAT,GGCG,GGG}. Each barcode from the library is added to the tree
as a unique path from the root node to a leaf node. The alignment of a read to the library is
a search from the root to a leaf node. Note that the two rightmost barcodes GGCG and GGG
share the prefix GG. The Trie data structure reduces memory usage by storing only one copy of
this common prefix.

Algorithm 2 Pseudocode for mapping a read to barcodes.

Function align(read, TrieRoot, misMatch, insert, delete)

2: if misMatch < 0 OR insert < 0 OR delete < 0 then

return

4: end if

if misMatch >= 0 AND delete >= 0 AND insert >= 0 AND read.length == 0 then

6: return TrieRoot.barcode

end if

8: if TrieRoot.findChild(read[1]) != NULL then

align(read.removeFirstChar(), TrieRoot.findChild(read[1]),

10: misMatch, insert, delete)

align(read.removeFirstChar(), TrieRoot,misMatch, insert--, delete)

12: else

for i=1 to TrieRoot.ChildNumber do

14: align(read.removeFirstChar(), TrieRoot.Child[i],

misMatch--, insert, delete)

16: align(read, TrieRoot.Child[i], misMatch, insert, delete--)

end for

18: end if

4 Alignment Probability and Read Classifier

The reference barcode library is assumed to consist of K unique sequences, each of length L. For
barcode k ∈ {1, . . . , K}, the sequence is denoted as r̃k = [r̃k1 , . . . , r̃

k
L] where r̃kj ∈ {A,T,G,C} for

4

j ∈ {1, . . . , L}. The sequencing reads consist of n reads and are assumed to have been randomly
sampled from the barcodes in this library. For a given read, R̃ denotes the sequence of the
originating barcode and R denotes the sequence of the observed read. Z ∈ {1, . . . , K} denotes
the index of the originating barcode R̃. In other words, Z = k if and only if R̃ = r̃k where
k ∈ {1, . . . , K}.
The sequence of read i ∈ {1, . . . , n} is denoted by Ri = [Ri,1, . . . , Ri,L] and its originating sequence
is denoted by R̃i = [R̃i,1, . . . , R̃i,L], where R̃i,j, Ri,j ∈ {A,T,G,C}. The Phred scores for read i are
denoted by Qi = [Qi,1, . . . , Qi,L]. The index corresponding to the originating read R̃i is denoted
by Zi.

For a given sequencing read, let dk ∈ {0, 1, 2, . . .} denote the distance between the read and
barcode k. Furthermore, for each d ∈ {0, 1, 2, . . .}, let N [d] = {k ∈ {1, . . . , K} : dk = d}.
When allowing up to n mismatches we consider the mapping of a read to be ambiguous if m =
min{d1, . . . , dK}, 0 < m <= n, and |N [m]| > 1 (i.e., there is no perfect match and there are at
least two barcodes that are within the minimum distance min{d1, . . . , dK} of the read).

Let P(r̃k|r) := P(R̃ = r̃k|R = r) denote the probability that a read originated from barcode k,
with the corresponding sequence r̃k, given that the sequence of the observed read is r = [r1, . . . , rl].
The mapped barcode index on the basis of the observed read will be obtained, on the basis of a
Bayes’ classifier as Ẑ = arg maxP(r̃k|r) over k ∈ {1, . . . , K}.
The current implementation of bcSeq models the joint probability distribution of the originat-
ing reads conditional on the corresponding observed reads, P(r̃k|r), under the assumption of
conditional independence, as

P(r̃k|r) = P(R̃ = r̃k|R = r)

= P(R̃ = [r̃1, . . . , r̃L]|R = [r1, . . . , rL])

=
L∏
i=1

P(R̃j = r̃j|R = [r1, . . . , rL])

=
L∏
i=1

P(R̃j = r̃j|Rj = rj).

The marginal conditional probability is modeled as

P(R̃j = r̃j|Rj = rj) =

{
1− εj, r̃j = rj
εj
3

r̃j 6= rj,

where εj = 10−qj/10 is the base-calling error probability corresponding to the observed Phred score
qj.

This model is similar to that proposed by Li et al. [18] (Supplementary PDF Section 1.1) in
that it assumes conditional independence and that conditional on the observed base Rj = rj, the
probability that the true base R̃j is a nucleotide other than rj is

εj
3

. The difference is that our
model conditions on the observed read whereas the model used by Heng et al. conditions on the

5

originating barcode. The two approaches are of course identical when
P(R̃j=r̃j)

P(Rj=rj)
= 1 as

P(R̃j = r̃j|Rj = rj) =
1

P(Rj = rj)
P(R̃j = r̃j, Rj = rj) =

P(R̃j = r̃j)

P(Rj = rj)
P(Rj = rj|R̃j = r̃j).

The package is designed to facilitate the specification of user defined models for P(r̃k|r). To this
end, instructions are provided in the package documentation.

5 Simulation Study

For the simulation study, the reference barcode library is assumed to consist of K unique se-
quences, each of length L. For barcode k ∈ {1, . . . , K}, the sequence is denoted as r̃k = [r̃k1 , . . . , r̃

k
L]

where r̃kj ∈ {A,T,G,C} for j ∈ {1, . . . , L}. For each simulation replicate, n sequencing reads

are randomly sampled from the barcodes in this library. We denote these by R̃1 . . . , R̃n where
R̃i = [R̃i,1, . . . , R̃i,L], for i ∈ {1, . . . , n}, and R̃i,j ∈ {A,T,G,C} for j ∈ {1, . . . , L}. Z1, . . . , Zn
denote the corresponding barcode indices. In other words, Zi = k if and only if R̃i = [r̃k1 , . . . , r̃

k
L].

For barcode k its prevalence πk is generated from a sorted modified uniform distribution similar
to Claessen et al. [19]. Let E = C

K
. First, P̃1, . . . , P̃K are drawn from a uniform distribution

U(m,M), where m = 1
K
− E and M = 1

K
+ E. C is an arbitrary user specified scalar in the

interval (0, 1). P̃1, . . . , P̃K are then modified subject to the constraint
∑K

k=1 P̃k = 1 as follows.
We set

P1 = P̃1

E1 = P1 −
1

K
,

and for i ∈ {2, . . . , K − 1}

Pi =

{
P̃i |P̃i − 1

K
+
∑i−1

j=0Ej| < E
1
K
− (P̃i − 1

K
) o.w.,

(1)

and

Ei = Pi −
1

K
,

and finally

PK = 1−
K−1∑
j=1

Pj

Finally, we set πk = P(k), where P(k) denotes the k-th order statistic among P1, . . . , PK .

For a simulated read R̃i, i ∈ {1, . . . , n}, the corresponding L Phred scores, Q1,i, . . . , QL,i, are
drawn from a discrete uniform distribution on the set {a, . . . , b}, where a < b are positive integers.

Let Fr,ε denote a discrete distribution over the set {A,T,G,C} that assigns probability 1− ε to
r ∈ {A,T,G,C} and probability ε

3
to each element of {A,T,G,C} − {r}. Conditional on the

Phred scores [Q1,i = q1,i, . . . , QL,i = qL,i], the observed read Ri = [R1,i, . . . , RL,i] corresponding

6

to the originating read R̃i = [R̃1,i, . . . , R̃L,i] is obtained by drawing Rj,i from FR̃j,i,εj,i
where

εi,j = 10−qi,j/10.

For the simulation study presented in the paper we consider a reference barcode library consisting
of K = 500 barcodes each of length L = 18. The minimum pairwise edit distance among these
500 barcodes is 2. The relative prevalences for the barcodes are determined based on Eq. 1 with
C = 0.75. For simulation replicate b ∈ {1, . . . , B = 1, 000}, we draw n = 106 reads from this
library according to these relative prevalences. The simulated Phred scores are sampled randomly
from a real sequencing library generated by Koike-Yusa et al. [20] (see Data Availability section
for obtaining the file). For each simulated read, a sequence of Phred scores is drawn at random
from the records in the FASTQ file. For each record in this file, the mean of the the Phred scores
was used to quantify the quality of the record. The records were binned based on their quality,
i.e., read average Phred scores. In the simulation, the Phred scores were sampled from records
in each of these bins for different read qualities.

6 Performance Assessment

This section provides additional details for the calculations and results for specificity, total number
of reads mapped, and proportion of reads mapped in the simulation study considered in the
manuscript.

For simulation replicate b ∈ {1, . . . , B}, let Pk,b denote the number of barcodes, among n, origi-

nating from barcode k ∈ {1, ..., K} (the positives), and its estimation as P̂k,b. Correspondingly, let
Nk,b denote the number of reads not originating from barcode k ∈ {1, ..., K}, and its estimation as

N̂k,b. We express the positives in terms of true-positives and false-negatives as Pk,b = TPk,b+FNk,b,
and the negatives in terms of the true-negatives and false-positives as Nk,b = TNk,b+FPk,b, where

TPk,b =
n∑
i=1

I[Zi,b = k, Ẑi,b = k],

FPk,b =
n∑
i=1

I[Zi,b 6= k, Ẑi,b = k].

FNk,b =
n∑
i=1

I[Zi,b = k, Ẑi,b 6= k],

and

TNk,b =
n∑
i=1

I[Zi,b 6= k, Ẑi,b 6= k],

Let Bk =
∑B

b=1 I[N̂k,b > 0]. We define the empirical specificity for barcode k, averaged over the
B simulation replicates as

7

ηk =
1

Bk

B∑
b=1

TNk,b

TNk,b + FPk,b

,

and the total number of mapped reads for simulation replicate b is

N̂b =
K∑
k=1

P̂k,b

We also defined the proportion of reads mapped for simulation replicate b as

R̂b =

∑K
k=1 P̂k,b∑K
k=1 Pk,b

The proportion of reads mapped and the specificity (excluding the unmapped reads) are reported
on the Figure 1 of the manuscript. The total number of mapped reads N̂b are shown in Figure S2.
We observe that our approach consistently maps more reads to barcodes in all Phred score
scenarios. Furthermore, we observe that the number of mapped reads for our method improves
as the quality of the reads decreases compared with perfect match.

6
e
+

0
5

8
e
+

0
5

1
e
+

0
6

Average Phred Score = 33

M
a
p
p
e
d
 R

e
a
d
s
 N

u
m

b
e
r

Full Dataset

bcSeq

Exact Match

6
e
+

0
5

8
e
+

0
5

1
e
+

0
6

Average Phred Score

M
a
p
p
e
d
 R

e
a
d
s
 N

u
m

b
e
r

37−35 35−33 33−31 31−29

bcSeq

Exact Match

Figure S2: These figures illustrate comparisons of total number of mapped reads to library
barcodes. Each example is based on 500 barcodes and 106 reads with 1000 simulation replicates.
The left panel shows that bcSeq has a higher number of mapped reads than perfect match
when run on barcode reads simulated using Phred scores sampled from real sequencing data.
The right panel elucidates the role of sequencing error in bcSeq’s performance. Each read in
the real sequencing data was binned based on its average Phred score, and bcSeq and perfect
match were run on reads simulated using Phred scores sampled from each of these bins. perfect
match’s number of mapped reads degrades much more rapidly than bcSeq’s as average Phred
score decreases.

Next, we compare the performance of bcSeq to three published packages: barcas [8] (version 1.0),
edgeR [9] (version 3.5) and MAGeCK [10] (version 0.5.6). bcSeq provides the user with the option
to report the barcodes to which each read in the sequencing library was mapped, in addition to
reporting the number of reads mapped to each barcode. As the other three packages seemingly

8

only offer the latter option, one cannot directly calculate sensitivity, specificity and MCC as in
the case of the previous simulation study based on our package. For this present comparison, we
evaluate the performance of each of the four methods on the basis of L1-norm:

D(π̂|π) =
K+1∑
k=1

|π̂ − πk| = |π̂K+1 − πK+1|+
K∑
k=1

|π̂k − πk| = π̂K+1 +
K∑
k=1

|π̂k − πk|, (2)

where π = (π1, . . . , πK , πK+1)
T is the vector of barcode prevalences in the reference library and

π̂ = (π̂1, . . . , π̂K , π̂K+1)
T is the vector of observed proportion of reads mapped to each barcode.

Here π̂K+1 denotes the proportion of unmapped reads. Excluding unmapped reads, that is π̂K+1 =
0, Eq. 2 becomes:

D(π̂|π) =
K∑
k=1

|π̂k − πk| (3)

For this comparison study, we employ the design used in the simulation study. The distance
between each read and a candidate barcode is quantified using the Hamming distance. The
performance is assessed based on tolerating zero, one, two or three mismatches without considering
unmapped reads (Eq. 3). As MAGeCK only accommodates perfect matching, the evaluation of its
performance is limited to the case with no mismatches. The processAmplicons function from
edgeR is used in this study.

The results for this comparison study are shown in Table S2. We note for the scenarios considered
here, bcSeq performs uniformly better compared to the other three packages. For low quality
read data, bcSeq performance can be improved by allowing more mismatches. A similar trend
is not observed for edgeR and barcas for which allowing more mismatches may reduce perfor-
mance. edgeR performs mapping by comparing each read to the library barcodes one by one and
returns the first matched barcode. This, when tolerating mismatches, is not exhaustive and can
potentially miss the correct mapping. barcas discards ambiguous mappings. If a read originating
from barcode k is discarded due to ambiguity, the norm D is increased due to utilize less data.
This will also lead to potentially biased estimate of π̂k. The scripts for reproducing the results in
Table S2 are included as Supplementary Material and detailed in the Code Availability section.

7 bcSeq Benchmark Analysis

To assess the computational performance of bcSeq, we apply our package to map a sequenced
library consisting of approximately n = 10 million reads to a reference library consisting of
K = 87, 897 barcodes. The sequencing library is obtained from the tutorial website of MAGeCK

and the barcode library data is provided by Koike-Yusa et al. [20]. The length of each sequencing
read and reference barcode is L = 19. A tabulation of the pairwise Hamming distances for the
reference barcodes is provided in Table S3. Details about how to obtain these files are provided
in the Data Availability section of this document.

We assess the performance of our package based on m = 1, 2, 4, 6 and 8 cores. For each core
count, we run the mapping process in triplicate. The median completion times are 60, 31, 16, 12,
and 9 minutes based on m = 1, 2, 4, 6 and 8 cores respectively. The individual completion times

9

Phred Score MM bcSeq edgeR barcas MAGeCK

0 0.0014 0.0014 0.0014 0.0014
high 1 0.00041 0.00068 0.00060 N/A

2 0.00037 0.00069 0.0032 N/A
3 0.00037 0.00069 0.0071 N/A
0 0.0071 0.0071 0.0071 0.0071

low 1 0.0038 0.0096 0.0089 N/A
2 0.0027 0.012 0.045 N/A
3 0.0021 0.013 0.12 N/A

Table S2: Comparison of the mapping performance based on an L1-norm Eq. 3 (excluding un-
mapped reads) for four packages: bcSeq, MAGeCK, edgeR and barcas. For each example, the
number of barcodes is K = 500 and the number of reads is n = 106. MM denotes the maxi-
mum number of allowed mismatches. As the MAGeCK package only supports exact matching, its
performance is not evaluated for MM> 0.

are shown in Figure S3. This benchmarking study was conducted using version 1.0.0 of bcSeq
under R version 3.4.1 and Bioconductor release version 3.5 on an AMD FX 8350 desktop CPU
running the Debian Jessie (8.9) AMD64 GNU/Linux operating system.

8 Measurement Error Model for Statistical Inference

In the context of statistical inference, the goal is to establish if the event that a read originates
from a given barcode is associated with an outcome or experimental condition, which we will
label Y . For a given read, let Z denote the index of the originating barcode and let Ẑ denote the
index of the barcode to which it was mapped. Due to sequencing error, Z is not observable. The
goal is to establish if Y is associated with the latent event Zk = I[Z = k]; it is not the goal to
establish a relationship between Y and the observed event Ẑk = I[Ẑ = k].

In the presence of sequencing error, what is observed for experimental unit i is (Yi, Ri1, . . . , Rin)
and not (Yi, R̃i1, . . . , R̃in). For notational simplicity, we assume that Yi follows a discrete distri-
bution. The probability mass function of Yi given the observed read, Rij = rij, is

P(Yi = yi|Rij = rij) =
∑
r̃∈R

P(Yi = yi, R̃ij = r̃|Rij = rij)

=
∑
r̃∈R

P(Yi = yi|R̃ij = r̃)P(R̃ij = r̃|Rij = rij)

=
∑
r̃∈R

P(Yi = yi|R̃ij = r̃)ωij(r̃),

for yi in the support of the distribution of Yi. Here, R denotes the set of all unique reference
barcode sequences.

10

Hamming distance count number
0 460
1 266
2 403
3 1243
4 9067
5 65817
6 407492
7 2063702
8 8614029
9 29721309
10 84854044
11 200092303
12 387796184
13 611808873
14 773786111
15 766469587
16 573283565
17 304701088
18 102711235
19 16510578

Table S3: A tabulation of the pairwise Hamming distances for the the K = 87, 897 reference
barcodes provided by Koike-Yusa et al. [20].

9 Data Availability

The sequencing library used in the benchmarking analysis can be downloaded from the Sequence
Read Archive 1. The reference barcode library can be downloaded from the Supplementary
Information section of Koike-Yusa et al. [20] 2. The md5sum hash keys for these two files are:

md5sum ERR376998.fastq.gz

7b552f8efd6fe90fc6bc34879c617040 ERR376998.fastq.gz

md5sum nbt .2800 -S7.xlsx

545 d1ed872003a39e4abdb78ac1c89d8 nbt .2800 -S7.xlsx

See Code Availability section for information to pre-process these files.

10 Code Availability

The source code for bcSeq is written in C++ and ported to R by Rcpp [21] and released under
a GPL-v3 license. The source code and binary versions of the package are disseminated through
the Bioconductor project [22] webpage (http://bioconductor.org/packages/bcSeq/).

1ftp://ftp.sra.ebi.ac.uk/vol1/fastq/ERR376/ERR376998/ERR376998.fastq.gz
2https://www.nature.com/nbt/journal/v32/n3/extref/nbt.2800-S7.xlsx

11

http://bioconductor.org/packages/bcSeq/
ftp://ftp.sra.ebi.ac.uk/vol1/fastq/ERR376/ERR376998/ERR376998.fastq.gz
https://www.nature.com/nbt/journal/v32/n3/extref/nbt.2800-S7.xlsx

1 2 3 4 5 6 7 8

1
0

2
0

3
0

4
0

5
0

6
0

Number of cores

C
P

U
 t

im
e

 (
m

in
s
)

Figure S3: Plot of computational time (in minutes) used by bcSeq to perform mapping for
n = 10 million reads from MAGeCK website and a reference library consisting of K = 87, 897
barcodes library from Koike-Yusa et al. [20] using m = 1, 2, 4, 6 and 8 cores. The timings for each
core count are run in triplicate.

As supplementary material, we provide a bash script (bcSeq-benchmark.sh) for downloading,
and for preprocessing and transforming these two files from the benchmarking study to required
.fastq and .fasta formats.

The R scripts for executing the simulation study (bcSeq-simulation.R), benchmarking study
(bcSeq-benchmark.R) and package performance comparison (bcSeq-pkgCompare.R) along with
a Makefile are also provided as supplementary material.

The benchmarking study is used as an example in the package vignette. The benchmarking,
simulation, and package performance comparison analyses can be executed from a bash shell as
follows:

make benchmark

make simulation

make pkgCompare

These analyses are tested using R (version 3.4.1) gcc (version 6.3.0) and java (version 1.8.0). The
package comparison analysis section provides information for bcSeq and edgeR package versions.
See the Data Availability section in this document for obtaining the requisite data source files for
the benchmarking study.

12

References

[1] P. D. Hsu, E. S. Lander, and F. Zhang. Development and applications of CRISPR-Cas9 for
genome engineering. Cell, 157:1262, 2014.

[2] A. S. L. Wong, G. C. G. Choi, C. H. Cui, G. Pregernig, P. Milani, M. Adam, S. D. Perli,
S. W. Kazer, A. Gaillard, M. Hermann, A. K. Shalek, E. Fraenkel, and T. K. Lu. Multiplexed
barcoded CRISPR-Cas9 screening enabled by CombiGEM. Proc. Natl. Acad. Sci. U.S.A,
113:2544, 2016.

[3] H. C. Bhang, D. A. Ruddy, K. R. Viveksagar, C. X. Justina, R Zhao, M. M. Hims, A. P.
Singh, I. Kao, D. Rakiec, P. Shaw, M. Balak, A. Raza, E. Ackley, N. Keen, M. R. Schlabach,
M. Palmer, R. J. Leary, D. Y. Chiang, W. R. Sellers, F. Michor, V. G. Cooke, J. M. Korn, and
F. Stegmeier. Studying clonal dynamics in response to cancer therapy using high-complexity
barcoding. Nat. Med., 21:440, 2015.

[4] B. Langmead, C. Trapnell, M. Pop, and S. L. Salzberg. Ultrafast and memory-efficient
alignment of short DNA sequences to the human genome. Genome Biol., 10:R25, 2009.

[5] H. Li and R. Durbin. Fast and accurate short read alignment with Burrows-Wheeler trans-
form. Bioinformatics, 25:1754, 2009.

[6] A. Dobin, C. A. Davis, F. Schlesinger, J. Drenkow, C. Zaleski, S. Jha, P. Batut, M. Chaisson,
and T. R. Gingeras. STAR: Ultrafast universal RNA-seq aligner. Bioinformatics, 29:15, 2013.

[7] D. Sims, A. M. Mendes-Pereira, J. Frankum, D. Burgess, M. Cerone, C. Lombardelli, C. Mit-
sopoulos, J. Hakas, N. Murugaesu, C. M. Isacke, K. Fenwick, I. Assiotis, I. Kozarewa,
M. Zvelebil, A. Ashworth, and C. J. Lord. High-throughput RNA interference screening
using pooled shRNA libraries and next generation sequencing. Genome Biol., 12:R104,
2011.

[8] J. Mun, D. Kim, K. Hoe, and S. Kim. Genome-wide functional analysis using the barcode
sequence alignment and statistical analysis (Barcas) tool. BMC Bioinformatics, 17:475, 2016.

[9] Z. Dai, J. M. Sheridan, L. J. Gearing, D. L. Moore, S. Su, S. Wormald, S. Wilcox,
L. O’Connor, R. A. Dickins, M. E. Blewitt, and M. E. Ritchie. edgeR: a versatile tool for
the analysis of shRNA-seq and CRISPR-Cas9 genetic screens. F1000Research, 3:95, 2014.

[10] W. Li, H. Xu, T. Xiao, L. Cong, M. I. Love, F. Zhang, R. A. Irizarry, J. S. Liu, M. Brown,
and X. S. Liu. MAGeCK enables robust identification of essential genes from genome-scale
CRISPR-Cas9 knockout screens. Genome Biol., 15:554, 2014.

[11] R Core Team. R: A Language and Environment for Statistical Computing. R Foundation
for Statistical Computing, Vienna, Austria, 2017.

[12] P. Bieganski, J. Riedl, J.V. Cartis, and E. F. Retzel. Generalized suffix trees for biological
sequence data: Applications and implementation. In 1994 Proceedings of the Twenty-Seventh
Hawaii International Conference on System Sciences, volume 5, page 35, 1994.

13

[13] D. Sims, A. M. Mendes-Pereira, J. Frankum, D. Burgess, M. Cerone, C. Lombardelli, C. Mit-
sopoulos, J. Hakas, C. M. Murugaesu, N.and Isacke, K. Fenwick, I. Assiotis, I. Kozarewa,
M. Zvelebil, A. Ashworth, and C. J. Lord. High-throughput RNA interference screening using
pooled shRNA libraries and next generation sequencing. Genome Biol., 12:R104, 2011.

[14] J. Kim and A. C. Tan. BiNGS!SL-seq: A Bioinformatics Pipeline for the Analysis and
Interpretation of Deep Sequencing Genome-Wide Synthetic Lethal Screen, page 389. Humana
Press, 2012.

[15] Spahn P. N., Bath T., Weiss R. J., Kim J., Esko J. D., N. E. Lewis, and O. Harismendy.
PinAPL-Py: a web-service for the analysis of CRISPR-Cas9 screens. bioRxiv, 2017.

[16] H. Li and R. Durbin. Fast and accurate short read alignment with Burrows-Wheeler trans-
form. Bioinformatics, 25:1754, 2009.

[17] H. Li and N. Homer. A survey of sequence alignment algorithms for next-generation sequenc-
ing. Briefings in Bioinformatics, 11:473, 2010.

[18] H. Li, J. Ruan, and R. Durbin. Mapping short DNA sequencing reads and calling variants
using mapping quality scores. Genome Res., 18:1851, 2008.

[19] K. Claessen, J. Duregrard, and M. Pa lka. Generating Constrained Random Data with Uni-
form Distribution, page 18. Springer International Publishing, 2014.

[20] H. Koike-Yusa, Y. Li, E. Tan, M. Velasco-Herrera, and K. Yusa. Genome-wide recessive
genetic screening in mammalian cells with a lentiviral CRISPR-guide RNA library. Nat.
Biotech., 32:267273, 2014.

[21] D. Eddelbuettel and R. François. Rcpp: Seamless R and C++ integration. J. Stat. Softw.,
40:1, 2011.

[22] W. Huber, V. J. Carey, R. Gentleman, S. Anders, M. Carlson, B. S. Carvalho, H. C.
Bravo, S. Davis, L. Gatto, T. Girke, R. Gottardo, F. Hahne, K. D. Hansen, R. A. Irizarry,
M. Lawrence, M. I. Love, J. MacDonald, V. Obenchain, A. K. Oles, H. Pagès, A. Reyes,
P. Shannon, G. K. Smyth, D. Tenenbaum, L. Waldron, and M. Morgan. Orchestrating
high-throughput genomic analysis with Bioconductor. Nat. Meth., 12:115, 2015.

14

	Overview
	Analysis Tools for High-Throughput Barcode Screens
	Trie Data Structure
	Alignment Probability and Read Classifier
	Simulation Study
	Performance Assessment
	bcSeq Benchmark Analysis
	Measurement Error Model for Statistical Inference
	Data Availability
	Code Availability

