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A Derivations
A.1 Number of independent model parameters

We count the number of algebraically independent model parameters for both with and without parameter
sharing.

A.1.1 Without parameter sharing

Our model employs three sets of parameters:

• f = {fg : g ∈ t} - the frequencies of each of the 15 correct genotype trios g,

• θ = {θg,m : g ∈ t, m ∈ M} - the fractions of variants, with a certain correct genotype trio g, that is
subject to, m, one of the 5 error categories,

• E = {E(g,m)
i,j,k : g ∈ t, m ∈ M, i, j, k ∈ I} - the probabilities that correct genotype i of a variant (that

is subject to an error category m and has a certain correct trio genotype g) is called one of the 3 × 3
possible joint genotypes (j, k) by two callers,

where the sizes of the sets are, |t| = 15, |M | = 5, |I| = 3.
Since there is only one normalization constraint for f , namely

∑
g fg = 1, the total number of algebraically

independent parameters of f is df = |t| − 1 = 15− 1 = 14.
Without parameter sharing, only the normalization constraints

∑
m θg,m = 1, ∀g ∈ t limit the indepen-

dent values of θ. They amount to dθ = |t| · (|M | − 1) = 15× (5− 1) = 60.
Similarly, we could evaluate the number of independent parameters of E: Number of entries is |t|·|M |·|I|3,

while the number of normalization constraints,
∑
j,k E

(g,m)i,j,k∀g ∈ t, m ∈ M, i ∈ I is |t| · |M | · |I|, which
would amount to |t| · |M | · (|I|3 − |I|). This calculation, however, does not take into account that some
of entries of E has no effect. E.g. the value of E((00,00,00),e)

11,00,00 has no consequence on the result, because it
corresponds to an impossible event where the correct trio genotype is (00, 00, 00), but one particular correct
(individual) genotype is 11.

First, let’s consider the possible g, i combinations. In Table 1, we summarize how many different values
i can actually take for a given choice of g. The total is 29, instead of |t| · |I|.

Table 1: Number of unique individual genotypes i in each trio genotype trio g.

correct genotype trio g possible i values number
(00,00,00) 00 1
(00,01,00) 00, 01 2
(00,01,01) 00, 01 2
(00,11,01) 00, 01, 11 3
(01,00,00) 00, 01 2
(01,00,01) 00, 01 2
(01,01,00) 00, 01 2
(01,01,01) 01 1
(01,01,11) 01, 11 2
(01,11,01) 01, 11 2
(01,11,11) 01, 11 2
(11,00,01) 00, 01, 11 3
(11,01,01) 01, 11 2
(11,01,11) 01, 11 2
(11,11,11) 11 1

29
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At the same time, for every g, i combination, the error category m ∈M = {a, b, c, d, e} requires different
values of E to be set to zero:

• m = a makes Eg,ai,j,k = 0, wherever j 6= i and k 6= i, which amounts to an additional (|I|2 − 1) = 8
constraints.

• m = b makes Eg,bi,j,k = 0, wherever j 6= i, which amounts to and additional (|I| − 1) · |I| = 6 constraints.

• m = c makes Eg,ci,j,k = 0, wherever k 6= i, which amounts to and additional |I| · (|I| − 1) = 6 constraints.

• m = d makes Eg,di,j,k = 0, wherever j 6= k, which amounts to and additional ·(|I|−1) · |I| = 6 constraints.

• m = e makes no additional constraints.

The normalization requirements
∑
j,k E

(g,m)
i,j,k = 1 ∀g,m, i amount to one additional constraint for each

group. This means that the total possible m, j, k combinations (for every g and i) is |M | · |I|2 − (8 + 1) −
(6 + 1)− (6 + 1)− (6 + 1)− 1 = 14. The total number of independent (and relevant) values of E is therefore
dE = 29× 14 = 406.

Adding up the number of independent values for f , θ and E yields df + dθ + dE = 14 + 60 + 406 = 480 .

A.1.2 With parameter sharing

With parameter sharing, the parameters of our model can be written as:

• f = {fg : g ∈ t} - the frequencies of each of the 15 correct genotype trios g,

• θ = {θs,m : s ∈ S, m ∈ M} - the fractions of variants, with a true trio genotype in a certain subset
ts, that is subject to one of the 5 error categories m,

• E = {E(s,m)
i,j,k : s ∈ S, m ∈ M, i, j, k ∈ I} - the probabilities that the i correct genotype of a variant

(that is subject to an error category m and has a certain correct trio genotype in the subset ts) is called
one of the 3× 3 possible joint genotypes (j, k) by two callers,

where S = {0, 1, 2}.
Since the structure of f did not change, we can use the previous result, df = |t| − 1 = 15− 1 = 14.
With parameter sharing, θ is indexed by s ∈ S (instead of g ∈ t). Considering the normalization

constraints
∑
m θs,m = 1 ∀s ∈ S, we can express the number of independent parameters as dθ = |S| · (|M | −

1) = 3× (5− 1) = 12.
First, let’s consider the number of possible (s, i) combinations for E. Table 2 shows the number of possible

i values for each s (describing the subsets ts of t). There are a total of 5 different s, i combinations such that
E

(s,m)
i,j,k actually affects the model.

Table 2: Number of unique individual genotypes i in each subset ts.

subset index s subset ts possible i values number
0 {(00, 00, 00)} 00 1
1 {trios with at least one 01} 00, 01, 11 3
2 {(11, 11, 11)} 11 1

5

The constraints associated with different m error categories does not change due to parameter sharing.
This means that the total number of independent m, j, k combinations is still |M | · |I|2 − (8 + 1)− (6 + 1)−
(6 + 1)− (6 + 1)− 1 = 14. Therefore the total number of independent E values is dE = 5× 14 = 70.

Adding up the number of independent values yields df + dθ + dE = 14 + 12 + 70 = 96 .
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A.2 Formula for P (N | N, f, θ, E)
In our paper, we show that the generative probability of a variant having correct genotype trio g, error

category m, and called genotype trios G1 and G2 can be written as

P (G1, G2, g,m | f, θ, E) = fgθg,m
∏
p

E
(g,m)
gp,G1

p,G
2
p

=: PG1,G2,g,m, (S.1)

where p ∈ {1, 2, 3} denotes the index of a family member in the trio. Assuming that the variants are
independently generated by this model, their complete distribution N = {NG1,G2,g,m : G1, G2 ∈ T, g ∈
t, m ∈ M} is multinomially distributed according to the probabilities P = {PG1,G2,g,m : G1, G2 ∈ T, g ∈
t, m ∈M}:

P (N | f, θ, E) = Mult(N | Ntot, P ), (S.2)

where Ntot is the total number of variants, and Mult is the multinomial distribution, i.e. Mult(n | ntot, p) =
ntot!

∏
ξ(pξ)nξ/nξ!, where ξ runs through all possible combinations of indices of n and p, which are assumed

to have the same shape.
From Equation S.1, we can use the definition of conditional probability to express

P (g,m | G1, G2, f, θ, E) = P (G1, G2, g,m | f, θ, E)
P (G1, G2 | f, θ, E) =

PG1,G2,g,m∑
g′,m′ PG1,G2,g,m

=: RG1,G2,g,m. (S.3)

Again, since we assume that the variants are independently generated by our model, the slice of the distri-
bution NG1,G2,:,: = {NG1,G2,g,m : g ∈ t, m ∈M} is multinomially distributed according to the probabilities
RG1,G2,:,: = {RG1,G2,g,m : g ∈ t, m ∈M}:

P (NG1,G2,:,: | N, f, θ, E) = Mult(NG1,G2,:,: | NG1,G2 , RG1,G2,:,:) ∀G1, G2, (S.4)

where NG1,G2 is the number of variants whose genotypes are called G1 by pipeline 1 and G2 by pipeline 2.
From this result, we can write the distribution of the full distribution N as a product of the distributions of
its slices:

P (N | N, f, θ, E) =
∏
G1,G2

Mult(NG1,G2,:,: | NG1,G2 , RG1,G2,:,:) , (S.5)

where R is a function of P (via Equation S.3), which is a function of f, θ and E (via Equation S.1).
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A.3 Formula for P (f, θ, E | N )
Equation S.2 expresses the probability of generating a complete (observed + hidden) distribution N ,

provided that the model parameters f, θ, E are known. Now, we use Bayes theorem to express the posterior
probability of f, θ, E when N is known.

P (f, θ, E | N ) ∝ P (N | f, θ, E) P (f, θ, E), (S.6)

where P (f, θ, E) is the a priori distribution of the model parameters.
With parameter sharing, the expression of the generative probability of a variant (from Equation S.1),

can be written as

P (G1, G2, g,m | f, θ, E) = fgθg,m
∏
p

E
(g,m)
i,j,k (S.7)

= fg ×

[∏
s

(θs,m)[g∈ts]

]
×

∏
s

∏
i,j,k

∏
p

(E(s,m)
i,j,k )[g∈ts][i=gp][j=G1

p][k=G2
p]

 (S.8)

= fg ×

[∏
s

(θs,m)Qs,g
]
×

∏
s

∏
i,j,k

(E(s,m)
i,j,k )Qs,gKi,j,k,g,G1,G2

 , (S.9)

where [g ∈ ts] evaluates to 1, if g is in the ts subset of t (and 0 otherwise), and [x = y] evaluates to 1 if x = y
(and 0 otherwise). Above, we defined the following two arrays:

Qs,g := [g ∈ ts] ∈ {0, 1}, (S.10)

Ki,j,k,g,G1,G2 :=
∑

p=1,2,3
[i = gp]× [j = G1

p]× [k = G2
p] ∈ {0, 1, 2, 3}. (S.11)

The above expression of P (G1, G2, g,m | f, θ, E) can be directly substituted in Equation S.2 to give the
generative distribution

P (N | f, θ, E) = Ntot!
∏

G1,G2,g,m

1
NG1,G2,g,m!

{
(fg)NG1,G2,g,m ×

[∏
s

(θs,m)Qs,gNG1,G2,g,m

]
×∏

s

∏
i,j,k

(E(s,m)
i,j,k )Qs,gKi,j,k,g,G1,G2NG1,G2,g,m

 .} (S.12)

Now, we show that by assuming a prior which is a product of Dirichlet distributions results in a posterior
of the same form. This conjugate prior has the following form:

P (f, θ, E) = P (f) P (θ) P (E), (S.13)
where
P (f) = Dir(f | α(0)) ∝

∏
g

(fg)(α(0)
g −1), (S.14)

P (θ) =
∏
s

Dir(θs,: | β(0)
s,: ) ∝

∏
s

∏
m

(θs,m)(β(0)
s,m−1), (S.15)

P (E) =
∏
s,m,i

Dir(E(s,m)
i,:,: | γ(0)

s,m,i,:,:) ∝
∏
s,m,i

∏
j,k

(E(s,m)
i,j,k )(γ(0)

s,m,i,j,k
−1), (S.16)

where θs,: = {θs,m : m ∈ M}, E(s,m)
i,:,: = {E(s,m)

i,j,k : j, k ∈ I}, and α(0) = {α(0)
g ∈ R+ : g ∈ t},

β(0) = {β(0)
s,m ∈ R+ : s ∈ {0, 1, 2}, m ∈M}, γ(0) = {γ(0)

s,m,i,j,k ∈ R+ : s ∈ {0, 1, 2}, m ∈M, i, j, k ∈ I}. Dir
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stands for the Dirichlet distribution, Dir(x | α) = 1
Z(α)

∏
ξ(xξ)(αξ−1), where Z(α) =

[∏
ξ Γ(αξ)

]
/Γ
(∑

ξ αξ

)
and ξ is assumed to run through all allowed combinations of the indices of x and α (which are assumed to
have the same shape). We note that the products over s,m, i and j, k in Equation S.16 run through the
allowed set of values, which we describe in Section A.1.2.

Multiplying the likelihood (from Equation S.12) with the prior (from Equation S.13) according to Equa-
tion S.6 yields the posterior

P (f, θ, E | N ) ∝ (fg)(αg−1) ×

[∏
s

∏
m

(θs,m)(βs,m−1)

]
×

∏
s,m,i

∏
j,k

(E(s,m)
i,j,k )(γs,m,i,j,k−1)

 , (S.17)

where the new exponents are

αg = α(0)
g +

∑
G1,G2,m

NG1,G2,g,m, (S.18)

βs,m = β(0)
s,m +

∑
G1,G2,g

Qs,g NG1,G2,g,m, (S.19)

γs,m,i,j,k = γ
(0)
s,m,i,j,k +

∑
G1,G2,g

Qs,g Ki,j,k,g,G1,G2 NG1,G2,g,m, (S.20)

where Q and K are defined in Equation S.10 and S.11. Considering the normalization constraints (which are
also enforced by the Dirichlet priors), we note that, since the posterior is a product of the model parameters,
it can be written as a product of Dirichlet distributions.

P (f, θ, E | N ) = P (f |α) P (θ|β) P (E|γ) (S.21)

= Dir(f | α)×
[∏
s

Dir(θs,: | βs,:)
]
×

∏
s,m,i

Dir(E(s,m)
i,:,: | γs,m,i,:,:)]

 , (S.22)

where α, β and γ are functions of N , given by Equation S.18, S.19 and S.20.
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B Gibbs sampling
Two operational parameters of the Gibbs sampler, burn-in (τ0) and thinning (∆τ), have to be set so that

the generated samples approximate the joint posterior P (N , f, θ, E | N) well.

B.1 Burn-in
Figure S.1 shows the components of model parameters (f, θ, E) as a function of iterations. After ∼ 20,000

iterations almost all components of the parameters stabilize. To be on the safe side, we set the burn-in
iterations to τ0 = 50,000.

Figure S.1: Model parameters drawn from the Gibbs sampler as a function of iterations, run for the
Platinum-78 trio. Traces for all components of f , θ and E are shown.
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B.2 Thinning
To determine the optimal thinning, we calculate the autocorrelation function A(t) of the series {Xτ :

τ = 0, 1, 2, . . . T} of model parameter X (e.g. X = θ1,e) as a function of the delay t,

AX(t) := Corr(Xτ , Xτ+t) =
[

1
T − t

T−t−1∑
τ=0

(Xτ − X̄)(Xτ+t − X̄)
]/[

1
T

T−1∑
τ=0

(Xτ − X̄)2

]
, (S.23)

where X̄ = 1
T

∑
τ Xτ . Figure S.2 shows this autocorrelation function for all model parameters as a function

of delay. We chose a thinning of ∆τ = 103, as a good balance between low correlation between consecutive
samples and high number of samples.

Figure S.2: Autocorrelation function AX(t) of model parameters X = f, θ, E as a function of the delay t.
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C Additional validation results
Here, we present additional data from the results of our validation experiments on three trios (father,

mother, child):

• GIAB-AJ: (HG003, HG004, HG002)

• Platinum-77: (NA12889, NA12890, NA12877)

• Platinum-78: (NA12891, NA12892, NA12878)

C.1 Observed and complete data
The joined counts of observed genotype trios N , and the our model’s estimate of the complete (observed

+ hidden) distribution N are shown on the Figures S.3, S.4 and S.5.

C.2 Confusion matrix of child’s genotype
Since the correct genotypes are known for the child (from their truth set), we can compare the estimated

genotype confusion matrix {n(child)
i,j,k : i, j, k ∈ I} with its correct value. We plotted {n(child)

i,j,k } as bars for the
three trios on Figure S.6.

C.3 Model’s uncertainty of estimating precision and recall
We compare the samples drawn from the posterior of precision and recall (produced by the Gibbs sampler)

with the true values of precision and recall (calculated by comparing the calls with the correct calls from
the truth set) for the children of each trio. Figure S.7 shows the true values of precision and recall with red
crosses, and the samples from the model’s Gibbs sampler with blue dots.
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Figure S.3: Observed joined genotype trio counts N = {NG1,G2} (top), and estimated contributions of each
correct genotype trio N = {NG1,G2,g} (bottom panels) for GIAB-AJ trio. The correct genotype trios g are
printed on top of each panel. The matrix on top is the sum of the 15 matrices on the bottom.
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Figure S.4: Observed joined genotype trio counts N = {NG1,G2} (top), and estimated contributions of each
correct genotype trio N = {NG1,G2,g} (bottom panels) for Platinum-77 trio. The correct genotype trios g
are printed on top of each panel. The matrix on top is the sum of the 15 matrices on the bottom.
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Figure S.5: Observed joined genotype trio counts N = {NG1,G2} (top), and estimated contributions of each
correct genotype trio N = {NG1,G2,g} (bottom panels) for Platinum-78 trio. The correct genotype trios g
are printed on top of each panel. The matrix on top is the sum of the 15 matrices on the bottom.
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Figure S.6: Genotype confusion matrix entries for the children of all three trios. Colored bars correspond to
the true counts calculated by comparing the called genotypes of each variant with the correct genotype (from
the truth set): Green bars show cases where both callers made the correct calls, yellow bars show cases where
one of them made a mistake, and red bars where both made mistakes. Light blue bars show the estimates
of the same counts from our model. The green and yellow bars are estimated with higher accuracy than the
red ones, which underlines the fact that our model can estimate the performance difference between pipelines
more accurately than the actual values of the performance metrics.

01
 

 0
1,

01

11
 

 1
1,

11

00
 

 0
0,

01

00
 

 0
0,

11

00
 

 0
1,

00

00
 

 1
1,

00

01
 

 0
0,

01

01
 

 0
1,

00

01
 

 0
1,

11

01
 

 1
1,

01

11
 

 0
0,

11

11
 

 0
1,

11

11
 

 1
1,

00

11
 

 1
1,

01

00
 

 0
1,

01

00
 

 0
1,

11

00
 

 1
1,

01

00
 

 1
1,

11

01
 

 0
0,

00

01
 

 0
0,

11

01
 

 1
1,

00

01
 

 1
1,

11

11
 

 0
0,

00

11
 

 0
0,

01

11
 

 0
1,

00

11
 

 0
1,

01

[correct genotype]  [call by Haplotype Caller], [call by Unified Genotyper]

100

101

102

103

104

105

106

107

Nu
m

be
r o

f v
ar

ia
nt

s

HG002 (child of GIAB-AJ trio)
true counts (both calls are correct)
true counts (one correct call, one incorrect call)
true counts (both calls are incorrect)
model estimates (with 1st, 99th percentiles)

01
 

 0
1,

01

11
 

 1
1,

11

00
 

 0
0,

01

00
 

 0
0,

11

00
 

 0
1,

00

00
 

 1
1,

00

01
 

 0
0,

01

01
 

 0
1,

00

01
 

 0
1,

11

01
 

 1
1,

01

11
 

 0
0,

11

11
 

 0
1,

11

11
 

 1
1,

00

11
 

 1
1,

01

00
 

 0
1,

01

00
 

 0
1,

11

00
 

 1
1,

01

00
 

 1
1,

11

01
 

 0
0,

00

01
 

 0
0,

11

01
 

 1
1,

00

01
 

 1
1,

11

11
 

 0
0,

00

11
 

 0
0,

01

11
 

 0
1,

00

11
 

 0
1,

01

[correct genotype]  [call by Haplotype Caller], [call by Unified Genotyper]

100

101

102

103

104

105

106

107

Nu
m

be
r o

f v
ar

ia
nt

s

NA12877 (child of Platinum-77 trio)
true counts (both calls are correct)
true counts (one correct call, one incorrect call)
true counts (both calls are incorrect)
model estimates (with 1st, 99th percentiles)

01
 

 0
1,

01

11
 

 1
1,

11

00
 

 0
0,

01

00
 

 0
0,

11

00
 

 0
1,

00

00
 

 1
1,

00

01
 

 0
0,

01

01
 

 0
1,

00

01
 

 0
1,

11

01
 

 1
1,

01

11
 

 0
0,

11

11
 

 0
1,

11

11
 

 1
1,

00

11
 

 1
1,

01

00
 

 0
1,

01

00
 

 0
1,

11

00
 

 1
1,

01

00
 

 1
1,

11

01
 

 0
0,

00

01
 

 0
0,

11

01
 

 1
1,

00

01
 

 1
1,

11

11
 

 0
0,

00

11
 

 0
0,

01

11
 

 0
1,

00

11
 

 0
1,

01

[correct genotype]  [call by Haplotype Caller], [call by Unified Genotyper]

100

101

102

103

104

105

106

107

Nu
m

be
r o

f v
ar

ia
nt

s

NA12878 (child of Platinum-78 trio)
true counts (both calls are correct)
true counts (one correct call, one incorrect call)
true counts (both calls are incorrect)
model estimates (with 1st, 99th percentiles)



Supplementary materials for “geck: trio-based comparative benchmarking of variant calls” 14 of 32

Figure S.7: Joint estimates of precision and recall for the two pipelines (Haplotype Caller, Unified Geno-
typer). Red cross marks the true values of precision and recall (calculated from the truth set), red dashed
line indicates the points where the performance difference between the two pipelines are equal to the true
value, and blue dots are samples drawn from the model’s estimate about the posteriors. While the model
usually makes a significant mistake in estimating the values of precision and recall for the two pipelines, it
estimates the differential performance much more accurately.
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C.4 More careful filtering of SNPs
We restricted our validation experiments to SNPs because we wanted to avoid harmonizing variant rep-

resentation between members of the trio. Indels are often represented differently by different tools or even
by the same tool if the context (nearby variants) is different. The latter problem can also affect SNPs which
are close to indels.

To get a sense of how big of an effect such SNPs are contributing to our validation experiments, we first
calculated the empirical distribution of distances of SNPs to the nearest indel. We did this for truth set of
the child of the GIAB-AJ trio, HG002. The result is shown in Figure S.8. The resulting distribution is fairly
flat for small values, except for distances shorter than 5-10 bps. We took this as an indication that some of
these SNPs may be artefacts due to discordant variant representation. To be on the safe side we decided to
exclude all SNPs that fall within 10 bps from an indel. This amounted to 0.87% (27,001) of all SNPs in the
truth set (containing a total of 3,097,996 SNPs).

Figure S.8: Histogram of distances of SNPs to nearest indel. The vertical red line indicates our choice of a
threshold for dropping SNPs that are within 10 bps to the nearest indel.
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Using the 10-bp-radius exclusion windows around true indels from HG002’s truth set, we ran geck on
SNPs from the resulting “restricted” high-confidence regions. The results, compared to the results obtained
for SNPs in non-restricted high-confidence regions are shown in Table 3, where we also show the true values
of precision and recall for the two pipelines which we obtained by benchmarking the SNPs in the same
“restricted”high-confidence regions. Comparing the runs on all high-confidence SNPs and the run on the
restricted set shows no striking differences. While the ∆ of precision is estimated more accurately in the
latter case, absolute precision is estimated with bigger error. Other estimated values and their errors are not
changed significantly after excluding SNPs near indels.
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Table 3: Precision and recall of the two pipeline (HC: Haplotype Caller, UG: Unified Genotyper) on HG002
for all SNPs in the high-confidence regions (“HG002”) and for those SNPs that are more than 10 bp away
from any indel (“HG002 - restricted”). We compare the true values (which we obtained by merging the
true variants with calls using bcftools), and the estimated value obtained with trio-based benchmarking.
∆ denotes the difference between HC and UG values. σtrio is self-reported uncertainty of the model, i.e.
standard deviation of the Gibbs samples.

precision recall
HC UG ∆ (10−3) HC UG ∆ (10−3)

HG002 truth 0.9980 0.9942 3.81 0.9994 0.9988 0.56
trio 0.9554 0.9529 2.50 0.9988 0.9985 0.33
σtrio ± 0.0076 ± 0.0076 ± 0.05 ± 0.0006 ± 0.0006 ± 0.05

HG002 - restricted truth 0.9986 0.9966 1.97 0.9997 0.9995 0.22
trio 0.9212 0.9192 2.00 0.9981 0.9977 0.41
σtrio ± 0.0090 ± 0.0090 ± 0.02 ± 0.0013 ± 0.0013 ± 0.01

C.5 Outside of high-confidence region
Although we can only accurately validate our model on regions that are reported to be high-confidence

by the truth sets, we can run geck on variants from outside of these regions, and check if the estimated
benchmarking metrics make sense qualitatively. To do this, we created the complement of the GIAB-AJ
high-confidence BED file, and re-run the preprocessing and geck. We found 1,381,544 variants that are called
by either tools (HC or UG) in at least one family member (father, mother or child) outside of the high-
confidence regions. Their observed genotype trio pair distribution is shown in the upper panel of Figure S.9.

The lower panel of the same figure shows the estimated NG1,G2,g counts, produced by our method. This
result is qualitatively similar to the estimates for the high-confidence regions (shown on the lower panels
of Figure S.3, S.4 and S.5). The estimated precision and recall and delta between the variant callers are
shown in Table 4. In agreement with our expectations, Haplotype Caller outperforms Unified Genotyper in
precision, and performs on the same level in terms of recall within margin of posterior uncertainty.

Table 4: Precision and recall of the two pipeline (HC: Haplotype Caller, UG: Unified Genotyper) on HG002
for all SNPs in outside of high-confidence regions. σtrio is self-reported uncertainty of the model, i.e. standard
deviation of the Gibbs samples.

precision recall
HC UG ∆ (10−3) HC UG ∆ (10−3)

HG002 (“low-confidence” regions) trio 0.9504 0.8273 123 0.9356 0.9374 −1.84
σtrio ± 0.0192 ± 0.0061 ± 13.1 ± 0.0152 ± 0.0033 ± 12.3
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Figure S.9: Observed joined genotype trio counts N = {NG1,G2} (top), and estimated contributions of each
correct genotype trio N = {NG1,G2,g} (bottom panels) for variants outside of the high-confidence regions
in the GIAB-AJ trio. The correct genotype trios g are printed on top of each panel. The matrix on top is
the sum of the 15 matrices on the bottom.
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C.6 Comparing different aligners
Additional to the above validation experiments, we also run a validation experiment with datasets where

different aligners (BWA and Novoalign) were used. This data is available at the ftp site of GIAB, under

• HG003 (father): ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/AshkenazimTrio/HG003_
NA24149_father/NISTv3.3.2/GRCh38/supplementaryFiles/inputvcfsandbeds/

• HG004 (mother): ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/AshkenazimTrio/HG004_
NA24143_mother/NISTv3.3.2/GRCh38/supplementaryFiles/inputvcfsandbeds/

• HG002 (son): ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/AshkenazimTrio/HG002_NA24385_
son/NISTv3.3.2/GRCh38/supplementaryFiles/inputvcfsandbeds/

We selected the VCF files produced by using BWA (with suffix “bwa_mem_IlmnMatePair_sentieonHC”)
and Novoalign (with suffix “novoalign_Ilmn150bp300X_sentieonHC”) in the alignment step, and compared
them using geck, using SNPs in the intersection of the three high-confidence BED files of the main release.
The input aggregated trio genotype pair counts are shown in the upper panel of Figure S.10. The difference
between the two pipelines is bigger then when we were comparing Haplotype Caller and Unified Genotyper:
The Novoalign pipeline called significantly less inconsistent trios than the BWA pipeline. Running our
estimation method produced N 1

G, G
2, g, shown on the bottom panel of Figure S.10.

To validate the estimated benchmarking metrics, we also performed truth-based benchmarking on the
child’s sample, using the truth set at ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/AshkenazimTrio/
HG002_NA24385_son/NISTv3.3.2/GRCh38/. First, we calculated the number of different g → G1, G2 mis-
genotyping events in the child’s sample using the truth set, and compared this to the values estimated by
geck. This is shown in Figure S.11. The same trend of Figure S.6 can be seen here: Mis-genotyping events
where only one pipeline makes a mistake are accurately estimated (the only exception here is 01 → 01, 00,
i.e. when Novoalign misses a heterozygous variant) within the margins of uncertainty reported by geck.

Then, we calculated the true precision and recall of the two pipelines and plotted it against the esti-
mates of their joint performance produced by geck. This is shown in Figure S.12. The same information
is show in tabular format in Table 5. Geck can correctly capture the sign and order of magnitude of the
deltas. In this particular experiment, geck also estimated the absolute recall of both pipelines correctly. Our
trio-benchmarking method is useful even for accurately comparing pipelines with significant performance
difference.

Table 5: Precision and recall of the two pipeline (BWA, Novoalign) on HG002 for all SNPs in the high-
confidence regions. We compare the true values (which we obtained by merging the true variants with calls
using bcftools, and estimated with trio-based benchmarking. ∆ denotes the difference between HC and UG
values. σtrio is self-reported uncertainty of the model, i.e. standard deviation of the Gibbs samples.

precision recall
BWA Novoalign ∆ (10−3) BWA Novoalign ∆ (10−3)

HG002 truth 0.9950 0.9958 −0.89 0.9739 0.9998 −25.9
trio 0.9881 0.9883 −0.13 0.9743 0.9994 −25.1
σtrio ± 0.0013 ± 0.0013 ± 0.28 ± 0.0003 ± 0.0001 ± 0.27

ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/AshkenazimTrio/HG003_NA24149_father/NISTv3.3.2/GRCh38/supplementaryFiles/inputvcfsandbeds/
ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/AshkenazimTrio/HG003_NA24149_father/NISTv3.3.2/GRCh38/supplementaryFiles/inputvcfsandbeds/
ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/AshkenazimTrio/HG004_NA24143_mother/NISTv3.3.2/GRCh38/supplementaryFiles/inputvcfsandbeds/
ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/AshkenazimTrio/HG004_NA24143_mother/NISTv3.3.2/GRCh38/supplementaryFiles/inputvcfsandbeds/
ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/AshkenazimTrio/HG002_NA24385_son/NISTv3.3.2/GRCh38/supplementaryFiles/inputvcfsandbeds/
ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/AshkenazimTrio/HG002_NA24385_son/NISTv3.3.2/GRCh38/supplementaryFiles/inputvcfsandbeds/
ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/AshkenazimTrio/HG002_NA24385_son/NISTv3.3.2/GRCh38/
ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/AshkenazimTrio/HG002_NA24385_son/NISTv3.3.2/GRCh38/
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Figure S.10: Observed joined genotype trio counts N = {NG1,G2} (top), and estimated contributions of
each correct genotype trio N = {NG1,G2,g} (bottom panels) for variants in the high-confidence regions in
the GIAB-AJ trio called by pipelines using different aligners: BWA and Novoalign. The correct genotype
trios g are printed on top of each panel. The matrix on top is the sum of the 15 matrices on the bottom.
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Figure S.11: Genotype confusion matrix entries for HG002 for the experiment comparing a pipeline using
BWA with another pipeline using Novoalign. Colored bars correspond to the true counts calculated by
comparing the called genotypes of each variant with the correct genotype (from the truth set): Green bars
show cases where both callers made the correct calls, yellow bars show cases where one of them made a
mistake, and red bars where both made mistakes. Light blue bars show the estimates of the same counts
from our model. The green and yellow bars are estimated with higher accuracy than the red ones, which
underlines the fact that our model can estimate the performance difference between pipelines more accurately
than the actual values of the performance metrics.
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D Pipelines
Here, we list the command lines used for preparing read data and in the whole genome analysis pipelines.

The alignment step with BWA-MEM, and the preprocessing step with GATK tools were common in the
two pipelines, only the variant calling step was different: Pipeline 1 used GATK Haplotype Caller v3.5, and
pipeline 2 used GATK Unified Genotyper v2.7. We also list the command lines used in the experiments
to validate our model. While indicated the connection between command lines by using the same filename
placeholders <...>, we also give a detailed overview of their connections in Figure S.13.

D.1 Read preparation
We used samtools v.1.4.1 to sort the publicly available alignment files (<input.bam>) by read name, and
extract reads into two files <1.fq> and <2.fq>.
$ samtools s o r t

−n
<input . bam>

> <qname−s o r t e d . bam>

$ samtools bam2fq
−1 <1. fq>
−2 <2. fq>
−F 3840
<qname−s o r t e d . bam>

The resulting fq files contained exact duplicates and unpaired reads. We removed them using our Python
script run_fastq_purge.py.
$ python run_fastq_purge . py <1. fq> <2. fq> −o <1−purged . fq> <2−purged . fq>

D.2 Alignment
We used BWA-MEM v0.7.13 to align the paired-end Illumina reads (<1.fastq.gz>, <2.fastq.gz>), and samblaster
and sambamba to filter out secondary alignments and sort the reads by position, producing <aligned.bam>
alignment file.
$ /bwa−0.7.13/bwa mem

−M
−R ’@RG\tID :1\ tLB : hiseq −X−v1−HLI\tPL : i l l u m i n a \tPU : reads \tSM:<sample >’
−t 30 human_g1k_v37_decoy . f a s t a
<1. f a s t q . gz>
<2. f a s t q . gz>

| / samblaster / samblaster
− i /dev/ s t d i n
−o /dev/ stdout

| /sambamba_v0 . 6 . 0 view
−t 30
−− f i l t e r ’ not secondary_alignment ’
−f bam
− l 0
−S /dev/ s t d i n

| /sambamba_v0 . 6 . 0 s o r t
−t 30
−m 18GiB
−−tmpdir . /
−o <a l i g n e d . bam>
− l 5 /dev/ s t d i n



Supplementary materials for “geck: trio-based comparative benchmarking of variant calls” 22 of 32

D.3 Realignment and recalibration
First, GATK RealinerTargetCreator is used to identify the regions in <aligned.bam> where realignment
needs to be called, producing <intervals>.
$ java

−Xmx2048M
− j a r /GenomeAnalysisTK_3.5−0−g36282e4 . j a r
−−ana lys i s_type Rea l ignerTargetCreator
−nt 4
−−out <i n t e r v a l s >
−−r e f e rence_sequence human_g1k_v37_decoy . f a s t a
−−i n p u t _ f i l e <a l i g n e d . bam>
−−phone_home NO_ET
−−known 1000G_phase1 . i n d e l s . b37 . vc f
−−known Mills_and_1000G_gold_standard . i n d e l s . b37 . s i t e s . vc f
−−gatk_key <GATK−key>

Second, GATK IndelRealigner is run to realign the reads from <aligned.bam> in the target regions <intervals>,
producing <realigned.bam>.
$ java

−Xmx2048M
− j a r /GenomeAnalysisTK_3.5−0−g36282e4 . j a r
−−ana lys i s_type I n d e l R e a l i g n e r
−−out <r e a l i g n e d . bam>
−−t a r g e t I n t e r v a l s <i n t e r v a l s >
−−r e f e rence_sequence human_g1k_v37_decoy . f a s t a
−−i n p u t _ f i l e <a l i g n e d . bam>
−−phone_home NO_ET
−−knownAl le les 1000G_phase1 . i n d e l s . b37 . vc f
−−knownAl le les Mills_and_1000G_gold_standard . i n d e l s . b37 . s i t e s . vc f
−−gatk_key <GATK−key>

Third, GATK BaseRecalibrator is run to recalibrate the base qualities of the realigned reads <realigned.bam>,
producing <realigned_recal_data.grp>.
$ java

−Xmx50000M
− j a r /GenomeAnalysisTK_3.5−0−g36282e4 . j a r
−−ana lys i s_type BaseReca l ib rator
−−out <rea l igned_reca l_data . grp>
−−d i sab l e_inde l_qua l s
−−r e f e rence_sequence human_g1k_v37_decoy . f a s t a
−−i n p u t _ f i l e <r e a l i g n e d . bam>
−−knownSites dbsnp_137 . b37 . vc f
−− i n t e r v a l s 20
−−gatk_key <GATK−key>

Finally, GATK PrintReads is run to create the recalibrated alignment file, <realigned.base_recalibrated.bam>.
$ java

−Xmx2048M
− j a r /GenomeAnalysisTK_3.5−0−g36282e4 . j a r
−−ana lys i s_type PrintReads
−nct 4
−−out <r e a l i g n e d . b a s e _ r e c a l i b r a t e d . bam>
−−r e f e rence_sequence human_g1k_v37_decoy . f a s t a
−−i n p u t _ f i l e <r e a l i g n e d . bam>
−−phone_home NO_ET
−−gatk_key <GATK−key>
−−BQSR <rea l igned_reca l_data . grp>
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D.4 Variant calling
In the final step, we use two different variant callers to call variants.

• In pipeline 1, we used GATK Haplotype Caller.
$ java

−Xmx2048M
− j a r /GenomeAnalysisTK_3.5−0−g36282e4 . j a r
−−ana lys i s_type HaplotypeCal le r
−−out <c a l l s . vcf>
−nct 4
−−standard_min_confidence_threshold_for_emitt ing 10
−−r e f e rence_sequence human_g1k_v37_decoy . f a s t a
−−i n p u t _ f i l e <r e a l i g n e d . b a s e _ r e c a l i b r a t e d . bam>
−−phone_home NO_ET
−−gatk_key <GATK−key>
−−dbsnp dbsnp_137 . b37 . vc f

• In pipeline 2, we used GATK Unified Genotyper.
$ java

−Xmx2048M
− j a r /GenomeAnalysisTKLite . j a r
−−ana lys i s_type Unif iedGenotyper
−nt 4
−−out <c a l l s . vcf>
−−r e f e rence_sequence human_g1k_v37_decoy . f a s t a
−−i n p u t _ f i l e <r e a l i g n e d . b a s e _ r e c a l i b r a t e d . bam>
−−genotype_l ike l ihoods_model BOTH
−−dbsnp dbsnp_137 . b37 . vc f

Both pipeline yield one file <calls.vcf> containing the called variants of a single individual.
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D.5 Truth-based benchmarking
First, samples in each VCF file are renamed with bcftools to avoid name collision in the merging step. The
following command lines are used for <truth.vcf.gz> and <calls.vcf.gz>, producing <truth-renamed.vcf.gz>
and <calls-renamed.vcf.gz>, respectively,
$ b c f t o o l s reheader

−s <new−names . txt>
−o <renamed . vc f . gz>
<input . vc f . gz>

$ b c f t o o l s index −−t b i <renamed . vc f . gz>

where <new-names.txt> is a plain, tab-delimited text file listing old and new names.
Then we merge the two VCFs, select SNPs from the high-confidence regions, and sort the result.
$ b c f t o o l s merge

−o <merged . vc f . gz>
−O z
<truth−renamed . vc f . gz>
<c a l l s −renamed . vc f . gz>

$ b c f t o o l s index −−t b i <merged . vc f . gz>

$ b c f t o o l s view
−v snps
−R <high−conf−r e g i o n s . bed>
−O z
−o <merged−s e l e c t e d . vc f . gz>
<merged . vc f . gz>

$ b c f t o o l s index −−t b i <merged−s e l e c t e d . vc f . gz>

$ b c f t o o l s s o r t
−O z
−o <merged−s e l e c t e d −s o r t e d . vc f . gz>
<merged−s e l e c t e d . vc f . gz>

$ b c f t o o l s index −−t b i <merged−s e l e c t e d −s o r t e d . vc f . gz>

Finally, we aggregate the different genotype combinations, and calculate true benchmarking metrics.
$ python aggregate_merged_vcf . py

<merged−s e l e c t e d −s o r t e d . vc f . gz>
<merged−counts . txt>

$ python ca l cu la te_truth_metr i c s . py
<merged−counts−t o o l 1 . txt>
<merged−counts−t o o l 2 . txt>
<s a n i t i z e d −confus ion −matrix . txt>
<benchmarking−metr i c s . json>
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D.6 Trio-based benchmarking
We first append the name of the pipeline to each sample.
$ b c f t o o l s view

−h
<c a l l s . v c f . gz>

| grep
"#CHROM"

| awk
−F’ \ t ’
’{ p r i n t f $10 } ’

> sample . tmp
$ echo " :< too l −name>" >> sample . tmp
$ b c f t o o l s reheader

−s sample . tmp
−o <c a l l s −renamed . vc f . gz>

$ b c f t o o l s index −−t b i <c a l l s −renamed . vc f . gz>

Then, we create a pedigree file for keeping the relationships of the samples.
$ python create_ped_f i l e . py

HC
UG
<father1 −renamed . vc f . gz>
<mother1−renamed . vc f . gz>
<chi ld1 −renamed . vc f . gz>
<father2 −renamed . vc f . gz>
<mother2−renamed . vc f . gz>
<chi ld2 −renamed . vc f . gz>
<t r i o . ped>

While we also merge the variant files, select the variants in the high-confidence regions and sort the variants.
$ b c f t o o l s merge

−o <merged . vc f . gz>
−O z
<father1 −renamed . vc f . gz>
<mother1−renamed . vc f . gz>
<chi ld1 −renamed . vc f . gz>
<father2 −renamed . vc f . gz>
<mother2−renamed . vc f . gz>
<chi ld2 −renamed . vc f . gz>

$ b c f t o o l s index −−t b i <merged . vc f . gz>

$ b c f t o o l s view
−v snps
−R <high−c o n f i d e n c e . bed>
−O z
−o <merged−s e l e c t e d . vc f . gz>
<merged . vc f . gz>

$ b c f t o o l s index −−t b i <merged−s e l e c t e d . vc f . gz>

$ b c f t o o l s s o r t
−O z
−o <merged−s e l e c t e d −s o r t e d . vc f . gz>
<merged−s e l e c t e d . vc f . gz>

$ b c f t o o l s index −−t b i <merged−s e l e c t e d −s o r t e d . vc f . gz>

Then, we aggregate the genotype combinations,
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$ python aggregate_merged_vcf . py
<merged−s e l e c t e d . vc f . gz>
<raw−t r i o −counts . txt>

calculate the observed joint counts N and, optionally, we subsample it.
$ python ca lcu late_confus ion_matr ix . py

HC
UG
<raw−t r i o −counts . txt>
<t r i o . ped>
<N. txt>

$ python subsample . py
<N. txt>
<number−of−samples>
<random−subsampling−seed>
<N−subsampled . txt>

Finally, we run the trio-based benchmarking, producing <metrics.json>, and we compress the samples into
<trio-samples.tar.gz>.
$ python run_geck . py

<N. txt> # or <N−subsampled . txt>
52054804
HC
UG
1234567890 # random seed
50000 # burn−in
100000 # t o t a l i t e r a t i o n s a f t e r burn−in
1000 # th inn ing
<metr i c s . json>
0.01 # l i s t o f p e r c e n t i l e s to r e p o r t in j son
0 .05
0 .5
0 .95
0 .99

$ ta r
−z
−c
−f <t r i o −samples . ta r . gz>
Ncomplete . txt
n_family . txt
n_father . txt
n_mother . txt
n_child . txt
metr ics_fami ly . txt
metr i c s_father . txt
metrics_mother . txt
metr i c s_ch i ld . txt



Supplementary materials for “geck: trio-based comparative benchmarking of variant calls” 27 of 32

Figure S.13: Pipelines used in the validation experiment. Preprocessing reads, aligning, calling variants,
and performing trio-based and truth set-based benchmarking.
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E Discussion of possible modifications
Our model assumes that all 15 true genotype trios g ∈ t have their own frequencies fg, which are

independently estimated. This flexibility would lack motivation, if we were analyzing genotypes of a single
variant across a large number of trios, because

1. Random Mendelian segregation is expected to hold, i.e. the ratio of heterozygous and homozygous
children is expected to be 1:1 if one parent is homozygous, and 2:1 ratio if both parents are heterozygous.

2. Hardy-Weinberg equilibrium (HWE) is expected to hold, unless one allele exerts significant selection
pressure.

HWE is a stronger assumption than random Mendelian segregation, we investigate them separately.
In this section, we show that neither of the above two assumptions hold for truth benchmarking data for

the GIAB-AJ trio. This result may seem paradoxical, until we realize that the counts (N) of aggregated
genotype trios are obtained by aggregating genotypes of different variants in the same three people, instead
of one variant across different trios.

We downloaded the true variant files from ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/
AshkenazimTrio/, merged them with bcftools, and dropped all non-snp variants and all variants outside of
the high-confidence region (the bed file of which we obtained by intersecting the three bed files for the three
family members with bedtools). Then, we counted the observed genotype trios, identifying “./.” with “00”
and not distinguishing between “0|1” and “1|0”, counting both under the heterozygous label “01”.

E.1 Assuming Hardy-Weinberg equilibrium
Hardy-Weinberg equilibrium dictates that the frequencies of 00, 01 and 11 genotypes are determined by

a single allele frequency f0:

P (00) = (1− f0)2 (S.24)
P (01) = 2(1− f0)f0 (S.25)
P (11) = (f0)2 (S.26)

If we assume that the same allele frequency is applicable to the two parents, then we can write the frequency
of parental genotype combinations (g1, g2) as

P (g1, g2) = P (g1)× P (g2), where (g1, g2) ∈ I×2. (S.27)

Child genotypes are assumed to be combined from randomly chosen parental alleles, one from each, resulting
in the following probabilities for trio genotypes g = (g1, g2, g3):

P (g) = P (g1, g2, g3) = P (g1, g2)× P (g3 | g1, g2) (S.28)

where P (g3 | g1, g2) =


1 if g1 6= 01, and g2 6= 01
1/2 if (g1 = 01, and g2 6= 01) or (g1 6= 01, and g2 = 01)
1/2 if g1 = g2 = g3 = 01
1/4 if g1 = g2 = 01 and g3 6= 01
0 if not allowed by Mendelian inheritance

(S.29)

For a table format, see Table 6.
To show how far are the true frequencies in the truth set of the GIAB-AJ trio from what we would expect

assuming Hardy-Weinberg equilibrium, we optimize f0 and the total number of variants ntot, which we need
to do because the truth data set does not list variants with (00,00,00) trio genotype. We find the optimal
values of f0 and ntot by minimizing the following cost function

cost(f0, ntot) =
∑
g∈t

[
ntrue
g − nexp

g√
nexp
g

]2

, where nexp
g = ntotP (g). (S.30)

ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/AshkenazimTrio/
ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/AshkenazimTrio/
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Table 6: Probabilities of child genotypes (g3), given parental genotype combination (g1, g2), i.e. P (g3 | g1, g2).
(Empty cells stand for zero probability.)

g3
g1 g2 00 01 11
00 00 1
00 11 1
11 00 1
11 11 1
00 01 1/2 1/2
01 00 1/2 1/2
01 11 1/2 1/2
11 01 1/2 1/2
01 01 1/4 1/2 1/4

We used the
√
nexp
g factor in the denominator to account for the Poisson sampling noise around the expected

value. Minimization was done with Phython’s scipy.optimize.minimize function, and we obtained the optimal
values: ntot = 4.867× 106 and f0 = 0.4220.

Using these, we calculated the expected counts for each trio genotype using Equation S.28, and plotted
it alongside with the counts from the truth set in Figure S.14. Differences between true and expected counts
are overwhelmingly significant, which we emphasize by showing the tiny 2-sigma error bars representing the
expected, Poisson-distributed, sampling noise. This means, the aggregate counts of true data do not obey
Hardy-Weinberg equilibrium, and so our model should not be restricted to it either.

Figure S.14: True (blue) and expected (orange) counts of genotype trios. The true numbers are calculated
from merging the truth sets for the three members of the GIAB-AJ trio in common high-confidence regions.
The expected counts are found by assuming HWE and finding the optimal global allele frequency f0 = 0.4220
and the optimal total number of variants ntot = 4.867×106, using the truth data directly. The uncertainty of
the expected counts is assumed to be Poisson-distributed around the mean, they are shown (although barely
visible, because of their small size) with black bars.
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E.2 Assuming random Mendelian segregation
Although it is clear from Figure S.14 that Hardy-Weinberg equilibrium does not hold in this aggregate

data, we can ask if a relaxed condition, namely random Mendelian segregation, holds. Under this hypothesis,
we assume that each of the 9 parental combinations (g1, g2) ∈ I×2 has its own independent frequency, and
the genotypes of the child’s variants are sampled independently from P (g3 | g1, g2) (see Equation S.29).

The 9 unknown frequencies can be directly obtained from the truth data by counting how many times we
observe each parental combination. After that, we multiply each with P (g3 | g1, g2) to obtain the expected
counts, and estimate the standard deviation of their expected sampling noise with the square root of the
expected counts. Comparison of the true genotype trio counts and the expected ones are shown in Figure S.15.
As expected, this flexible model can describe the observed data much better (in fact, exactly, for the parental
combinations where the child’s genotype is deterministic).

To get a more zoomed in picture of the remaining differences, we plot the difference between expected
and true counts in Figure S.16. Apart from the cases where the child’s genotype is deterministic, the counts
of only two trios agree with the expected values within 2-sigma error margin, and some (namely (01,01,01),
(11,01,01) and (11,01,11)) even have differences more than 6 sigma. This indicates that the assumption of
random Mendelian segregation does not hold for true trio genotype counts aggregated over different variants.
And so our model should not incorporate such a restriction.

Figure S.15: True (blue) and expected (orange) counts of genotype trios. The true numbers are calculated
from merging the truth sets for the three members of the GIAB-AJ trio in common high-confidence regions.
The expected counts are found by assuming random Mendelian segregation, and fitted directly to the truth
data. The uncertainty of the expected counts is assumed to be Poisson distributed around the mean, they
are shown (although barely visible, because of their small size) with black bars.
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The significant difference between the observed aggregate genotype frequencies and the expected values
under the assumption of randomMendelian segregation is surprising. After all, we do not claim to disprove the
basis for Mendelian randomization. Although we did not investigate it in details, there is one hypothesis that
could explain the observed discrepancy: While investigating the effect of random Mendelian segregation,
we assumed that this process acts independently on each SNP. This working hypothesis led to standard
deviations equal to the square root of the expected number of variants in for each trio genotype.

In reality, SNPs in strong linkage disequilibrium do not get randomized during gametogenesis, and as a
result, they are not inherited independently. While this modification of the process leaves the expected trio
genotypes frequencies unchanged, it results in a larger expected sampling noise because the effective sample
size is the number of recombination events, which is much smaller than the number of SNPs. We suspect
that this process can explain the significant deviation of the observed counts from the expected ones.

Now, one could ask, “So if we used correct error bars on Figure S.16, we would not see significant difference
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Figure S.16: Difference between expected (under the assumption of random Mendelian segregation) and
true trio genotype counts. Black bars indicate the expected 2-sigma sampling noise.
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from random Mendelian segregation. Why should we not incorporate it into our model then?”. To answer,
let us note that geck assumes that each variant provides an independent data point. The full log likelihood
of the model is a sum of independent terms, one for each variant, which translates to assuming that the total
number of independent input samples is equal to the number of SNPs. During the parameter estimation
procedure, the total number of independent data points determines the posterior variance of each parameter,
including the values of f . If we did not allow our model to fit each f value independently, but forced it to
assume random Mendelian segregation, it would work hard to get the best (restricted) f values, because they
amount to a large log-likelihood penalty due to assuming a large number of independent data points. This
would incorrectly prioritize getting slightly better f values above accurately estimating θ and E.

As a quick solution, one could imagine re-weighting or sub-sampling the observed data to match the
expected number of independently inherited variants. This, however, would undermine the estimates of the
genotyping error rates E, because from their point of view the data points are not correlated since linkage
disequilibrium is not likely to cause correlation between genotyping errors. So, now we are faced with this
problem: the effective number of independent samples for estimating f (under randomMendelian segregation)
is lower than the effective number of independent samples for estimating E.

Instead of introducing a new layer of variables in our graphical model to account for recombination events
(which would require additional inputs from the user), we took the shortcut, and granted the f parameters
enough flexibility to account for the significant deviations of the true frequencies from what is expected under
random Mendelian segregation.

E.3 Origin of the true f values
The results above show that allowing our model to find all 15 fg values independently is necessary to

accurately recover the true frequencies. Beside this evidence, we would like to expose our logic behind this
decision.

The parameters f represent the distribution of the true trio genotypes in the data set. This distribution
depends not only on the biological mechanisms at play, but also on the choices made by the scientist carry-
ing out the benchmarking analysis. If the scientist restricts their analysis to variants with largely different
alternate allele frequencies and which are not expected to be heterozygous (e.g. because they are benchmark-
ing a tool that genotypes 00 and 11 variants with extremely high accuracy), then the aggregate genotype
counts will respect neither Hardy-Weinberg equilibrium nor random Mendelian segregation. They will simply
describe the true abundance of each trio genotype in the pool of variants under analysis.
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Even in this case, the estimated f produced by our method will accurately reflect the distribution of true
trios, because we do not restrict the values of f , and allow all 15 of them to move independently (apart from
the normalization requirement

∑
g fg = 1) during the Gibbs sampling process.

E.4 Incorporating uncertainty of input data
Throughout this work, we assumed that the two sets of input variants from a trio – most commonly 2× 3

VCF files – can be converted to a single merged VCF file which, in turn, can be directly aggregated to give
us the genotype trio pair counts, NG1,G2 . We deliberately chose SNPs to validate our method, because their
identity is most certain.

Many complex variants (such as mnps, indels and structural variants) are difficult to call with single-
base-pair resolution and, as a result, they are subject to identity ambiguity during merging. In other words,
it is hard to tell if two differently represented complex variants in two different VCF files are in fact the same
variant. Researchers often tackle this problem by turning to “soft” identity metrics (such as reciprocal overlap
for deletion SVs, or local alignment score for crowded series of snps and indels). While the usage of these
metrics is commendable, often the following steps involve setting an ad-hoc threshold to obtain a boolean
decision. Unfortunately, this leads to additional loss of information, which could be avoided if downstream
tools could handle the original soft metrics efficiently.

A straight-forward extension of our model (which is expected to increase the accuracy of the estimated
benchmarking metrics if the total number of variants is small) is to admit an ensemble of counts NG1,G2 as
input: Cycling through the variants and drawing the genotype of each from its posterior reported by the
variant caller, and aggregating the drawn genotypes in every cycle will result in a stochastically changing N
matrix. This is well suited for Gibbs-sampling which, in every iteration, can perform the sampling using the
current N matrix. The resulting Markov process will realize a stochastic solution of the inference problem
(similar to how stochastic gradient descent approximates the true gradient descent solution). Implementing
this efficiently is a non-trivial challenge, but it is worth considering because such a trio benchmarking method
will enable accounting for uncertainties originating not only from variant identity ambiguity but also from
genotype uncertainties reported by PL scores in VCF files.
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