MASCOT: Parameter and state inference under the marginal structured coalescent approximation: Supplementary Material

Nicola F. Müller ${ }^{1,2, *}$, David Rasmussen ${ }^{1,2,3,4}$, and Tanja Stadler ${ }^{1,2, *}$
${ }^{1}$ ETH Zurich, Department of Biosystems Science and Engineering, 4058 Basel, Switzerland
${ }^{2}$ Swiss Institute of Bioinformatics (SIB), Switzerland
${ }^{3}$ Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, North Carolina, USA
${ }^{4}$ Bioinformatics Research Center, North Carolina State University, Raleigh, North Carolina, USA
${ }^{1}$ Corresponding authors

1 Derivation of the derivative of the conditional lineage state probabilities

$$
\begin{aligned}
P_{t}\left(L_{i}=l_{i} \mid T\right) & =\frac{P_{t}\left(L_{i}=l_{i}, T\right)}{\sum_{a=1} P_{t}\left(L_{i}=a, T\right)}=\frac{P_{t}\left(L_{i}=l_{i}, T\right)}{P_{t}(T)} \\
\frac{d}{d t} P_{t}\left(L_{i}=l_{i} \mid T\right) & =\frac{d}{d t} \frac{P_{t}\left(L_{i}=l_{i}, T\right)}{P_{t}(T)}=\frac{P_{t}(T) \frac{d}{d t} P_{t}\left(L_{i}=l_{i}, T\right)-P_{t}\left(L_{i}=l_{i}, T\right) \frac{d}{d t} P_{t}(T)}{P_{t}(T)^{2}} \\
& =\frac{\frac{d}{d t} P_{t}\left(L_{i}=l_{i}, T\right)}{P_{t}(T)}-\frac{P_{t}\left(L_{i}=l_{i} \mid T\right) \frac{d}{d t} P_{t}(T)}{P_{t}(T)}
\end{aligned}
$$

$\frac{\frac{d}{d t} P_{t}\left(L_{i}=l_{i}, T\right)}{P_{t}(T)}$ can be received by dividing equation 3 in Müller et al. (2017) with $P_{t}(T)$:

$$
\begin{align*}
\frac{\frac{d}{d t} P_{t}\left(L_{i}=l_{i}, T\right)}{P_{t}(T)}= & \sum_{a=1}^{m}\left(\mu_{a l_{i}} P_{t}\left(L_{i}=a \mid T\right)-\mu_{l_{i} a} P_{t}\left(L_{i}=l_{i} \mid T\right)\right) \\
& -P_{t}\left(L_{i}=l_{i} \mid T\right) \sum_{a=1}^{m} \frac{\lambda_{a}}{2} \sum_{\substack{j=1 \\
j \neq i}}^{n} \sum_{\substack{k=1 \\
k \neq j, i}}^{n} P_{t}\left(L_{j}=a \mid T\right) P_{t}\left(L_{k}=a \mid T\right) \\
& -P_{t}\left(L_{i}=l_{i} \mid T\right) \lambda_{l_{i}} \sum_{\substack{k=1 \\
k \neq i}}^{n} P_{t}\left(L_{k}=l_{i} \mid T\right) \tag{1}
\end{align*}
$$

The same way, we can derive $\frac{P_{t}\left(L_{i}=l_{i} \mid T\right) \frac{d}{d t} \sum_{a=1}^{n} P_{t}\left(L_{i}=a, T\right)}{P_{t}(T)}$ from equation 3 in Müller et al. (2017):

$$
\begin{align*}
& \frac{P_{t}\left(L_{i}=l_{i} \mid T\right) \frac{d}{d t} \sum_{a=1}^{n} P_{t}\left(L_{i}=a, T\right)}{P_{t}(T)}=\frac{P_{t}\left(L_{i}=l_{i} \mid T\right)}{P_{t}(T)}\left[\sum_{a=1}^{m} \sum_{b=1}^{m}\left(\mu_{b a} P_{t}\left(L_{i}=b, T\right)-\mu_{a b} P_{t}\left(L_{i}=a, T\right)\right)(=0)\right. \\
& -\sum_{a=1}^{m} P_{t}\left(L_{i}=a, T\right) \sum_{b=1}^{m} \frac{\lambda_{b}}{2} \sum_{\substack{j=1 \\
j \neq i}}^{n} \sum_{\substack{k=1 \\
k \neq j, i}}^{n} P_{t}\left(L_{j}=b \mid T\right) P_{t}\left(L_{k}=b \mid T\right) \\
& \left.-\sum_{a=1}^{m} P_{t}\left(L_{i}=a, T\right) \lambda_{a} \sum_{\substack{k=1 \\
k \neq i}}^{n} P_{t}\left(L_{k}=a \mid T\right)\right] \\
& =-\frac{P_{t}\left(L_{i}=l_{i} \mid T\right)}{P_{t}(T)}\left[P_{t}(T) \sum_{b=1}^{m} \frac{\lambda_{b}}{2} \sum_{\substack{j=1 \\
j \neq i}}^{n} \sum_{\substack{k=1 \\
k \neq j, i}}^{n} P_{t}\left(L_{j}=b \mid T\right) P_{t}\left(L_{k}=b \mid T\right)\right. \\
& \left.+P_{t}(T) \sum_{a=1}^{m} P_{t}\left(L_{i}=a \mid T\right) \lambda_{a} \sum_{\substack{k=1 \\
k \neq i}}^{n} P_{t}\left(L_{k}=a \mid T\right)\right] \\
& =-P_{t}\left(L_{i}=l_{i} \mid T\right) \frac{P_{t}(T)}{P_{t}(T)} \sum_{a=1}^{m} \frac{\lambda_{a}}{2} \sum_{j=1}^{n} \sum_{\substack{k=1 \\
k \neq j}}^{n} P_{t}\left(L_{j}=a \mid T\right) P_{t}\left(L_{k}=a \mid T\right) \tag{2}
\end{align*}
$$

Combining equations 1 and 2 then yields:

$$
\begin{align*}
& \frac{\frac{d}{d t} P_{t}\left(L_{i}=l_{i}, T\right)}{P_{t}(T)}-\frac{P_{t}\left(L_{i}=l_{i} \mid T\right) \frac{d}{d t} P_{t}(T)}{P_{t}(T)}=\sum_{a=1}^{m}\left(\mu_{a l_{i}} P_{t}\left(L_{i}=a \mid T\right)-\mu_{l_{i} a} P_{t}\left(L_{i}=l_{i} \mid T\right)\right) \\
& -P_{t}\left(L_{i}=l_{i} \mid T\right) \sum_{a=1}^{m} \frac{\lambda_{a}}{2} \sum_{\substack{j=1 \\
j \neq i}}^{n} \sum_{\substack{k=1 \\
k \neq j, i}}^{n} P_{t}\left(L_{j}=a \mid T\right) P_{t}\left(L_{k}=a \mid T\right) \\
& -P_{t}\left(L_{i}=l_{i} \mid T\right) \lambda_{l_{i}} \sum_{\substack{k=1 \\
k \neq i}}^{n} P_{t}\left(L_{k}=l_{i} \mid T\right) \\
& +P_{t}\left(L_{i}=l_{i} \mid T\right) \frac{P_{t}(T)}{P_{t}(T)} \sum_{a=1}^{m} \frac{\lambda_{a}}{2} \sum_{j=1}^{n} \sum_{\substack{k=1 \\
k \neq j}}^{n} P_{t}\left(L_{j}=a \mid T\right) P_{t}\left(L_{k}=a \mid T\right) \\
& =\sum_{a=1}^{m}\left(\mu_{a l_{i}} P_{t}\left(L_{i}=a \mid T\right)-\mu_{l_{i} a} P_{t}\left(L_{i}=l_{i} \mid T\right)\right) \\
& +P\left(L_{i}=l_{i} \mid T\right) \sum_{a=1}^{m} \lambda_{a} P_{t}\left(L_{i}=a \mid T\right) \sum_{\substack{k=1 \\
k \neq i}}^{n} P_{t}\left(L_{k}=a \mid T\right) \\
& -P_{t}\left(L_{i}=l_{i} \mid T\right) \lambda_{l_{i}} \sum_{\substack{k=1 \\
k \neq i}}^{n} P_{t}\left(L_{k}=l_{i} \mid T\right) \tag{3}
\end{align*}
$$

2 Derivation of the derivative of $P_{t}(T)$

The expression for $\frac{d}{d t} P_{t}(T)$ can be easily derived from $\frac{d}{d t} P_{t}\left(L_{i}=a, T\right)$, by summing over every possible state a :

$$
\frac{d}{d t} P_{t}(T)=\sum_{a=1}^{m} \frac{d}{d t} P_{t}\left(L_{i}=a, T\right)=\frac{d}{d t} \sum_{a=1}^{m} P_{t}\left(L_{i}=a, T\right)
$$

This summation was done for deriving equation 2, and thus, we showed that:

$$
\frac{d}{d t} P_{t}(T)=-P_{t}(T) \sum_{b=1}^{m} \frac{\lambda_{b}}{2} \sum_{j=1}^{n} \sum_{\substack{k=1 \\ k \neq j}}^{n} P_{t}\left(L_{j}=b \mid T\right) P_{t}\left(L_{k}=b \mid T\right)
$$

3 Derivation of the second derivative

The second derivative can be easily received by taking the derivative of equation 3 in this supplement with respect to time:

$$
\begin{align*}
\frac{d^{2} P_{t}\left(L_{i}=l_{i} \mid T\right)}{d t^{2}}= & \frac{d}{d t}\left(\sum_{a=1}^{m}\left(\mu_{a l_{i}} P_{t}\left(L_{i}=a \mid T\right)-\mu_{l_{i} a} P_{t}\left(L_{i}=l_{i} \mid T\right)\right)\right) \\
& +\frac{d}{d t}\left(P_{t}\left(L_{i}=l_{i} \mid T\right) \sum_{a=1}^{m} \lambda_{a} P_{t}\left(L_{i}=a \mid T\right) \sum_{\substack{k=1 \\
k \neq i}}^{n} P_{t}\left(L_{k}=a \mid T\right)\right) \\
& -\frac{d}{d t}\left(P_{t}\left(L_{i}=l_{i} \mid T\right) \lambda_{l_{i}} \sum_{\substack{k=1 \\
k \neq i}}^{n} P_{t}\left(L_{k}=l_{i} \mid T\right)\right) \\
= & \sum_{a=1}^{m}\left(\mu_{a l_{i}} \frac{d}{d t} P_{t}\left(L_{i}=a \mid T\right)-\mu_{l_{i} a} \frac{d}{d t} P_{t}\left(L_{i}=l_{i} \mid T\right)\right) \\
& +\frac{d}{d t} P_{t}\left(L_{i}=l_{i} \mid T\right)\left(\sum_{\substack{a=1}}^{m} \lambda_{a} P_{t}\left(L_{i}=a \mid T\right) \sum_{\substack{k=1 \\
k \neq i}}^{n} P_{t}\left(L_{k}=a \mid T\right)\right) \\
& +P_{t}\left(L_{i}=l_{i} \mid T\right)\left(\sum_{\substack{a=1}}^{m} \lambda_{a} \frac{d}{d t} P_{t}\left(L_{i}=a \mid T\right) \sum_{\substack{k=1 \\
k \neq i}}^{n} P_{t}\left(L_{k}=a \mid T\right)\right) \\
& +P_{t}\left(L_{i}=l_{i} \mid T\right)\left(\sum_{a=1}^{m} \lambda_{a} P_{t}\left(L_{i}=a \mid T\right) \sum_{\substack{k=1 \\
k \neq i}}^{n} \frac{d}{d t} P_{t}\left(L_{k}=a \mid T\right)\right) \\
& -P_{t}\left(L_{i}=l_{i} \mid T\right) \lambda_{l_{i}} \frac{d}{d t} \sum_{\substack{k=1 \\
k \neq i}}^{n} P_{t}\left(L_{k}=l_{i} \mid T\right) \\
& -\frac{d}{d t} P\left(L_{i}=l_{i} \mid T\right) \lambda_{l_{i}} \sum_{\substack{k=1 \\
k \neq i}}^{n} P_{t}\left(L_{k}=l_{i} \mid T\right) \tag{4}
\end{align*}
$$

4 Approximation of the third derivative

In order to get a fast estimate of the step size, we make two assumptions: We assume that the sum of probability mass in a state over all lineages but lineage i does not change and that the sum of the derivatives of lineage i coalescing in any state does not change, meaning:

$$
\begin{align*}
\frac{d}{d t} \sum_{\substack{k=1 \\
k \neq i}}^{n} P_{t}\left(L_{k}=a \mid T\right) & =0 \\
\frac{d}{d t} \sum_{a=1}^{m} \lambda_{a} P_{t}\left(L_{i}=a \mid T\right) \sum_{\substack{k=1 \\
k \neq i}}^{n} P_{t}\left(L_{k}=a \mid T\right) & =0 \tag{5}
\end{align*}
$$

This assumption only affects the step size used for integration and allows us to simplify equation 4 to:

$$
\begin{aligned}
\frac{d^{2} P_{t}\left(L_{i}=l_{i} \mid T\right)}{d t^{2}} \approx & \sum_{a=1}^{m}\left(\mu_{a l_{i}} \frac{d}{d t} P_{t}\left(L_{i}=a \mid T\right)-\mu_{l_{i} a} \frac{d}{d t} P_{t}\left(L_{i}=l_{i} \mid T\right)\right) \\
& +\frac{d}{d t} P_{t}\left(L_{i}=l_{i} \mid T\right)\left(\sum_{a=1}^{m} \lambda_{a} P_{t}\left(L_{i}=a \mid T\right) \sum_{\substack{k=1 \\
k \neq i}}^{n} P_{t}\left(L_{k}=a \mid T\right)\right) \\
& -\lambda_{l_{i}} \sum_{\substack{k=1 \\
k \neq i}}^{n} P_{t}\left(L_{k}=l_{i} \mid T\right) \frac{d}{d t} P\left(L_{i}=l_{i} \mid T\right)
\end{aligned}
$$

Again taking the derivative with respect to time then yields:

$$
\begin{aligned}
\frac{d^{3} P\left(L_{i}=l_{i} \mid T\right)}{d t^{3}} \approx & \frac{d}{d t} \sum_{a=1}^{m}\left(\mu_{a l_{i}} \frac{d}{d t} P_{t}\left(L_{i}=a \mid T\right)-\mu_{l_{i} a} \frac{d}{d t} P_{t}\left(L_{i}=l_{i} \mid T\right)\right) \\
& +\frac{d}{d t}\left(\frac{d}{d t} P_{t}\left(L_{i}=l_{i} \mid T\right)\left(\sum_{a=1}^{m} \lambda_{a} P_{t}\left(L_{i}=a \mid T\right) \sum_{\substack{k=1 \\
k \neq i}}^{n} P_{t}\left(L_{k}=a \mid T\right)\right)\right) \\
& -\frac{d}{d t}\left(\frac{d}{d t} P\left(L_{i}=l_{i} \mid T\right) \lambda_{l_{i}} \sum_{\substack{k=1 \\
k \neq i}}^{n} P_{t}\left(L_{k}=l_{i} \mid T\right)\right) \\
= & \sum_{a=1}^{m}\left(\mu_{a l_{i}} \frac{d^{2}}{d t^{2}} P_{t}\left(L_{i}=a \mid T\right)-\mu_{l_{i} a} \frac{d^{2}}{d t^{2}} P_{t}\left(L_{i}=l_{i} \mid T\right)\right) \\
& +\frac{d^{2}}{d t^{2}} P_{t}\left(L_{i}=l_{i} \mid T\right)\left(\sum_{a=1}^{m} \lambda_{a} P_{t}\left(L_{i}=a \mid T\right) \sum_{\substack{k=1 \\
k \neq i}}^{n} P_{t}\left(L_{k}=a \mid T\right)\right) \\
& +\frac{d}{d t} P_{t}\left(L_{i}=l_{i} \mid T\right)\left(\frac{d}{d t} \sum_{\substack{a=1}}^{m} \lambda_{a} P_{t}\left(L_{i}=a \mid T\right) \sum_{\substack{k=1 \\
k \neq i}}^{n} P_{t}\left(L_{k}=a \mid T\right)\right) \\
& -\frac{d^{2}}{d t^{2}} P\left(L_{i}=l_{i} \mid T\right) \lambda_{l_{i}} \sum_{\substack{k=1 \\
k \neq i}}^{n} P_{t}\left(L_{k}=l_{i} \mid T\right) \\
& -\frac{d}{d t} P_{t}\left(L_{i}=l_{i} \mid T\right) \lambda_{l_{i}} \frac{d}{d t} \sum_{\substack{k=1 \\
k \neq i}}^{n} P_{t}\left(L_{k}=l_{i} \mid T\right)
\end{aligned}
$$

Using again the assumptions of 5 , we can write:

$$
\begin{aligned}
\frac{d^{3} P\left(L_{i}=l_{i} \mid T\right)}{d t^{3}} \approx & \sum_{a=1}^{m}\left(\mu_{a l_{i}} \frac{d^{2}}{d t^{2}} P_{t}\left(L_{i}=a \mid T\right)-\mu_{l_{i} a} \frac{d^{2}}{d t^{2}} P_{t}\left(L_{i}=l_{i} \mid T\right)\right) \\
& +\frac{d^{2}}{d t^{2}} P_{t}\left(L_{i}=l_{i} \mid T\right)\left(\sum_{a=1}^{m} \lambda_{a} P_{t}\left(L_{i}=a \mid T\right) \sum_{\substack{k=1 \\
k \neq i}}^{n} P_{t}\left(L_{k}=a \mid T\right)\right) \\
& -\frac{d^{2}}{d t^{2}} P\left(L_{i}=l_{i} \mid T\right) \lambda_{l_{i}} \sum_{\substack{k=1 \\
k \neq i}}^{n} P_{t}\left(L_{k}=l_{i} \mid T\right)
\end{aligned}
$$

References

Müller, N. F., Rasmussen, D. A., and Stadler, T. (2017). The structured coalescent and its approximations. Molecular Biology and Evolution, page msx186.

