
Supplementary Information for
‘ggcyto: Next generation
visualization software for flow
cytometry’
Phu T. Van, Mike Jiang, Raphael Gottardo & Greg
Finak

May 21, 2018

Contents

1 Background

2 Overview

2.1 BioConductor flow cytometry tools
2.2 ggcyto supported data structures.
2.3 Support for external packages.
2.4 Interaction with ggplot and the core BioConductor FCM data
structures.
2.5 Principles of ggcyto.
2.6 Lazy loading of data
2.7 Additional strategies for plotting large data
2.8 Data sets

3 Reproducing figures from the original manuscript.

3.1 Reproducing the plots from Figure 1.
3.1.1 The autoplot API
3.1.2 The ggcyto API.
3.1.3 Transforming the data.

4 Additional ggcyto features.

4.1 Context-aware plots.
4.2 Changing geom s.
4.3 Using gated data.
4.4 Visualizing back-gating.
4.5 Transforming the axes.
4.6 Using the ggcyto interface.
4.7 Faceting plots by experimental metadata.
4.8 Substituting data with the %+% method.
4.9 Faceting all markers.
4.10 Future Work

References

1

2

knitr::opts_chunk$set(echo = TRUE)

#load the ggcyto package

library(ggcyto)

Loading required package: ggplot2

Loading required package: flowCore

Loading required package: ncdfFlow

Loading required package: RcppArmadillo

Loading required package: BH

Loading required package: flowWorkspace

#load flowWorkspaceData

library(flowWorkspaceData)

#load flowWorkspace for importing FlowJo workspaces

library(flowWorkspace)

#for tables

library(xtable)

#for combining plots

library(cowplot)

Attaching package: 'cowplot'

The following object is masked from 'package:ggplot2':

ggsave

Background

Open source software for computational cytometry has gained in popularity over the
past few years. Efforts such as FlowCAP, the Lyoplate and Euroflow projects have
highlighted the importance of efforts to standardize both experimental and
computational aspects of cytometry data analysis. The R/BioConductor platform
hosts the largest collection of open source cytometry software covering all aspects
of data analysis. It provides complex data structures and uses state of the art
technologies to store cytometry data with all the relevant experimental, gating, and
cell population annotations. While the number of algorithms available in
Bioconductor for cytometry data analysis has significantly increased over the past
decade, the cytometry specific visualization frameworks available in Bioconductor
for these types of data have lagged behind.

Overview

2.1

2.2

2.3

2.4

This Supplementary Information document for the paper “ggcyto: Next generation
visualization software for flow cytometry” shows how to use the BioConductor
package ggcyto to visualize flow cytometry data and reproduces the plots from the
original publication, together with code.

BioConductor flow cytometry tools
The BioConductor project has, at the time of writing, 47 different packages tagged
as “Flow Cytometry” related.

ggcyto supported data structures.
ggcyto supports the core flow cytometry data structures in R/Bioconductor:
flowFrame and flowSet (defined in the flowCore package) store ungated data

and are created when an FCS or set of FCS files are read into R/BioConductor. The
GatingSet and GatingHierarchy (defined in the flowWorkspace package)

store gated data. They are created when FCS files together with a workspace

defining the gating (e.g. from FloJo, DIVA, or CytoBank) are imported together. The
GatingHierarchy stores a single sample, while the GatingSet stores a

collection of samples.

Of the 47 cytometry tagged packages on BioConductor, two (including ggcyto),
are focused on visualization. flowViz , the original BioConductor cytometry
visualization software has not been updated to support the new cytometry data
structures that hold gated and analyzed data. These data structures are part of thre
three core cytometry infrastructure packages: flowWorkspace
(https://doi.org/doi:10.18129/B9.bioc.flowWorkspace), flowCore
(https://doi.org/doi:10.18129/B9.bioc.flowCore) (Finak et al. (2014)), (Hahne et al.
(2009)), and ncdfFlow (https://doi.org/doi:10.18129/B9.bioc.ncdfFlow) (M. Jiang et
al. (2011)).

Support for external packages.
ggcyto borrows ideas from flowViz but greatly enhances functionality and

usability through the grammar of graphics (Wickham (2009)) by building on ggplot

to allow direct interaction with the core BioConductor flow cytometry data structures.
Its use of established core cytometry data structures in BioConductor enables
ggcyto to interact with any R package that uses them.

Interaction with ggplot and the core BioConductor FCM
data structures.
To facilitate the use of core data structures with ggcyto, the package wraps the
ggplot S3 class in an abstract S4 class that provides support for both ungated
(flowFrame or flowSet) or gated (GatingSet or GatingHierarchy) data
sources and overloads ggplot’s fortify() method to generate plots from these four
core infrastructure objects. In ggcyto, the default “ggplot::+” operator is also
overloaded by the ggcyto_GatingSet and ggcyto_flowSet classes. The
cytometry data structures are processed by the “+” operator, extracting and data
and generating ggplot-compatible objects in the following sequence:

2.5

2.6

2.7

2.8

3

 1. Appropriate data structures are created from the arguments of t

he `geom_gate()` layer.

 2. The appropriate `geom_density` or `geom_point` layers are creat

ed from `geom_overlay()` to display the data.

 3. Cell population statistics are computed labels are created from

the `geom_stats()` layer.

 4. Marker or channel names are displayed on the axes and the corre

sponding label layers are created.

Principles of ggcyto.
In ggplot users map plot aesthetics to variables and build a plot in layers. ggCyto

follows those conventions, but the application domain constrains requirements so
many options are set to sensible defaults. A user specifies a data source (a flowSet
or flowFrame of ungated data, or a GatingSet or GatingHierarchy of gated data),
map plot axes to flow parameters (e.g. channels or markers), specify which cell
population to plot, specify an axis transformation, and optionally add one or more
gates to a plot. Many of these quantities are complex objects defined in the core
cytometry data structures in BioConductor (Figure 1).

Lazy loading of data
For large data sets ggcyto implements context-dependent lazy loading. When
plotting with the ggcyto or autplot APIs, data loading is automatically deferred to
later stages of plotting.

Additional strategies for plotting large data
The latest version of ggcyto (1.9.4) provides speeds up plotting of large data sets
through a subsampling strategy. Additional arguments to autoplot and ggcyto
named sample.ratio and sample.threshold specify what proportion of events
to subsample (default 1%, 0.01) and at what total number of events should
subsampling kick in (default: 100,000 events). This substantially speeds up plotting
of large cell populations such as lymphocytes
(https://github.com/RGLab/ggcyto/issues/32).

Data sets
This document use the “graft vs. host disease” (GvHD) data set from the flowCore
package on BioConductor (https://doi.org/doi:10.18129/B9.bioc.flowCore)), and part
of the FlowCAP Lyoplate data that is in the flowWorkspaceData package, also on
BioConductor (https://doi.org/doi:10.18129/B9.bioc.flowWorkspaceData)). Additional
resources for cytometry data may be available via Bioconductor’s AnnotationHub

and ExperimentHub resources (Maintainer (2017), Morgan (2017))

Reproducing figures from the original

manuscript.

3.1

3.1.1

The original manuscript shows three sets of plots created with ggcyto . To
reproduce these, we load the GvHD data and use the code presented in the
published figure to generate the plots.

#load the GvHD Data

data(GvHD)

#Use system.file to point to the location of the GatingSet in flowW

orkspaceData.

dataDir <- system.file("extdata",package="flowWorkspaceData")

#load_gs from the flowWorkspace package loads the gs_bcell_auto Gat

ingSet.

#list.files provides the full path to the GatingSet.

#The data loaded is the B cell autogated lyoplate data.

gs <- load_gs(list.files(dataDir, pattern = "gs_bcell_auto",full =

TRUE))

Below we associate a transformation (FlowJo biexponential) with t

he GatingSet since it did

not have one. It is applied to all channels except FS and SSC (fi

rst two columns)

gs@transformation <- transformerList(colnames(gs)[-(1:2)], flowJo_b

iexp_trans())

For the GvHD data we select subjects 5 and 7, and Visit 5 and 6.

We extract those sample "name"s and use that to subset the GvHD f

lowSet.

fs <- GvHD[subset(pData(GvHD), Patient %in%5:7 & Visit %in% c(5:6))

[["name"]]]

We attach meaningful visit and subject identifiers to the samples

 via the phenoData.

pd <- pData(fs)

pd$Visit <- paste("visit",pd$Visit)

pd$Patient <- paste("patient",pd$Patient)

pData(fs) <- pd

Reproducing the plots from Figure 1.

The autoplot API

Here autoplot is used to visualize the populations named “CD3” and “CD19” from
the GatingHierarchy . Since cell populations are defined by gates, the vector of
population names is passed to the gate argument of autoplot when the data
are a GatingSet (first argument). The bins argument specifies the size of the
hexagonal binning grid.

The geom_overlay layer allows us to highlight an additional cell population on top
of an existing plot. In this case, we are highlighting the “IgD+CD27+” population.

All cell populations in the gating hierarchy can be printed via the getNodes() API
from flowWorkspace .

autoplot(gs[1], gate = c("CD3","CD19"), bins = 64) +

 geom_overlay(data = "IgD+CD27+",size=0.25)

3.1.2

When using the autoplot API, most plotting decisions are set to sensible defaults,
depending on the context of the input (e.g. whether the data is a flowFrame or
flowSet, or GatingSet or GatingHierarchy). When the autoplot API takes a
flowFrame or flowSet, the user specifies the channels or markers to plot on the
axes, rather than a cell population, since these structures represent ungated data.

For GatingSets and GatingHierarchies, the first input is a cell population name (or
vector of several populations, provided they are defined in the same dimensions,
see below), stored in the data source. This determines the selection of axes for
plotting, the subset of the cells that are plotted (generally the cells in the parent of
the selected population are plotted), the data transformation (by default the
transformation stored in the data source is used and raw data values are plotted on
tick marks with a non-linear spacing, analogous to a logarithmic plot). Any gates that
define the chosen cell populations are drawn. When using autoplot, the additional
parameter axis_inverse_trans switches between the transformed and
untransformed data scale. Finally, the proportion of the gated populations (as a
fraction of the parent) are displayed on the plot.

The plots that are constructed are also “aware” of the dimensionality of a cell
population. If a cell population is defined (e.g. gated) in only one dimension, ggcyto

will produce a 1D density, whereas if it is defined in two dimensions, a 2D density
estimate of the cells (using geom_hex) will be produced. Passing in a single
flowFrame with no markers creates a set of 1D densities for each marker in the data
(see below).

The ggcyto API.

The ggcyto API allows for more control and flexibility in producing plots.

The mapping of channels to axes is explicit via the mapping = aes

(). argument.

The subset argument specifies the cell subset / subset of the dat

a to plot.

A geom_hex layer with the bins argument specifies the type of plo

t.

A geom_gate layer specifies which gates / cell populations to add

 to plot.

the user must ensure they are defined in the same channels as t

he mapping.

The geom_stats layer specifies here that we want to show the coun

ts.

The "percent" argument to "type" in "geom_stats" is also allow

ed.

ggcyto(gs[1:2], mapping = aes(x="IgD",y="CD27"), subset = c("CD19an

dCD20")) +

 geom_hex(bins=128) +

 geom_gate(c("IgD+CD27+","IgD+CD27-","IgD-CD27+","IgD-CD27-")) +

 geom_stats(type = "count")

Above, the geom_gate layer will add one or two-dimensional gates to a plot and
accepts a gate object (eg. “rectangleGate”) or a filterList (collection of gate objects)
defined in the flowCore package, or named cell population if using a gated data
source. The most recent version of ggcyto (1.9.4) also supports quadGate. Cells
from a different cell population can be highlighted and overlaid on an existing plot
using the geom_overlay (see below) layer to produce an effect of backgating
(i.e. visualizing a defined cell population on data projected onto a different set of
parameters). Cell population summaries such as cell counts, percentages, or
proportions can be added to figures of gated data using geom_stats, which takes
the name of a gated population in a GatingSet , or a filterList . With no input,
ggcyto tries to parse the gate information from the first geom_gate layer.

Data transformations can be performed using the custom scale_x and scale_y

layers. Common cytometry specific transformations are supported, including the
default parameterization of the biexponential and the default parameterization of the
hyperbolic arcsine transforms implemented in FlowJo, and the logicle and default
hyperbolic arcsine transform parameterizations implemented in flowCore .

Another useful feature is the overloaded ‘%+%’ method, which is used to replace
the data used in a (potentially complex) plot construct. For example, one may wish
to produce a graphic using one GatingSet object, then the same graphic using a

3.1.3

different data from a separate GatingSet object. To produce the new plot, the ‘%+%’
method is applied with the old plot object on the left and the new data on the right
hand side of the operator (see below).

Transforming the data.

The scale_x_... and scale_y_... layers allow users to alter the transfomration
used for data visualization on the fly. Supported transformations are
..._flowCore_fasinh ,
..._flowJo_biexp , ..._flowJo_fasinh *, ..._logicle .

#Use the first GvHD sample

fr <- GvHD[[1]]

Autoplot is called on ungated data.

In this case the x argument is a channel rather than "gate".

The cowplot package is used to provide a theme.

p = autoplot(fr, x = "FL1-H") + theme_cowplot(font_size = 18)

print(p)

#add an inline transformation: flowCore logicle scale

p + scale_x_logicle()

4

4.1

add an inline transformation: flowJo fasinh

p + scale_x_flowJo_fasinh()

Additional ggcyto features.

The ggcyto package is built on ggplot2 and uses the “grammar of graphics”.
Below we demonstrate how its features can be used to easily generate high quality
plots of cytometry data.

Context-aware plots.

4.2

Following common ggplot2 usage, ggcyto defines an autoplot() method.
Calling autoplot() on a supported data structure automatically results in a default
plot that is sensible for the data being displayed.

For example, supplying a flowSet and a channel name result in a 1D density plot
using geom_density . If more than one sample is passed in, a faceted plot of all
samples is created. The facet_grid and facet_wrap geoms can be used on
variables in the pData slot of the flowFrame or flowSet object. Below we
generate a faceted 1D density grid of the forward scatter channel from the first four
samples of the GvHD data.

we select the first four samples

We plot the forward scatter channel.

facet_grid is specified to facet by Patient and Visit, which are

 defined in

the pData() slot of the flowSet.

autoplot(fs[1:4], x="FSC-H") + facet_grid(Patient~Visit)

Changing geom s.
An existing plot can be easily modified to use a different geometry by appending the
appropriate geom to the plot construction call, as below.

#geom_histogram replaces the default geom_density.

#again we are faceting by Patient and Visit.

autoplot(fs[1:4], x = "FSC-H") + facet_grid(Patient~Visit) + geom_h

istogram()

4.3 Using gated data.
Calling autoplot on a GatingSet or GatingHierarchy and supplying a
population name (also an alias for a gate since the former are defined by the
latter) results in a 1D or 2D density (depending on how the gate is defined) using
geom_hex or geom_density . Provided the specified gates are compatible

(defined on the same channels, have the same dimensionality), they will be
projected onto the plot:

CD9 and CD19 are gates / populations defined in the gating set.

autoplot(gs[[1]], gate = c("CD3", "CD19"), bins = 64)

4.4

We can visualize the tree of cell populations using the plot method defined in
flowWorkspace . bool=TRUE ensures boolean gates are also plotted.

the tree shows that CD3 and CD19 (used above) are cell population

s.

plot(gs[[1]],bool=TRUE)

Visualizing back-gating.
Different populations can be overlaid on the same plot using geom_overlay , a
ggcyto-specific geom . This is analogous to viewing back-gated cell populations.
Below we highlight the IgD+CD127+ cells on the CD19 and CD3 projection of a

4.5

sample from the Lyoplate B cell panel.

we add an overlay of IgD+CD27+ cells on top of the display of CD3

 and CD19 cells.

We see they are CD19 positive

autoplot(gs[1], gate = c("CD3","CD19"), bins = 64) +

 geom_overlay("IgD+CD27+",size=0.5)

Transforming the axes.
The x and y axis scales are transformed above but show the raw data values.
These can be changed to show the transformed data values on a linear scale using
the axis_inverse_trans argument to autoplot . Below, we see the data are in
4096 “channel” space, commonly used by FlowJo and other tools.

The axis_inverse_trans argument allows us to display the x and y

 axes on the scale

which is used in the GatingSet. In this case, the data are in 409

6 "channel" space.

When used with tools like openCyto (which acts on the data in the

 GatingSet), this is useful for

passing gate ranges and other parameters to gating algorithms.

autoplot(gs[1], gate = c("CD3","CD19"), bins = 64, axis_inverse_tra

ns = FALSE) +

 geom_overlay("IgD+CD27+",size=0.5)

4.6 Using the ggcyto interface.
The same plots created with autoplot can be generated using ggcyto() . Below,
we show how to create the previous plot using the ggcyto API. Note below, the
gate names and channel names are the same, but this is not necessarily always the
case.

mapping specifies the channels to plot on the x and y axes.

geom_gate specifies the gate names / population name

(note they just happen to be the same as the channel names but th

is is

not necessarily always the case).

geom_stats specifies that we want to plot the "percent" for each

 cell population.

The x and y axis_inverse_trans reverse the axis transformation an

d plots the data in "channel" space (in this case).

ggcyto(gs[1], mapping = aes(x="CD3",y="CD19"),subset= "Live") +

 geom_hex(bins=64) +

 geom_gate(c("CD19","CD3")) +

 geom_stats(type = "percent") +

 axis_x_inverse_trans() +

 axis_y_inverse_trans()

4.7 Faceting plots by experimental metadata.
We load the lyoplate data for the T cell panel. the data are available on
ImmuneSpace (http://www.immunespace.org) from this link
(https://immunespace.org/_webdav/HIPC/Lyoplate/%40files//gated_data/pop_renamed/manual-
gslist-tcell.tar.gz) (free ImuneSpace sign up and login required) (Sauteraud et al.
(2016), Brusic et al. (2014)).

load the Lyoplate gatingSet. Here it's been downloaded and stored

 locally. The user reproducing this workflow should update their li

nk.

gs2 <- rbind2(load_gslist("~/Dropbox/GoTeam/Members/Phu/manuscript

s/GGCyto/Paper version 1/gslist-tcell/"))

A transformation is added to the GatingSet so that the axis_inver

se_trans and other arguments work as expected.

gs2@transformation = transformerList(colnames(gs2)[-(1:2)], flowJo_

biexp_trans())

The Lyoplate dataset for the T cell panel contains three biological samples. The
samples were distributed across seven centers, an each center ran three technical
replicates of each sample, as indicated in the metadata.

name Center Sample Replicate

12828_1_Tcell_A01.fcs NHLBI 12828 1

12828_2_Tcell_A02.fcs NHLBI 12828 2

12828_3_Tcell_A03.fcs NHLBI 12828 3

1349_1_Tcell_A04.fcs NHLBI 1349 1

1349_2_Tcell_A05.fcs NHLBI 1349 2

name Center Sample Replicate

1349_3_Tcell_A06.fcs NHLBI 1349 3

1369_1_Tcell_A07.fcs NHLBI 1369 1

1369_2_Tcell_A08.fcs NHLBI 1369 2

1369_3_Tcell_A09.fcs NHLBI 1369 3

12828_1_A1_A01.fcs Yale 12828 1

12828_2_A2_A02.fcs Yale 12828 2

12828_3_A3_A03.fcs Yale 12828 3

1349_1_A4_A04.fcs Yale 1349 1

1349_2_A5_A05.fcs Yale 1349 2

1349_3_A6_A06.fcs Yale 1349 3

1369_1_A7_A07.fcs Yale 1369 1

1369_2_A8_A08.fcs Yale 1369 2

1369_3_A9_A09.fcs Yale 1369 3

TCELL 22013_12828_001.fcs UCLA 12828 1

TCELL 22013_12828_002.fcs UCLA 12828 2

TCELL 22013_12828_003.fcs UCLA 12828 3

TCELL 22013_1349_001.fcs UCLA 1349 1

TCELL 22013_1349_002.fcs UCLA 1349 2

TCELL 22013_1349_003.fcs UCLA 1349 3

TCELL 22013_1369_001.fcs UCLA 1369 1

TCELL 22013_1369_002.fcs UCLA 1369 2

TCELL 22013_1369_003.fcs UCLA 1369 3

T_CELL_12828_001_P1.fcs CIMR 12828 2

T_CELL_12828_002_P1.fcs CIMR 12828 3

T_CELL_12828_P1.fcs CIMR 12828 1

T_CELL_1349_001_P1.fcs CIMR 1349 2

T_CELL_1349_002_P1.fcs CIMR 1349 3

T_CELL_1349_P1.fcs CIMR 1349 1

T_CELL_1369_001_P1.fcs CIMR 1369 2

T_CELL_1369_002_P1.fcs CIMR 1369 3

T_CELL_1369_P1.fcs CIMR 1369 1

name Center Sample Replicate

lot 12828_A1_A01.fcs Miami 12828 1

lot 12828_A2_A02.fcs Miami 12828 2

lot 12828_A3_A03.fcs Miami 12828 3

lot 1349_A4_A04.fcs Miami 1349 1

lot 1349_A5_A05.fcs Miami 1349 2

lot 1349_A6_A06.fcs Miami 1349 3

lot 1369_A7_A07.fcs Miami 1369 1

lot 1369_A8_A08.fcs Miami 1369 2

lot 1369_A9_A09.fcs Miami 1369 3

12828_1_T CELL.fcs Baylor 12828 1

12828_2_T CELL.fcs Baylor 12828 2

12828_3_T CELL.fcs Baylor 12828 3

1349_1_T CELL.fcs Baylor 1349 1

1349_2_T CELL.fcs Baylor 1349 2

1349_3_T CELL.fcs Baylor 1349 3

1369_1_T CELL.fcs Baylor 1369 1

1369_2_T CELL.fcs Baylor 1369 2

1369_3_T CELL.fcs Baylor 1369 3

1228-1_A1_A01.fcs Stanford 12828 1

1228-2_A2_A02.fcs Stanford 12828 2

1228-3_A3_A03.fcs Stanford 12828 3

1349-1_A4_A04.fcs Stanford 1349 1

1349-2_A5_A05.fcs Stanford 1349 2

1349-3_A6_A06.fcs Stanford 1349 3

1369-1_A7_A07.fcs Stanford 1369 1

1369-2_A8_A08.fcs Stanford 1369 2

1369-3_A9_A09.fcs Stanford 1369 3

The data was gated to identify CD4 and CD8 memory T cells:

We can visualize variation across replicates and centers for sample #1349. The plot
is built up using the ggcyto() API. Note we use axis_x_inverse_trans and
axis_y_inverse_trans to transform the axes tick marks to a non-linear scale and

display the raw data values.

The plot shows clearly that center-to-center variability is greater than variability
across technical replicates.

subset the relevant sample

p = ggcyto(subset(gs2, Sample=="1349")

map CCR7 to x and CD45RA to y

 ,aes(x = CCR7,y=CD45RA)

plot the CD4 subset of cells

 ,subset="CD4") +

display the data as a hexagonally binned density with 64 bins.

 geom_hex(bins = 64) +

plot the CCR7+/CD45RA- gate. Note we specify the parent as CD4+ s

ince the gate also exists for CD8+

 geom_gate("CD4/CCR7+CD45RA-") +

We want to show population statistics.

 geom_stats() +

We facet by replicate and center.

 facet_grid(Replicate ~ Center) +

add a title

 labs(title="sample 1349 CD4 central memory T cells, by cent

er and replicate") +

options to set the axis limits to the "instrument" range. Could a

lso be "data".

 ggcyto_par_set(limits = "instrument") +

invert the axis transformation to show raw data on x and y

 axis_x_inverse_trans() +

 axis_y_inverse_trans()

p

4.8

4.9

Substituting data with the %+% method.
Here we use the %+% method to substitute the data in the plot. We’ll plot only a
subset of the centers.. specifically Baylor and CIMR.

We use the %+% method to "substitute" a different set of data wit

h the same plot parameters.

The right hand side of %+% takes a GatingSet object in this case,

 but could be a flowSet, flowFrame, or GatingHierarchy, depending o

n the nature of "p".

p %+% subset(gs2,Center%in%c("Baylor","CIMR"))

Faceting all markers.
As mentioned in the overview, when we pass in a single flowFrame to autoplot
with no markers specified, we obtain a series of faceted 1D densities, one for each
marker in the sample.

autoplot(fs[[1]])

4.10 Future Work
Since ggcyto utilizes ggplot’s fortify() method under the hood, users must take
care in plotting large cell populations that result in manipulating large tables of data.
This could be resolved by a C++ back-end for processing the data and by
leveraging parallelization, such as that implemented in the cytolib package
(https://github.com/RGLab/cytolib). For now, the latest version of ggcyto allows
subsampling (https://github.com/RGLab/ggcyto/issues/32) of the data as described
earlier in this document.

References

Brusic, Vladimir, Raphael Gottardo, Steven H Kleinstein, Mark M Davis, and HIPC
steering committee. 2014. “Computational Resources for High-Dimensional Immune
Analysis from the Human Immunology Project Consortium.” Nat. Biotechnol. 32 (2):
146–48.

Finak, Greg, Wenxin Jiang, Kevin Krouse, Chungwen Wei, Ignacio Sanz, Deborah
Phippard, Adam Asare, Stephen C De Rosa, Steve Self, and Raphael Gottardo.
2014. “High-Throughput Flow Cytometry Data Normalization for Clinical Trials.”
Cytometry A 85 (3). Wiley Online Library: 277–86.

Hahne, Florian, Nolwenn LeMeur, Ryan R Brinkman, Byron Ellis, Perry Haaland,
Deepayan Sarkar, Josef Spidlen, Errol Strain, and Robert Gentleman. 2009.
“FlowCore: A Bioconductor Package for High Throughput Flow Cytometry.” BMC

Bioinformatics 10 (1). BioMed Central Ltd: 106.

Jiang, Mike, Greg Finak, N Gopalakrishnan, Maintainer M Jiang, Imports Biobase,
and Collate Allgeneric R Allclasses R AllFunctions. 2011. “Package ‘ncdfFlow’.”

Maintainer, Bioconductor Package. 2017. ExperimentHub: Client to Access

Experimenthub Resources.

Morgan, Martin. 2017. AnnotationHub: Client to Access Annotationhub Resources.

Sauteraud, Renan, Lev Dashevskiy, Greg Finak, and Raphael Gottardo. 2016.
“ImmuneSpace: Enabling Integrative Modeling of Human Immunological Data.” The

Journal of Immunology 196 (1 Supplement): 124.65–124.65.

Wickham, H. 2009. Ggplot2: Elegant Graphics for Data Analysis. Use R! Springer
New York.

