
Often	in	genomics	or	protein	biology,	a	statistical	test	or	data	aggregation	function	is	applied	as	a	sliding	window
over	a	gene	or	protein	sequence.	For	example,	to	identify	regions	under	balancing	selection,	Tajima’s	D	has	been
applied	to	the	Plasmodium	falciparum	AMA1	gene	as	a	sliding	window	(Arnott	et	al.	2014).	Similarly,	a	sliding
window	analysis	can	be	performed	over	a	protein	sequence,	often	using	some	amino	acid	propensity	scale,	such
as	the	Kyte	&	Doolittle	hydrophobicity	scale	(Kyte	and	Doolittle	1982).	However,	these	analyses	fail	to	account	for
the	arrangement	of	a	protein	in	3D	space.	In	the	case	of	the	Tajima’s	D	analysis	of	P.	falciparum	AMA1	mentioned
before,	balancing	selection	is	thought	to	arise	a	result	of	immune	selection	pressure	on	this	particular	antigen.
Additionally,	it	is	likely	that	this	immune	selection	pressure	is	antibody	mediated,	and	hence	the	result	of
interactions	between	antibodies	and	the	structured	antigen.	Many	of	the	potential	interaction	sites	in	such	an
interaction	involve	discontinuous	regions	of	the	protein	sequence	i.e.	form	a	conformational/discontinuous	epitope.
As	a	result,	using	a	sliding	window	over	the	protein	sequence	is	unlikely	to	fully	capture	the	selection	pressures	on
complex	structural	epitopes.

With	this	in	mind,	we	have	proposed	the	application	of	a	3D	sliding	window	over	a	protein	structure,	analogous	to
the	standard	2D	sliding	window	analysis	that	is	often	applied	over	a	protein	or	gene	sequence.	This	3D	sliding
window	analysis	has	been	implemented	in	a	Python	package	called	BioStructMap.

The	BioStructMap	tools	allows	for	the	application	of	a	3D	sliding	window	analysis	over	a	protein	structure.	To
achieve	this,	the	user	must	supply	a	set	of	sequence-aligned	data	and	a	corresponding	reference	sequence.	This
reference	sequence	is	used	to	map	data	to	the	protein	structure.	A	set	of	3D	windows	are	then	created	(one	for
each	residue	in	the	structure)	with	a	user-defined	radius,	and	data	from	each	window	is	passed	to	a	data
aggregation	function.	The	result	from	this	data	aggregation	function	is	then	mapped	back	to	the	central	residue
within	each	window.	These	results	can	then	be	viewed	over	the	protein	structure	using	a	program	such	as	PyMOL
(https://pymol.org).	This	procedure	is	analagous	to	the	traditional	2D	sliding	window	analysis	that	is	often	performed
over	a	protein	or	gene	sequence,	but	also	captures	information	on	the	spatial	arrangement	of	residues	in	3D
space.

The	BioStructMap	package	is	available	via	the	Python	Package	Index	(PyPI),	which	means	that	installation	with
	pip		is	as	simple	as:

pip	install	biostructmap

Alternatively,	the	latest	source	code	can	be	downloaded	from	GitHub	and	installed:

git	clone	https://github.com/andrewguy/biostructmap.git	biostructmap

cd	./biostructmap

python	setup.py	install

It	is	recommended	that	users	install		numpy		before	installing		biostructmap	.

BioStructMap	Usage	Guide
---	Andrew	Guy,	2017

1.	Introduction

1.1	Rationale

1.2	Overview

1.3	Availability	and	installation

BioStructMap	also	has	soft	dependencies	on	the	NCBI	BLAST+	tool	(https://www.ncbi.nlm.nih.gov/guide/howto/run-
blast-local/)	and	Exonerate	(https://www.ebi.ac.uk/about/vertebrate-genomics/software/exonerate).	If	you	choose
not	to	install	these,	or	don't	want	to	use	them,	all	sequence	alignments	will	be	performed	using	the	Biopython
	Bio.pairwise2		module.	This	should	work	just	as	well	if	your	reference	sequence	is	reasonably	similar	to	the
sequence	of	the	PDB	file.	If	this	is	not	the	case,	then	we	suggest	that	a	better	approach	may	be	to	build	a	homology
model	using	MODELLER	(Webb	and	Sali	2016)	and	use	this	instead	of	using	the	poorly	aligned	PDB	structure.

If	either	BLAST+	or	Exonerate	are	not	installed,	you	should	indicate	this	by	setting	the	relevant	flags	during
BioStructMap	usage:

import	biostructmap

	

biostructmap.seqtools.LOCAL_BLAST	=	False

biostructmap.seqtools.LOCAL_EXONERATE	=	False

Some	functions	within	BioStructMap	also	require	installation	of	the	DSSP	tool	(http://swift.cmbi.ru.nl/gv/dssp/).
These	include	calculation	of	relative	solvent	accessibility	and	secondary	structure	determination.	If	you	wish	to	use
these	functions,	you	must	have	DSSP	installed.

Although	the	BioStuctMap	package	contains	several	modules,	most	of	these	work	behind	the	scenes.	The
	biostructmap		module	should	be	the	only	module	that	needs	to	be	directly	used	in	most	cases.

The	main	class	within	the		biostructmap		module	is	the		Structure		class.	This	is	initialised	as	such:

from	biostructmap	import	biostructmap

	

my_structure	=	biostructmap.Structure(pdbfile='./1zrl.pdb',	pdbname='1ZRL',	mmcif=False)

The		pdbfile		argument	can	be	either	a	string	of	the	file	path	to	the	PDB	file	of	interest,	while	the		pdbname	
argument	is	an	optional	descriptive	string	that	is	used	when	naming	output	files.	The	optional		mmcif		flag	is	used	to
indicate	if	the	input	file	is	in	mmcif	format.	If	you	are	using	an	mmcif	file,	you	would	instead	run:

my_structure	=	biostructmap.Structure(pdbfile='./1zrl.cif',	pdbname='1ZRL',	mmcif=True)

The		Structure		class	contains	a	number	of	methods,	the	most	important	being	the		map()		method.	This	method
allows	for	the	mapping	of	data	over	a	protein	structure,	with	the	ability	to	also	apply	some	sort	of	spatial
aggregation	to	data.	The		map		method	takes	a	number	of	arguments,	the	most	important	of	which	are		data	,
	method	,		ref		and		radius	.

The		Structure.map		method	returns	a	dictionary-like	object,	which	can	also	be	used	to	write	output	data	to	a	PDB
file	or	CSV	file.

The		data		parameter	is	a	dictionary	mapping	individual	chains	within	the	protein	structure	to	relevant	data	objects.
The	exact	form	of	the	data	object	will	depend	on	the		method		argument	selected.	For	example,	if	you	are	mapping
the	location	of	polymorphic	residues	onto	a	structure,	the	data	would	be	a	list	of	polymorpic	sites:

2.	Basic	Usage

2.1	The	Structure	class

2.2	Mapping	data	over	a	structure

data

data	=	{('A,	B'):	[1,	34,	56,	77,	120,	121,	125],

								('C',):	[5,	34,	67,	122]

							}

In	this	example,	identical	chains		A		and		B		are	both	assigned	the	same	set	of	data,	whilst	the	unique	chain		C		is
assigned	another	set	of	polymorphic	residues.	Note	that	the	given	polymorphic	sites	for	each	chain	are	aligned	to
the	reference	sequence	supplied	-	see	below	for	more	detail.

The		method		parameter	is	either	a	string	representing	a	method	for	mapping	data	(one	of	a	number	of	pre-defined
methods),	or	a	custom	function	for	mapping	data	(explained	in	more	detail	below).	For	example,	to	map
polymorphic	sites	onto	a	protein	structure,	set		method=snps	.

The		ref		parameter	is	a	set	of	reference	sequences	for	all	chains,	and	is	used	to	align	the	user-supplied	data	to
the	protein	structure.	All	data	supplied	via	the		data		argument	should	align	to	these	reference	sequences.

For	example,	with	identical	chains		A		and		B	,	and	a	unique	chain		C	,	we	would	have:

ref	=	{'A':	'KTQEDKL...DJSKJK',

							'B':	'KTQEDKL...DJSKJK',

							'C':	'NAPNLEV...KLWELW'}

							#	Note:	sequences	have	been	condensed	for	readability

							#	You	need	to	provide	the	full-length	sequence!

All	data	provided	in	the		data		parameter	should	align	to	these	sequences.

Also	note	the	subtle	difference	in	the	keys	needed	for	the		ref		dictionary	vs.	the		data		dictionary.	The		ref	
dictionary	should	have	a	sequence	provided	for	every	chain	being	evaluated,	with	the	dictionary	key	being	the
string	identifier	for	that	chain.	The		data		dictionary	requires	a	tuple	of	chain	identifiers	for	each	related	data	value.
This	difference	arises	so	that	it	is	possible	to	map	the	same	data	over	multiple	chains	and	subsequently	ensure	we
don't	duplicate	identical	data	points	that	might	fall	within	the	same	radius	(from	different	chains).	This	will	be
discussed	in	more	detail	in	a	later	section.

If	the	supplied	data	is	a	genomic	multiple	sequence	alignment,	then	the	provided	reference	sequence	should	also
be	a	genomic	sequence.	In	this	case		biostructmap		will	align	this	genomic	sequence	to	the	protein	sequence	for
the	relevant	chain	in	the	structure.	If	a	genomic	sequence	is	supplied,	then	the		map_to_dna		argument	should	also
be	set	to		True	.

If	the		ref		argument	is	not	provided,	then	the	sequences	for	each	chain	in	the	structure	are	used.

The	radius	(in	Angstrom)	over	which	to	select	nearby	residues	for	inclusion	within	each	3D	window.	This	defaults	to
15	Angstrom,	which	is	the	typical	maximum	dimension	for	an	antibody	epitope.	If	you	simply	want	to	map	data	to
individual	residues	(eg.	to	display	polymorphic	sites	on	a	protein	structure),	set		radius=0	.

When	determining	which	residues	fall	within	a	given	radius	of	a	central	residue,	there	are	a	number	of	ways	in	which
to	compute	distances	between	residues.	The	default	behaviour	is	to	compute	the	minimum	distance	between	any
two	atoms	in	each	pair	of	residues.	The		selector		argument	allows	the	user	to	specify	other	atoms	by	which	to
compute	residue	distance.	By	default	this	argument	is		'all'	,	which	gets	all	non-heterologous	atoms.	Other
potential	options	include		'CA'	,		'CB'		etc.	If	an	atom	is	not	found	within	a	residue	object,	then	the	selection	method
reverts	to	using		'CA'	.

method

ref

radius

selector

If	the	user	wishes	to	restrict	analysis	to	residues	that	fall	within	a	given	range	of	relative	solvent	accessibility	(RSA)
values	(eg.	only	surface	exposed	residues),	they	can	provide	a	tuple	to	the		rsa_range		argument.	This	argument
takes	a	tuple	in	the	form		(minimum,	maximum)	,	where		minimum		and		maximum		are	float	values	between		0		and
	1	.

If	any	residue	falls	outside	the	given	range	of	RSA	values,	then	this	residue	will	ignored	in	all	calculations.

RSA	is	calculated	using	the	DSSP	software.	If	this	is	not	installed	and	available	on	the	users	PATH,	then	any
attempt	to	use	the		rsa_range		argument	will	fail,	throwing	an	exception.

The		map_to_dna		argument	is	a	binary	flag	to	indicate	if	the	reference	sequence	to	be	aligned	is	a	DNA	sequence.
This	needs	to	be	set	to		True		if	the	reference	sequence	is	a	DNA	sequence	(e.g.	when	using	the	Tajima's	D
method).

In	order	to	make		biostructmap		flexible	and	extensible,	the		map		method	also	takes	additional	arguments	that	will
be	passed	to	the	data	aggregation	method.	These	arguments	should	be	provided	to	the		method_params		argument
in	a	dictionary	of	keyword	arguments	(key)	and	associated	values	(value).

To	provide	a	concrete	example	of	this,	we	can	consider	the		'default_mapping'		method	that	applies	a	data
aggregation	method	to	sequence-aligned	numerical	data.	By	default,	this	method	calculates	the	mean	of	all	data
within	each	radius.	However,	we	can	apply	other	data	aggregation	functions	(e.g.	calculate	the	median)	to	each	3D
window	by	passing	a		method		argument	to	the		default_mapping		function:

import	numpy	as	np

	

my_structure.map(...,	method_params={'method':	np.median})

One	usage	of	the	biostructmap	tool	is	to	determine	polymorphic	hotspots	on	a	protein	structure.	This	requires	the
user	to	provide	a	list	of	all	polymorphic	residues	of	interest	and	an	associated	reference	sequence.	In	this	example
we	have	a	single-chain	structure	with	the	PDB	file		1zrl.pdb		and	a	reference	sequence	in	FASTA	format	in	the	file
	reference.fasta	.	We	will	use	the	Biopython		SeqIO		module	to	read	in	the	reference	sequence	from	file.
Polymorphic	residues	are	residues	3,	67,	78,	99,	100,	120	and	121,	relative	to	the	reference	sequence	(where	the
first	residue	is	number	1).

If	we	were	interested	in	averaging	the	number	of	polymorphisms	within	a	10	Angstrom	radius,	we	would	run:

import	biostructmap

from	Bio	import	SeqIO

	

reference_seq	=	SeqIO.read("reference.fasta",	"fasta")

	

my_structure	=	my_structure	=	biostructmap.Structure(pdbfile='./1zrl.pdb',

																																																					pdbname='1ZRL')

hotspots	=	my_structure.map(data={('A',):	[3,	67,	78,	99,	100,	120,	121]}

																												method='snps',

																												ref={'A':	reference_seq},

																												radius=10

)

rsa_range

map_to_dna

method_params

2.3	Basic	Usage	examples

2.3.1	Mapping	polymorphic	hotspots

We	can	also	apply	a	3D	sliding	window	to	calculation	of	amino	acid	propensity	scales.	In	this	example	we	will	apply
the	Kyte	&	Doolittle	index	of	hydrophobicity	to	the	protein	structure	initialized	in	the	above	example.	We	will	also
demonstrate	how	to	apply	a	custom	amino	acid	scale	as	a	3D	sliding	window.

We	can	obtain	the	Kyte	&	Doolittle	scale	from	the		Biopython		package:

from	Bio.SeqUtils	import	ProtParamData

kd_scale	=	ProtParamData.kd

For	the		'aa_scale'		method,	the		data		argument	should	be	a	dictionary	representing	the	amino	acid	scale	of
interest.	In	this	example	we	will	use	a	window	size	of	15	Angstrom,	and	only	consider	surface	exposed	residues
(RSA	>	0.2).

mean_hydrophocity	=	my_structure(data=ProtParamData.kd_scale,

																																	method='aa_scale',

																																	ref={'A':	reference_seq},

																																	radius=15,

																																	rsa_range=(0.2,	1)

)

To	use	a	custom	amino	acid	propensity	scale,	we	just	need	to	provide	a	dictionary	of	numerical	values	for	all	amino
acids.	We	will	apply	the	'relative	mutability	scale'	defined	by	(Dayhoff,	Schwartz	&	Orcutt,	1978).	Again,	we	are	only
considering	surface	exposed	residues.

relative_mutability	=	{

		'A':	100,	'R':	65,	'N':	134,	'D':	106,	'C':	20,	'Q':	93,

		'E':	102,	'G':	49,	'H':	66,	'I':	96,	'L':	40,	'K':	56,

		'M':	94,	'F':	41,	'P':	56,	'S':	120,	'T':	97,	'W':	18,

		'Y':	41,	'V':	74

}

	

mean_mutability	=	my_structure(data=relative_mutability,

																															method='aa_scale',

																															ref={'A':	reference_seq},

																															radius=15,

																															rsa_range=(0.2,	1)

)

Tajima's	D	is	a	statistical	test	used	to	determine	if	a	sequence	is	evolving	under	non-neutral	selection	pressure.
Here	we	will	apply	Tajima's	D	as	a	3D	sliding	window	over	our	protein	structure.	We	need	to	supply	a	multiple
sequence	alignment,	using	the		biostructmap.SequenceAlignment		class.	The	multiple	sequence	alignment	is
initially	supplied	as	a	FASTA	file.

In	this	case,	the	reference	sequence	is	taken	as	the	first	sequence	in	the	multiple	sequence	alignment.	Note	the
need	to	set		map_to_dna=True	.

msa	=	biostructmap.SequenceAlignment('./alignment.fasta',	file_format='fasta')

reference_seq	=	str(msa_data[0].seq)

	

tajimas_d	=	my_structure(data={('A',):	msa},

																									method='tajimasd',

																									ref=	{'A':	reference_seq},

																									radius=15,

																									map_to_dna=True

)

2.3.2	Amino	acid	propensity	scales

2.3.3	Calculation	of	Tajima's	D

Nucleotide	diversity	is	a	metric	that	is	used	to	quantify	the	degree	of	diversity	within	a	particular	window	on	a	gene.
We	can	extend	this	here	to	a	3D	window	over	a	structure	to	get	a	sense	of	the	particular	regions	of	the	protein
structure	that	are	most	diverse	within	a	population	(at	a	genomic	level).

Again,	we	need	to	supply	a	multiple	sequence	alignment.

msa	=	biostructmap.SequenceAlignment('./alignment.fasta',	file_format='fasta')

reference_seq	=	str(msa_data[0].seq)

	

nucleotide_diversity	=	my_structure(data={('A',):	msa},

																																				method='nucleotide_diversity',

																																				ref=	{'A':	reference_seq},

																																				radius=15,

																																				map_to_dna=True

)

The		'default_mapping'		method	allows	the	user	to	apply	a	custom	data	aggregation	function	to	data	within	each
window.	For	example,	you	could	calculate	the	arithmetic	mean	of	data	within	a	window,	calculate	the	maximum	or
minimum	value	within	a	radius,	or	apply	some	other	metric	to	data.	We	will	illustrate	with	a	simple	calculation	of	the
maximum	data	value	within	a	5	Angstrom	window.

Note	the	use	of	the	additional	keyword	argument		method_params	,	which	takes	a	dictionary	of	additional
parameters	to	pass	to	the		default_mapping		method.	In	this	case,		default_mapping		takes	the	keyword	argument
	method	,	which	should	be	a	function	that	can	be	used	to	aggregate	a	list	of	data	points.	This		default_mapping	
method	can	be	quite	useful	when	constructing	custom	mapping	procedures!

data_values	=	list(range(1000))	#	Just	some	placeholder	data

	

maximum_values	=	my_structure(data=data_values,

																															method='default_mapping',

																															ref={'A':	reference_seq},

																															radius=5,

																															method_params={

																																	'method':	max

																															}

)

The	results	for	each	mapping	call	are	returned	in	a	dictionary-like	object	(DataMap		class	-	a	simple	class	that
extends	the		dict		class	by	adding	a	couple	of	additional	methods	to	deal	with	writing	results	to	files).

The	main	method	that	is	likely	to	be	used	from	the		DataMap		object	is	the		write_data_to_pdb_b_factor		method.
This	writes	all	data	to	the	B-factor	column	of	a	PDB	file,	allowing	easy	visualisation	in	a	program	such	as	PyMOL.

We	demonstrate	the	use	of	this	following	a	simple	calculation	of	average	hydrophobicity	(see	section	2.3.2).

import	biostructmap

from	Bio	import	SeqIO

from	Bio.SeqUtils	import	ProtParamData

	

kd_scale	=	ProtParamData.kd

reference_seq	=	SeqIO.read("reference.fasta",	"fasta")

	

mean_hydrophocity	=	my_structure(data=ProtParamData.kd_scale,

																																	method='aa_scale',

2.3.4	Nucleotide	diversity

2.3.5	Applying	a	custom	data	aggregation	function

2.4	Results

																																	ref={'A':	reference_seq},

																																	radius=15,

																																	rsa_range=(0.2,	1)

)

	

mean_hydrophocity.write_data_to_pdb_b_factor(fileobj='./1ZRL_hydrophocity.pdb')

For	the		write_data_to_pdb_b_factor		method,	the		fileobj		keyword	argument	can	be	either	an	output	file	name
as	a	string,	or	a	file-like	object	to	write	output	data	to.	Additionaly	keyword	arguments	for	this	method	are
	default_no_value		and		scale_factor	.	The		default_no_value		argument	is	used	to	specify	the	numerical	value
written	to	the	B-factor	column	if	the	value	for	this	residue	is		None		(non-numerical	values	can't	be	written	to	the	B-
factor	column).	The		scale	factor		argument	is	used	to	scale	output	values	in	situations	where	they	are	either	too
big	or	small	to	fit	within	the	B-factor	column.	For	example,	it	is	usually	sensible	to	scale	nucleotide	diversity	values
by	a	factor	of	1000	(scale_factor=1000).

BioStructMap	can	be	extended	by	providing	custom	functions	with	which	to	process	data	within	each	3D	sliding
window.	We	will	briefly	discuss	the	format	required	for	these	custom	data	processing	functions.

Each	data	processing	function	has	the	format:

def	some_method(structure,	data,	residues,	ref,	**kwargs):

				...

				return	final_data

where		structure		is	the	parent		biostructmap.Structure		object	from	which	the		map		method	has	been	called,
	data		is	the		data		argument	supplied	to	the		map		method	(no	filtering	has	been	applied	to	this	object	yet!),
	residues		is	a	list	of	PDB	residues	within	that	particular	window,	and		ref		is	a	dictionary	mapping	PDB	residue
numbers	to	reference	sequence	indices.

If	the	custom	method	being	written	needs	to	deal	with	data	that	is	aligned	to	a	protein	sequence,	then	the	key	steps
that	need	to	be	followed	are:

1.	 From	the	list	of	PDB	residues	within	the	window,	extract	the	positions	of	these	residues	in	the	corresponding
reference	sequence.

2.	 Construct	a	list	of	applicable	data	points,	given	the	list	of	reference-sequence	aligned	residues.
3.	 Perform	a	data	aggregation	function	over	these	data	points,	returning	a	single	value	(a	single,	numerical	return

value	is	not	absolutely	required,	although	writing	data	to	a	PDB	file	will	not	be	possible	if	data	is	non-
numerical).

We	illustrate	these	steps	with	a	function	to	calculate	the	mean	of	selected	data	points:

import	numpy	as	np

	

def	calculate_mean(_structure,	data,	residues,	ref,	ignore_duplicates=True):

				#	Step	1:	Get	a	list	of	all	keys	from	the	data	object.

				chains	=	data.keys()

	

				#	Step	1:	Extract	position	of	residues	in	the	reference	sequence

				ref_residues	=	[ref[x]	for	x	in	residues	if	x	in	ref]

	

				#	Step	1:	A	little	bit	more	manipulation,	as	each	reference	residue	is	given

				#	by	a	(chain,	residue	number)	tuple,	while	the	data	keys	are	tuples	that

				#	can	contain	multiple	chains	(to	enable	mapping	data	between	several	chains).

				#	The	list	of	residues	below	will	look	like:

3.	Extending	BioStructMap

3.1	Data	aligned	to	a	protein	sequence

				#	[(('A',	'B'),	1),	(('A',	'B'),	2),	etc.]

				residues	=	[(chain,	x[1])	for	chain	in	chains

																for	x	in	ref_residues	if	x[0]	in	chain]

	

				#	If	two	separate	chains	both	contain	the	same	data	point,	and	both

				#	within	the	same	window,	then	we	might	want	to	de-duplicate	this	data

				#	point,	to	prevent	skewing	of	the	result.

				if	ignore_duplicates:

								residues	=	set(residues)

	

				#	Step	2:	Get	applicable	data	points

				data_points	=	[data[res[0]][res[1]]	for	res	in	residues]

	

				#	Step	3:	If	there	is	any	data	that	maps	to	residues	within	the	given

				#	window,	then	we	apply	some	data	aggregation	method	to	this	data.

				#	Note	that	for	this	mapping	procedure,	we	define	this	method	to	be	the

				#	arithmetic	mean	by	default.

				if	data_points:

								result	=	np.mean(data_points)

				else:

								result	=	None

				return	result

This	can	then	be	used	by	passing	this	method	to	the		map		function	of	a		Structure		object.	Note	that	the	data
passed	to	the		map		function	should	be	aligned	to	the	reference	sequence.

data_values	=	list(range(1000))	#	Just	some	placeholder	data

mean_values	=	my_structure.map(data={('A',):	data_values}

																															method=calculate_mean,

																															ref={'A':	reference_seq},

																															radius=15

)

Alternatively,	if	the	user	simply	wants	to	apply	an	aggregation	function	to	selected	data	points	(as	in	the	above
example),	then	the		default_mapping		method	provides	a	nice	interface	to	perform	this	via	the	additional	keyword
argument		method_params	:

data_values	=	list(range(1000))	#	Just	some	placeholder	data

mean_values	=	my_structure.map(data={('A',):	data_values}

																															method='default_mapping',

																															ref={'A':	reference_seq},

																															radius=15,

																															method_params={'method':	np.mean}

)

If	the	user	wants	to	perform	a	stastical	test	or	data	aggregation	on	codons	that	map	to	residues	within	each	window,
then	the	simplest	option	is	to	use	the		_genetic_test_wrapper		function	defined	in	the
	biostructmap.map_functions		module.	This	is	a	simple	wrapper	function	that	constructs	a	multiple	sequence
alignment	from	all	codons	that	map	to	resiudes	within	a	window.	For	example,	to	define	a	test	to	calculate
nucleotide	diversity:

Firstly,	we	define	a	function	to	calculate	nucleotide	diversity	from	a	multiple	sequence	alignment.	We	are	going	to
use	the	DendroPy	library	to	perform	this.

def	diversity_from_dendropy(sequence_alignment):

				#	Just	make	sure	the	alignment	is	a	string	in	fasta	format.

				if	not	isinstance(alignment,	str):

								data	=	alignment.format('fasta')

				else:

3.2	Genomic	multiple	sequence	alignment	data

								data	=	alignment

	

				#	If	the	alignment	doesn't	exist,	then	return	None.

				if	not	alignment	or	len(alignment[0])	==	0:

								return	None

	

				#	Construct	the	relevant	DenroPy	data	structure

				seq	=	dendropy.DnaCharacterMatrix.get(data=data,	schema='fasta')

	

				#	Calculate	diversity

				diversity	=	dendropy.calculate.popgenstat.nucleotide_diversity(seq)

	

				return	diversity

Now	we	can	use	the		_genetic_test_wrapper		function	to	pass	alignments	from	each	window	to	the
	diversity_from_dendropy		function:

from	biostructmap.map_functions	import	_genetic_test_wrapper

	

def	_calculate_nucleotide_diversity(_structure,	alignments,	residues,	ref):

				nucleotide_diversity	=	_genetic_test_wrapper(_structure,	alignments,

																																																	residues,	ref,

																																																	diversity_from_dendropy)

				return	nucleotide_diversity

We	can	then	use	this	function:

msa	=	biostructmap.SequenceAlignment('./alignment.fasta',	file_format='fasta')

reference_seq	=	str(msa_data[0].seq)

	

nucleotide_diversity	=	my_structure(data={('A',):	msa},

																																				method=_calculate_nucleotide_diversity,

																																				ref=	{'A':	reference_seq},

																																				radius=15,

																																				map_to_dna=True

)

It	is	also	possible	to	pass	data	to	a	command	line	tool	for	processing	using	the	general	format	outline	above.

We	firstly	need	to	write	a	temporary	file	containing	a	multiple	sequence	alignment	for	each	window,	and	then	call	our
command	line	tool.	In	this	example	we	will	use	'possum'	(https://github.com/jeetsukumaran/possum),	which
calculates	a	number	of	population	statistics	from	a	multiple	sequence	alignment.

def	call_possum(alignment)

				#Run	external	tool	over	sub	alignment.

				with	tempfile.NamedTemporaryFile(mode='w')	as	seq_file:

								seq_file.write(alignment)

								#	Make	sure	data	is	actually	written	to	file.

								seq_file.flush()

								process	=	subprocess.run(["/opt/bin/possum",	"-f",	"dnafasta",	"-q",

																																		"-v",	seq_file.name],	stdout=subprocess.PIPE)

				try:

								#	Just	need	to	parse	the	output	data	to	get	a	numerical	value.

								tajd	=	float(process.stdout.decode().strip().split('\t')[-1])

				except	ValueError:

								tajd	=	None

				return	tajd

Once	we	have	a	function	that	will	process	a	single	muliple	sequence	alignment,	we	can	wrap	this	in	the

3.3	Genomic	data	passed	to	a	command	line	tool

	_genetic_test_wrapper		function:

def	tajimas_d_from_possum(_structure,	alignments,	residues,	ref):

				result	=	_genetic_test_wrapper(_structure,	alignments,	residues,	ref,

																																			call_possum)

				return	result

Fianlly,	we	can	use	the	final	function	to	map	Tajima's	D	over	a	structure:

msa	=	biostructmap.SequenceAlignment('./alignment.fasta',	file_format='fasta')

reference_seq	=	str(msa_data[0].seq)

	

tajimas_d	=	my_structure(data={('A',):	msa},

																									method=tajimas_d_from_possum,

																									ref=	{'A':	reference_seq},

																									radius=15,

																									map_to_dna=True

)

Arnott,A.	et	al.	(2014)	Distinct	patterns	of	diversity,	population	structure	and	evolution	in	the	AMA1	genes	of
sympatric	Plasmodium	falciparum	and	Plasmodium	vivax	populations	of	Papua	New	Guinea	from	an	area	of
similarly	high	transmission.	Malar.	J.,	13,	233.
Kyte,J.	and	Doolittle,R.F.	(1982)	A	simple	method	for	displaying	the	hydropathic	character	of	a	protein.	J.	Mol.
Biol.,	157,	105–132.
Dayhoff	M.O.,	Schwartz	R.M.	and	Orcutt	B.C.	(1978)	Atlas	of	Protein	Sequence	and	Structure	National
Biomedical	Research	Foundation,	5,	345-352.
Webb,B.	and	Sali,A.	(2016)	Comparative	Protein	Structure	Modeling	Using	MODELLER.	Curr.	Protoc.
Bioinformatics,	54,	5.6.1–5.6.37.

4.	References

