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Plugin Interface 
 
Gmxapi insulates external code from GROMACS internal library interfaces such as 
gmx::IMDModule and gmx::IForceProvider. Instead, users and third-party 
developers can write plugin code to implement a force and energy calculation within a 
framework provided by the API. To add a pair restraint that operates between two 
particles, the researcher creates a class that provides a calculate() public member 
function that takes two particle locations as arguments. The calculation function for a 
pair restraint returns a gmx::PotentialPointData object, which is a simple 
container for a force and energy. During the MD simulation, the Restraint framework 
feeds coordinates for the user-selected particles to the calculation function and applies 
the returned force appropriately. 
 
Wrappers and a Python interface are generated when C++ templates are instantiated in 
a pybind11 export call for  
PyRestraint<RestraintModule<MyCustomRestraint>>. Additional boiler-plate 
code can be copied from the sample_restraint repository that we provide at 
https://github.com/kassonlab/sample_restraint, but this is being reduced as templates 
are migrated to the core package. 
 
According to the registration/binding procedure, a plugin object exists before the 
simulation begins and after it ends. Therefore, if desired a plugin can provide a 
constructor or builder that accesses resources via the Python interpreter, such as other 
extension code or references to Python resources. 
 
Work specification grammar 
 
The formal work specification follows.  Typically, a user will not use this directly but use 
higher-level functions to build a work specification.  Work is specified as structured data 
with minimal schema that are easily expressed with Python data types or serialized with 
JSON. For gmxapi 0.0.4, a valid work specification contains the key-value pair 
indicating the schema version and a member named “elements” containing a set of zero 
or more uniquely named work elements. These are the items of work that will be 
completed. An empty, but valid work specification, then, could be represented as the 
following in JSON. 
 



{ 
    "version": "gmxapi_workspec_0_1", 
    "elements": {} 
} 

 
An element of a work specification has four named properties. operation indicates the 
functionality represented by the element and maps to code accessible in the execution 
context. namespace indicates the provider of the operation, with standard operations 
provided by the API implementation in the gmxapi namespace. params holds an 
optional list of arguments to be provided to the operation, and dependencies on other 
named elements are listed in depends. To ensure that a work specification can be 
maintained in a valid state, elements may not be added unless all of the element’s 
dependencies are already fully specified. 
 
 
Restrained-ensemble simulation formalism 
 
We have implemented a variant of the restrained-ensemble simulation formalism 
described previously by Roux and co-workers (Islam, et al., 2013; Roux and Islam, 
2013; Roux and Weare, 2013).  Our implementation is designed to account for 
substantial variation in protein backbone conformation between ensemble members, so 
we run MD simulations of 20 independent ensemble members.  Distance histograms 
are estimated from this ensemble and updated at regular intervals (here every 100 ps 
and computing histograms over a 10-ns window).  The biasing force for each residue-
residue pair where an experimental bias is applied is calculated from the estimated 
distance histogram and the experimental distance histogram as originally derived by 
Roux (Roux and Islam, 2013) and described below. 
 

 
Figure S1.  Schema for restrained-ensemble simulations. 
 
At every potential update step, the simulation distribution for pair ij is smoothed with a 
differentiable Gaussian of width s as follows: 
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where n is the bin number, N is the number of ensemble members, M is the total 
number of samples within the boxcar averaging window of choice, and 𝑟"
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denotes the distance between residues i and j in simulation s at time t. A new potential 
is then applied: 
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where 𝐻"# 𝑛  is the smoothed experimentally-derived distance distribution for pair ij. 
This potential is applied for an interval Dt until another update step takes place. 
 

 
Figure S2. Restrained-ensemble fitting to DEER data.  Two residue-residue distance 
distributions for the protein Opa60 determined experimentally via DEER are plotted in 
black, together with initial distributions for a conformational ensemble in gray and the 
results of restrained-ensemble fitting with 20 ensemble members each simulated for 
100ns in dotted lines.  The restrained-ensemble fitting improves agreement with both 
sets of experimental DEER data simultaneously.  The starting structures are taken from 
the previous NMR/MD hybrid refinement of this protein, Opa60 (Fox, et al., 2014).  
Simulations were performed using the CHARMM36 force field (Best, et al., 2012), run 
under NPT conditions at 310K with the velocity-rescaling themostat (Bussi, et al., 
2007)and Parrinello-Rahman barostat (Parrinello and Rahman, 1982) with 2-ps and 10-
ps time constants respectively. Long-range electrostatics were treated with Particle 
Mesh Ewald (Darden, et al., 1993). 
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Gmxapi implementation of restrained-ensemble formalism 
 
The gmxapi sample_restraint plugin provides a restraint that can be used to 
perform the above work. The relevant lines of Python follow below. Note that the sample 
plugin is assumed to be in the Python module path and named “myplugin” and for 
brevity we assume the existence of an array of input filenames and of restraint 
parameters. 
 
Source for the plugin code can be found at:  
https://github.com/kassonlab/sample_restraint 
 
import gmx 
import myplugin 
 
# Specification of run input files for the ensemble members 
n_ensemble = 20 
input_dir_list = ['run_{:02d}'.format(i) for i in range(n_ensemble)] 
tpr_list = [os.path.join(directory, 'run.tpr') for directory in input_dir_list] 
 
# Parameters used in the restrained-ensemble simulations 
index1 = 387  # index of first atom to restrain 
index2 = 2569  # index of second atom to restrain 
window_size = 5000 * 0.002  # time interval between potential updates in ps 
output_interval = 1000 * 0.002  # time interval to output forces and positions 
k = 100.  # force constant 
sigma = 0.2 
nbins = 70  # number of bins in histogram 
binwidth = 0.1  # bin width in nm 
maxdistance = 6.0  # maximum distance in nm 
mindistance = 1.9  # minimum distance in nm 
histogram = [0.05] * nbins 
 
# Set up and run 
params = [index1, index2, nbins, mindistance, maxdistance,  
          histogram, window_size / output_interval, output_interval, n_ensemble, 
          window_size, k, sigma] 
 
potential = gmx.workflow.WorkElement( 
        namespace="myplugin", 
        operation="ensemble_restraint", 
        depends=[], 
        params=params 
        ) 
potential.name = "ensemble_restraint_1" 
 
md = gmx.workflow.from_tpr(tpr_list) 
md.add_dependency(potential) 
 
context = gmx.context.ParallelArrayContext(md) 
 
with context as session: 
        session.run() 

 



A work specification for the restrained-ensemble workflow then looks like the following 
JSON object, where the load_tpr params holds a list of absolute file paths. 
 

{ 
    "version": "gmxapi_workspec_0_1", 
    "elements": 
    { 
        “tpr_input”: 
        { 
            “namespace”: “gmxapi”, 
            “operation”: “load_tpr”, 
            “params”: […], 
            “depends”: [] 
        } 
        “md_sim”: 
        { 
            “namespace”: “gmxapi”, 
            “operation”: “md”, 
            “params”: [], 
            “depends”: [“tpr_input”, “ensemble_restraint”] 
        } 
        “ensemble_restraint_1”: 
        { 
            “namespace”: “myplugin”, 
            “operation”: “ensemble_restraint”, 
            “params”: […], 
            “depends”: [] 
        } 
    } 
} 

 
Instead of reading the experimental distribution directly from a file, the array of values 
and the histogram parameters are provided to the ensemble restraint work element 
parameters. The working histograms are generated in memory and updated with the 
help of an ensemble reduce operation, which appears as an additional downstream 
node in the execution graph, generated by the ensemble_restraint builder. In future 
versions of gmxapi, such a Context-provided resource may be expressed in the higher-
level work specification. 
 
Performance data 
The gmxapi interface is designed to minimize overhead by constructing and executing a 
computational graph rather than executing Python calls individually.  We therefore do 
not incur a substantial overhead per API call.  Using our custom implementation of the 
restrained-ensemble formalism, each 10-ps window between potential updates (5000 
steps) ran in an average of 136.6 seconds on 20 Xeon E5-2670 cores, whereas in the 
gmxapi implementation averaged 138.8 seconds for the same window length, 



benchmarked over 8 windows.  This corresponds to a ~1.6% performance penalty.  The 
overhead of the callback and plugin is less than 200 µs per step, with timing 
measurement accuracy limited by per-run variation in GROMACS. 
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