
Supplementary	Data	for	

gmxapi: a high-level interface for advanced control
and extension of molecular dynamics simulations
M. Eric Irrgang, Jennifer M. Hays and Peter M. Kasson

Plugin Interface

Gmxapi insulates external code from GROMACS internal library interfaces such as
gmx::IMDModule and gmx::IForceProvider. Instead, users and third-party
developers can write plugin code to implement a force and energy calculation within a
framework provided by the API. To add a pair restraint that operates between two
particles, the researcher creates a class that provides a calculate() public member
function that takes two particle locations as arguments. The calculation function for a
pair restraint returns a gmx::PotentialPointData object, which is a simple
container for a force and energy. During the MD simulation, the Restraint framework
feeds coordinates for the user-selected particles to the calculation function and applies
the returned force appropriately.

Wrappers and a Python interface are generated when C++ templates are instantiated in
a pybind11 export call for
PyRestraint<RestraintModule<MyCustomRestraint>>. Additional boiler-plate
code can be copied from the sample_restraint repository that we provide at
https://github.com/kassonlab/sample_restraint, but this is being reduced as templates
are migrated to the core package.

According to the registration/binding procedure, a plugin object exists before the
simulation begins and after it ends. Therefore, if desired a plugin can provide a
constructor or builder that accesses resources via the Python interpreter, such as other
extension code or references to Python resources.

Work specification grammar

The formal work specification follows. Typically, a user will not use this directly but use
higher-level functions to build a work specification. Work is specified as structured data
with minimal schema that are easily expressed with Python data types or serialized with
JSON. For gmxapi 0.0.4, a valid work specification contains the key-value pair
indicating the schema version and a member named “elements” containing a set of zero
or more uniquely named work elements. These are the items of work that will be
completed. An empty, but valid work specification, then, could be represented as the
following in JSON.

{
 "version": "gmxapi_workspec_0_1",
 "elements": {}
}

An element of a work specification has four named properties. operation indicates the
functionality represented by the element and maps to code accessible in the execution
context. namespace indicates the provider of the operation, with standard operations
provided by the API implementation in the gmxapi namespace. params holds an
optional list of arguments to be provided to the operation, and dependencies on other
named elements are listed in depends. To ensure that a work specification can be
maintained in a valid state, elements may not be added unless all of the element’s
dependencies are already fully specified.

Restrained-ensemble simulation formalism

We have implemented a variant of the restrained-ensemble simulation formalism
described previously by Roux and co-workers (Islam, et al., 2013; Roux and Islam,
2013; Roux and Weare, 2013). Our implementation is designed to account for
substantial variation in protein backbone conformation between ensemble members, so
we run MD simulations of 20 independent ensemble members. Distance histograms
are estimated from this ensemble and updated at regular intervals (here every 100 ps
and computing histograms over a 10-ns window). The biasing force for each residue-
residue pair where an experimental bias is applied is calculated from the estimated
distance histogram and the experimental distance histogram as originally derived by
Roux (Roux and Islam, 2013) and described below.

Figure S1. Schema for restrained-ensemble simulations.

At every potential update step, the simulation distribution for pair ij is smoothed with a
differentiable Gaussian of width s as follows:

ℎ"# 𝑛 =
1
𝑁

1
2𝜋𝜎+

𝑒- ./0- 𝒓2
3,5-𝒓6

3,5 7
/+97

:

;<=

>

?<=

where n is the bin number, N is the number of ensemble members, M is the total
number of samples within the boxcar averaging window of choice, and 𝑟"

;,? − 𝑟#
;,?

denotes the distance between residues i and j in simulation s at time t. A new potential
is then applied:

𝑈CD =

=
+
𝐾 ℎ"# 𝑛 − 𝐻"# 𝑛

+
.{HIJK		"#}

where 𝐻"# 𝑛 is the smoothed experimentally-derived distance distribution for pair ij.
This potential is applied for an interval Dt until another update step takes place.

Figure S2. Restrained-ensemble fitting to DEER data. Two residue-residue distance
distributions for the protein Opa60 determined experimentally via DEER are plotted in
black, together with initial distributions for a conformational ensemble in gray and the
results of restrained-ensemble fitting with 20 ensemble members each simulated for
100ns in dotted lines. The restrained-ensemble fitting improves agreement with both
sets of experimental DEER data simultaneously. The starting structures are taken from
the previous NMR/MD hybrid refinement of this protein, Opa60 (Fox, et al., 2014).
Simulations were performed using the CHARMM36 force field (Best, et al., 2012), run
under NPT conditions at 310K with the velocity-rescaling themostat (Bussi, et al.,
2007)and Parrinello-Rahman barostat (Parrinello and Rahman, 1982) with 2-ps and 10-
ps time constants respectively. Long-range electrostatics were treated with Particle
Mesh Ewald (Darden, et al., 1993).

Distance (nm)

Pr
ob

ab
ili

ty

MD Initial
DEER

77 - 107 117 - 107

Gmxapi implementation of restrained-ensemble formalism

The gmxapi sample_restraint plugin provides a restraint that can be used to
perform the above work. The relevant lines of Python follow below. Note that the sample
plugin is assumed to be in the Python module path and named “myplugin” and for
brevity we assume the existence of an array of input filenames and of restraint
parameters.

Source for the plugin code can be found at:
https://github.com/kassonlab/sample_restraint

import gmx
import myplugin

Specification of run input files for the ensemble members
n_ensemble = 20
input_dir_list = ['run_{:02d}'.format(i) for i in range(n_ensemble)]
tpr_list = [os.path.join(directory, 'run.tpr') for directory in input_dir_list]

Parameters used in the restrained-ensemble simulations
index1 = 387 # index of first atom to restrain
index2 = 2569 # index of second atom to restrain
window_size = 5000 * 0.002 # time interval between potential updates in ps
output_interval = 1000 * 0.002 # time interval to output forces and positions
k = 100. # force constant
sigma = 0.2
nbins = 70 # number of bins in histogram
binwidth = 0.1 # bin width in nm
maxdistance = 6.0 # maximum distance in nm
mindistance = 1.9 # minimum distance in nm
histogram = [0.05] * nbins

Set up and run
params = [index1, index2, nbins, mindistance, maxdistance,
 histogram, window_size / output_interval, output_interval, n_ensemble,
 window_size, k, sigma]

potential = gmx.workflow.WorkElement(
 namespace="myplugin",
 operation="ensemble_restraint",
 depends=[],
 params=params
)
potential.name = "ensemble_restraint_1"

md = gmx.workflow.from_tpr(tpr_list)
md.add_dependency(potential)

context = gmx.context.ParallelArrayContext(md)

with context as session:
 session.run()

A work specification for the restrained-ensemble workflow then looks like the following
JSON object, where the load_tpr params holds a list of absolute file paths.

{
 "version": "gmxapi_workspec_0_1",
 "elements":
 {
 “tpr_input”:
 {
 “namespace”: “gmxapi”,
 “operation”: “load_tpr”,
 “params”: […],
 “depends”: []
 }
 “md_sim”:
 {
 “namespace”: “gmxapi”,
 “operation”: “md”,
 “params”: [],
 “depends”: [“tpr_input”, “ensemble_restraint”]
 }
 “ensemble_restraint_1”:
 {
 “namespace”: “myplugin”,
 “operation”: “ensemble_restraint”,
 “params”: […],
 “depends”: []
 }
 }
}

Instead of reading the experimental distribution directly from a file, the array of values
and the histogram parameters are provided to the ensemble restraint work element
parameters. The working histograms are generated in memory and updated with the
help of an ensemble reduce operation, which appears as an additional downstream
node in the execution graph, generated by the ensemble_restraint builder. In future
versions of gmxapi, such a Context-provided resource may be expressed in the higher-
level work specification.

Performance data
The gmxapi interface is designed to minimize overhead by constructing and executing a
computational graph rather than executing Python calls individually. We therefore do
not incur a substantial overhead per API call. Using our custom implementation of the
restrained-ensemble formalism, each 10-ps window between potential updates (5000
steps) ran in an average of 136.6 seconds on 20 Xeon E5-2670 cores, whereas in the
gmxapi implementation averaged 138.8 seconds for the same window length,

benchmarked over 8 windows. This corresponds to a ~1.6% performance penalty. The
overhead of the callback and plugin is less than 200 µs per step, with timing
measurement accuracy limited by per-run variation in GROMACS.

References:
Best,	R.B.,	et	al.	Optimization	of	the	additive	CHARMM	all-atom	protein	force	field	targeting	
improved	sampling	of	the	backbone	phi,	psi	and	side-chain	chi1	and	chi2	dihedral	angles.	J	
Chem	Theory	Comput	2012;8(9):3257-3273.	
Bussi,	G.,	Donadio,	D.	and	Parrinello,	M.	Canonical	sampling	through	velocity	rescaling.	J	Chem	
Phys	2007;126(1):014101.	
Darden,	T.,	York,	D.	and	Pedersen,	L.	Particle	Mesh	Ewald	-	an	N	Log(N)	Method	for	Ewald	Sums	
in	Large	Systems.	Journal	of	Chemical	Physics	1993;98(12):10089-10092.	
Fox,	D.A.,	et	al.	Structure	of	the	Neisserial	outer	membrane	protein	Opa60:	loop	flexibility	
essential	to	receptor	recognition	and	bacterial	engulfment.	J	Am	Chem	Soc	2014;136(28):9938-
9946.	
Islam,	S.M.,	et	al.	Structural	refinement	from	restrained-ensemble	simulations	based	on	
EPR/DEER	data:	application	to	T4	lysozyme.	J	Phys	Chem	B	2013;117(17):4740-4754.	
Parrinello,	M.	and	Rahman,	A.	Strain	Fluctuations	and	Elastic-Constants.	Journal	of	Chemical	
Physics	1982;76(5):2662-2666.	
Roux,	B.	and	Islam,	S.M.	Restrained-ensemble	molecular	dynamics	simulations	based	on	
distance	histograms	from	double	electron-electron	resonance	spectroscopy.	J	Phys	Chem	B	
2013;117(17):4733-4739.	
Roux,	B.	and	Weare,	J.	On	the	statistical	equivalence	of	restrained-ensemble	simulations	with	
the	maximum	entropy	method.	J	Chem	Phys	2013;138(8):084107.	

