Supporting Information

ProAcePred: prokaryote lysine acetylation sites prediction based

on elastic net feature optimization

Guodong Chen¹, Man Cao¹, Kun Luo¹, Lina Wang², Pingping Wen², Shaoping Shi^{1*}

¹Department of Mathematics and Numerical Simulation and High-Performance Computing Laboratory, School of Sciences, Nanchang University, Nanchang, 330031, China.

²School of Chemistry, Nanchang University, Nanchang, 330031, China.

*To whom correspondence should be addressed.

Table of Contents

1. Supplementary Experimental Text

Text S1. Determination of the Sliding Window SizesText S2. Sequence-based featureText S3. Model Optimization and Evaluation

2.Supplementary TABLE AND FIGURE LEGENDS

Table S1. The numbers of acetylated protein and lysine acetylation sites in nine species.

Table S2. The numbers of positive and negative samples of training dataset and independent test set among nine species ("positive" represents positive sample; "negative" represents negative sample).

Table S3. The dimensions of each feature vector and combined all of feature vectors

 in different species ("Sum" represents dimensions of combined all of feature vectors).

Table S4. The optimization parameters in eight species models.

Table S5. The numbers of seven kinds of feature vectors in optimization model of nine species.

Table S6. Performance evaluation values of Acc, Sn, Sp, MCC and AUC for each of training datasets and independent test datasets among nine species. The "train" represents training datasets; the "test" represents independent test datasets.

Table S7. Comparison of prediction performance between our method and other tools (Sn: sensitivity, Sp: specificity, Acc: accuracy, MCC: Matthew correlation coefficient).

Fig. S1. Acetylation sites motif of prokaryote and eukaryote. (Motif-x parameters: occurrences=200, significance=0.000001, background is all non-acetylation samples.)

Fig. S2. Comparison of EBGW between acetylation and non-acetylation. The vertical axis represents the log_2 ratio of average EBGW values between acetylation and non-acetylation. The horizontal axis represents the three binary sequences.

Fig. S3. Average accessible surface area (AASA) value of residues surrounding acetylation sites and non-acetylation sites (except of center position) among nine species.

Fig. S4. The ROC curves and AUC values of 10-fold cross-validations (CV) of the independent test set for nine species.

1. Supplementary Experimental Text

Text S1.Determination of the Sliding Window Sizes

Since different sliding windows may have distinct prediction performances, optimization of the sliding window sizes is required for selecting features and training models. On the one hand, if the sliding window was too long, a large amount of redundant information would be included. On the other hand, if the sliding window was too short, a lot of valuable information would lose. Thus, we took into account the window size varied from 11 to 41.

In this study, we used the predicted KNN score features accuracy (Acc) as index to evaluate the performance of the sliding windows with different sizes. Support vector machine (SVM) classifier and 10-fold cross-validation were carried out to build model and select feature based on each sliding window size.

For all of the positive and negative sets in nine species, we optimized the final window sizes through training KNN features. In order to reduce the amount of calculation, according to the bacterial morphological classification, eight kinds of bacteria are divided into vibrio and bacillus. Bacillus is composition of E.coli, S.typhimurium, B.subtilis, M.tuberculosis, C.glutamicum, E.amylovora and G.kaustophilus, vibrio only contains of V.parahemolvticus. In this part, K was chosen to be 1.5%, 5.5%, 15%, 25% and 35% of the size of the three training sets. Figure 1 shows the predicted Acc values of each model based on different window size. When the window size is 13, archaea KNN had maximum value of Acc. Therefore, we choose the window size is 13 in the archaea. Similarly, we chose the window size of 21 and 17 for bacteria and vibrio, respectively.

Figure 1 Acc values of 10-fold cross-validation based on the training dataset and KNN score for sliding window size ranging from 11 to 41.

Text S2. Sequence-based feature

AAC: The amino acid residues type and position are basic information for a protein sequence, and are widely used in various predicted systems (Chen et al., 2013; Liu et al., 2013). Amino acid composition analysis can efficiently describe the specific state of a given acetylated and non-acetylated in proteome-wide. Therefore, AAC was chosen in the same way as the researchers described (Xu et al., 2015). We through calculated the amino acid residues frequencies in the each of sequence fragments surrounding the query site. There are 20 (excluding O) types of amino acids, and thus 20 frequencies are calculated, the sum is equal to 1. Thus, if the length of a protein sequence fragment is L, the dimension of the numeric vector is 20.

K-space: Because the AAC and BE are considered on the basis of a single amino acid residues sequence information, it makes lack of correlation information between amino acids and amino acids. In order to make up for this defect, we took the K-space (Wuyun et al., 2016) to extract correlation information between amino acids. 20 different amino acids together with O had 441 types of amino acid pairs, the 441 type amino acid pairs as follows:

$$\{AA, AC, AD, \cdots, 00\}$$
(1)

If an amino acid pairs are separated by other k amino acids in a sequence, its feature vector can be represented as:

$$(N_{AA}, N_{AC}, N_{AD}, \cdots, N_{OO})_{441}$$
 (2)

Where N_{ij} represents the numbers of corresponding amino acid pairs ij in short peptides, $i, j \in \{A, C, D, \dots, W, Y, 0\}_{21}$, and $K \in \{0, 1, 2, \dots, L - 1\}$, L is length of protein sequence fragment. In this work, K was chosen to be 0, 1, 2, 3 and 4. So the dimension of the numeric vector is 2205 for a sequence fragment.

PWAA: To avoid losing the sequence-order information, we adopted PWAA (Shi et al., 2012) to extract the sequence-order information of amino acid residues around acetyl-lysine sites. Given an amino acid residues a_i ($i = 1, 2, \dots, 21$), we can express the position information of amino acid a_i in the protein sequence fragment p with

2*m+1 amino acids by the following formula.

$$C_{i} = \frac{1}{m(m+1)} \sum_{j=-m}^{j=m} x_{i,j} \left(j + \frac{|j|}{m} \right)$$
(3)

Where m denotes the number of upstream residues or downstream residues from the central site in the protein sequence fragment p, $x_{i,j} = 1$ if a_i is the jth position residue in protein sequence fragment p, otherwise $x_{i,j} = 0$ ($j = -m, \dots, 0, \dots, m$). In general, residue a_i is closer to the central site (0 position), the absolute value of C_i is smaller. Therefore, if the length of a protein sequence fragment is L, the dimension of the numeric vector is 21.

References

Chen,X. et al. (2013) Incorporating key position and amino acid residue features to identify general and species-specific Ubiquitin conjugation sites. Bioinformatics, 29, 1614-1622.

Liu,B. et al. (2013) Combining evolutionary information extracted from frequency profiles with sequence-based kernels for protein remote homology detection. Bioinformatics, 30, 472-479.

Wuyun,Q. et al. (2016) Improved Species-Specific Lysine Acetylation Site Prediction Based on a Large Variety of Features Set. Plos One, 11, e0155370.

Xu,H.D. et al. (2015) SuccFind: a novel succinvlation sites online prediction tool via enhanced characteristic strategy. Bioinformatics, 31, 3748-3750.

Shi,S.P. et al. (2012) PLMLA: prediction of lysine methylation and lysine acetylation by combining multiple features. Mol. Biosyst., 8, 1520-1527.

Suo,S.B. et al. (2012) Position-specific analysis and prediction for protein lysine acetylation based on multiple features. Plos One, 7, e49108.

Text S3. Model Optimization and Evaluation

SVM is a kind of machine learning algorithm based on statistical learning theory (Noble, 2006), after transforming observed features of positive and negative instances into a vector-based feature space, a 'maximum margin hyper plane' that separates the two datasets is created. A radial basis function (RBF) and 10-fold cross-validation were applied to optimize the parameters in the model. Four major parameters of sensitivity (Sn), specificity (Sp), accuracy (Acc) and Mathews Correlation Coefficient (MCC) were chosen to evaluate the prediction performance.

Where,

$$Sn = \frac{TP}{TP + FN}, Sp = \frac{TN}{TN + FP},$$
$$Acc = \frac{Tp + TN}{TP + FP + TN + FN},$$
$$MCC = \frac{TP \times TN - FP \times FN}{\sqrt{(TP + FN)(TN + FP)(TP + FP)(TN + FN)}}.$$

These parameters were defined in terms of the true positive (TP), false negative (FN), true negative (TN), and false positive (FP).

The receiver operating characteristic (ROC) curves were plotted based on Sp and Sn by taking different thresholds, and area under ROC (AUC) was also calculated based on the trapezoidal approximation.

References

Noble, W.S. (2006) What is a support vector machine?. Nat. Biotechnol., 24, 1565-1567.

2. Supplementary TABLE AND FIGURE

Table S1. The numbers of acetylated protein and lysine acetylation sites in nine species.

Spacias	E coli	C.gluta	M.tub	B.sub	E.am	S.typhi	G.kaust	Archaea	V.parahe	Total
species	E.con	micum	erculosis	tilis	ylovora	murium	ophilus	Alciiaca	molvticus	10141
Protein	1811	603	649	628	85	190	110	584	656	5316
PTM	2318	1324	1108	1354	124	260	232	654	1413	8787
site	2310	1521	1100	1551	121	200	252	051	1115	0/0/

Table S2. The numbers of positive and negative samples of training dataset and independent test set among nine species ("positive" represents positive sample; "negative" represents negative sample).

Secolos	Training d	ataset	Independ	ent test set
Species —	positive	negative	positive	negative
E.coli	1919	12707	213	1412
C.glutamicum	1021	4333	113	481
M.tuberculosis	866	3926	96	436
B .subtilis	1040	5772	115	641
E.amylovora	95	718	10	80
S.typhimuricum	174	1467	19	163
G.kaustophilus	189	1025	21	114
Archaea	193	1590	21	176
V.parahemolvticus	1065	5938	118	659

	AAS	BE	PWA	KNN	EBG W	AAC	K-spac	Sum
	A		A		vv		е	
E.coli	21	441	21	7	15	20	2205	2730
C.glutamicum	21	441	21	7	15	20	2205	2730
M.tuberculosis	21	441	21	7	15	20	2205	2730
B .subtilis	21	441	21	7	15	20	2205	2730
E.amylovora	21	441	21	5	15	20	2205	2728
S.typhimuricum	21	441	21	5	15	20	2205	2728
G.kaustophilus	21	441	21	5	15	20	2205	2728
Archaea	13	273	21	5	15	20	2205	2552
V.parahemolvticus	17	357	21	5	15	20	2205	2640

Table S3. The dimensions of each feature vector and combined all of feature vectors in different species ("Sum" represents dimensions of combined all of feature vectors dimension).

Table S4. The optimization parameters in eight species models.

Spec	E.c	C.glutam	M.tuberc	B.subt	E.amylo	S.typhimu	G.kaustop	V.parahemol
ies	oli	icum	ulosis	ilis	vora	rium	hilus	vticus
λ_2	0.4	0.2	0.1	0.1	0.1	0.1	0.1	0.2
S	0.1	0.1	0.1	0.1	0.3	0.3	0.3	0.1

Table S5. The numbers of seven kinds of feature vectors in optimization model	of
nine species.	

	AASA	BE	PWAA	KNN	EBGW	AAC	K_space
Archaea	1	24	1	5	2	0	250
V.parahemolvticus	4	41	3	5	5	1	244
E.coli	5	62	4	6	4	2	284
C.glutamicum	3	57	4	7	2	2	250
M.tuberculosis	2	59	3	6	2	0	275
B .subtilis	1	76	2	7	3	0	287
E.amylovora	3	36	3	4	2	1	106
S.typhimurium	3	54	2	2	0	1	212
G.kaustophilus	1	49	3	3	1	0	237

1	0	/	1	1		
		Acc	Sn	Sp	MCC	AUC
E.coli	train	0.69	0.691	0.689	0.381	0.687
	test	0.899	0.887	0.911	0.798	0.887
C.glutamicum	train	0.8	0.807	0.794	0.602	0.807
	test	0.872	0.85	0.894	0.744	0.861
M.tuberculosis	train	0.834	0.83	0.838	0.671	0.83
	test	0.88	0.885	0.875	0.76	0.863
B.subtilis	train	0.796	0.799	0.792	0.592	0.8
	test	0.952	0.957	0.948	0.904	0.942
E.amylovora	train	0.983	0.978	0.989	0.967	0.988
	test	0.9	0.8	1	0.816	0.896
S.typhimurium	train	0.874	0.871	0.876	0.753	0.882
	test	0.816	0.895	0.737	0.64	0.778
G.kaustophilus	train	0.897	0.917	0.878	0.801	0.902
	test	0.881	0.952	0.81	0.77	0.854
Archaea	train	0.9	0.9	0.9	0.803	0.897
	test	0.81	0.81	0.81	0.619	0.855
V.parahemolvtius	train	0.802	0.808	0.796	0.605	0.799
	test	0.869	0.89	0.847	0.738	0.855

Table S6. Performance evaluation values of Acc, Sn, Sp, MCC and AUC for each of training datasets and independent test datasets among nine species. The "train" represents training datasets; the "test" represents independent test datasets.

Table	S7. Compar	rison	of prediction	perform	nance betw	een our	method and	other tools
(Sn:	sensitivity,	Sp:	specificity,	Acc:	accuracy,	MCC:	Matthew	correlation
coeffi	cient).							

Species	Predictors	Acc	Sn	Sp	MCC	AUC
Archaea	PLMLA	0.619	0.593	0.667	0.249	0.677
	Ensemblepail	0.548	0.556	0.542	0.096	0.539
	LAceP	0.452	0.45	0.455	-0.095	0.591
	Phosida	0.476	0.333	0.487	-0.092	0.402
	our work	0.81	0.81	0.81	0.619	0.855
V.parahemolvticus	PLMLA	0.559	0.551	0.571	0.12	0.571
	Ensemblepail	0.581	0.598	0.568	0.164	0.59
	LAceP	0.496	0.496	0.496	-0.008	0.481
	Phosida	0.572	0.758	0.542	0.208	0.63
	our work	0.869	0.89	0.847	0.738	0.855
E.coli	PLMLA	0.573	0.564	0.584	0.147	0.585
	Ensemblepail	0.538	0.552	0.529	0.078	0.558
	LAceP	0.498	0.497	0.498	-0.005	0.501
	SSPKA	0.516	0.549	0.51	0.044	0.474
	Phosida	0.531	0.633	0.517	0.096	0.542

	our work	0.899	0.887	0.911	0.798	0.887
C.glutamicum	PLMLA	0.575	0.568	0.584	0.151	0.577
	Ensemblepail	0.491	0.485	0.494	-0.019	0.441
	LAceP	0.509	0.509	0.509	0.018	0.548
	Phosida	0.584	0.806	0.549	0.244	0.708
	our work	0.872	0.85	0.894	0.744	0.861
M.tuberculosis	PLMLA	0.547	0.537	0.565	0.098	0.528
	Ensemblepail	0.557	0.593	0.541	0.124	0.559
	LAceP	0.443	0.438	0.447	-0.115	0.453
	Phosida	0.583	0.808	0.548	0.244	0.679
	our work	0.88	0.885	0.875	0.76	0.863
B.subtilis	PLMLA	0.6	0.58	0.632	0.206	0.608
	Ensemblepail	0.535	0.536	0.533	0.07	0.522
	LAceP	0.513	0.513	0.513	0.026	0.509
	Phosida	0.6	0.78	0.561	0.261	0.662
	our work	0.952	0.957	0.948	0.904	0.942
E.amylovora	PLMLA	0.5	0.5	0.5	0	0.479
	Ensemblepail	0.65	0.667	0.636	0.302	0.657
	LAceP	0.7	0.7	0.7	0.4	0.85
	Phosida	0.4	0.25	0.438	-0.25	0.313
	our work	0.9	0.8	1	0.816	0.896
S.typhimurium	PLMLA	0.553	0.55	0.556	0.105	0.55
	Ensemblepail	0.605	0.625	0.591	0.213	0.665
	LAceP	0.553	0.55	0.556	0.105	0.647
	SSPKA	0.868	1	0.792	0.764	0.893
	Phosida	0.553	0.667	0.531	0.144	0.651
	our work	0.816	0.895	0.737	0.64	0.778
G.kaustophilus	PLMLA	0.452	0.464	0.429	-0.101	0.457
	Ensemblepail	0.429	0.286	0.457	-0.192	0.339
	LAceP	0.476	0.474	0.478	-0.048	0.515
	Phosida	0.524	0.6	0.514	0.074	0.605
	our work	0.881	0.952	0.81	0.77	0.854

			Prokaryot	e acetylatio	n sites moti	f	
#	Motif	Motif	Foreground	Foreground	Background	Background	Fold
"	·	Score	Matches	Size	Matches	Size	Increase
1	EK	16.00	853	6552	3620	40897	1.47
2	DK	16.00	547	5699	2297	37277	1.56
3	<u>KR</u>	<u></u> 16.00	468	5152	1884	34980	1.69
4	<u>KR.</u>	16.00	365	4684	1604	33096	1.61
5	KY	16.00	296	4319	650	31492	3.32
6	KH	<u></u> 16.00	275	4023	642	30842	3.28
7.	K.F	<u> </u>	252	3748	1095	30200	1.85
8	F.K	<u> </u>	241	3496	922	29105	2.18
9	<u>KK</u>	<u></u> 16.00	206	3255	606	28183	2.94
10		10.36	281	3049	1705	27577	1.49
11	. <u>K</u>	<mark>R</mark> 9.25	223	2768	1363	25872	1.53
12	<u></u>	8.41	218	2545	1400	24509	1.50
13		<u> </u>	212	2327	1361	23109	1.55
1#							
2#							
3#							
4#					ŶŶŶŦŦ		
5#	-10 -10 -10 -10 -10 -10 -10 -10						
6#							

Eukaryote acetylation site motif

ц	щ . М. С.С.		Foreground	Foreground	Background	Background	Fold
#	Moti	Score	Matches	Size	Matches	Size	Increase
1.	AEK	31.65	302	28053	1974	346912	1.89
2.	GKL	32.00	305	27751	1626	344938	2.33
3.	<u>KGK</u>	32.00	280	27446	1391	343312	2.52
4.	SKP	30.16	218	27166	1331	341921	2.06
5.	<u>KAK</u>	23.06	252	26948	1717	340590	1.85
6.	<u>KA.K</u>	23.43	250	26696	1620	338873	1.96
7.	GK	16.00	2124	26446	17562	337253	1.54
8.	<u>VEK</u>	22.46	220	24322	1728	319691	1.67
9.	AKK	22.23	225	24102	1603	317963	1.85
10.	AA.K	26.24	217	23877	1501	316360	1.92

Fig. S1. Acetylation sites motif of prokaryote and eukaryote.

Fig. S2 Comparison of EBGW between acetylation and non-acetylation. The vertical axis represents the log_2 ratio of average EBGW values between acetylation and non-acetylation. The horizontal axis represents the three binary sequences.

Fig. S3. Average accessible surface area (AASA) value of residues around acetylation sites and non-acetylation sites (except of center position) among nine species.

Fig. S4. The ROC curves and AUC value of 10-fold cross-validations (CV) of the independent test set for nine species.