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1 Data set collection and preparation

The experiments were performed on the same 5 real cancer data sets coming from the TCGA database
available throught the Genomic Data Commons portal (https://portal.gdc.cancer.gov/) used in the
SNF paper [6] (see Table 1). The data sets are the TCGA curated level-3 data of the GBM, BIC, LSCC,
KRCCC and COAD cancer on which the SNF authors performed three steps of preprocessing: outlier
removal, missing-data imputation and normalization. As a further step, features with low variance were
eliminated.

Data set NGe NPat NClusters

GLIO 2409 205/215 3
BREAST 3563 89/105 5
LUNG 2409 96/215 4

KIDNEY 3580 89/122 3
COLON 3563 92/92 3

Table 1: For each data set the number of genes (NGe) and patients (NPat) and the number of clusters (K)
used in the analyses are reported.

2 Similarity Network Fusion

SNF [6] is an intermediate integration network fusion methodology able to integrate multiple genomic data
(e.g., mRNA expression, DNA methylation and microRNA expression data) to identify relevant patient
subtypes. The method first constructs a patient similarity network for each view. Then, it iteratively updates
the network with the information coming from other networks to make them more similar at each step. At
the end, this iterative process converges to a final fused network. The authors tested the method combining
mRNA expression, microRNA expression and DNA methylation from five cancer data sets. They showed
that the similarity networks of each view have different characteristics related to patient similarity while
the fused network gives a clearer picture of the patient clusters. They compared the proposed methodology
with iClust and the clustering on concatenated views. Results were evaluated with the silhouette score for
clustering coherence, Cox log-rank test p-value for survival analysis for each subtype and the running time
of the algorithms.

The data used in this study are the same on which the SNF algorithm was tested in the original paper.
The difference is that our methodology only uses the gene expression data. SNF, which is a more general
procedure, able to integrate different data layers, in this comparison, was applied on the same multi-view
data sets and by using the same parameters identified by the authors in their original work.

3 TMIX

The TMIX approach was introduced in [5] and extensively treated in [4]. The notation here is as in Section
2.2 of the main paper if not otherwise stated. The data generating process is represented as finite mixture
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of Student’s t-distribution

m(y;η) =
k∑

j=1
πjf(y; νj ,µj ,Sj),

where f(·) is the multivariate non-central Student’s t-distribution with νj degrees of freedom, mean vector
µj and scale matrix Sj . Scale matrices are scaled version of cluster’s covariance matrices. The parameters πj

are interpreted as expected clusters’ sizes as usual. The unknown parameter vector η includes the quartets
(πj , νj ,µj ,Sj) for each j. The parameter νj controls the tail behavior of the jth clusters, and therefore
allows to accommodate heavy tails and outliers. η is fitted based on maximum likelihood estimation (MLE)
which can be computed by EM-type algorithms [see 4]. Once η is estimated, points are assigned based
on the optimal Bayes assignment rule (equation (3) in the main paper). In this paper TMIX clustering is
performed using the EMMIXskew software of [7].

Although the method cannot cope with arbitrary data contamination [3], it is robust in practice in most
situations. Although both TMIX and OTRIMLE are robust model-based clustering methods, they are
conceptually and methodologically different.

• TMIX does not treat the noise on its own, because noise and outliers are captured by the tails of
each clusters. Therefore, for the jth clusters the parameters (νj ,µj ,Sj) capture both regular and non
regular points.

• TMIX does not have a clear rule to identify the noise component of the data set. [5] proposed a
rule that requires some strong distributional assumptions for the estimated Mahalanobis distances to
clusters’ centers.

• TMIX does not use the eigenratio constraint to prevent degeneracy of the scale matrices. The
EMMIXskew discards degenerate solutions, which means that solutions on the border of the param-
eter space cannot be achieved.

EMMIXskew allows for setting 5 different covariance models [see 7]. The more general full covariance model
(adopted by the OTRIMLE), which is the default choice in EMMIXskew, did not always produce a solution
in our experiments. That happened particularly for large m, where a full parameterisation would require
necessarily some form of regularization. Furthermore, in our experiments we found that selecting the right
covariance model was important in terms of RLEDmin. Several strategies have been tried. The best approach
was to pick the covariance specification optimizing the Bayes Information Criterion (BIC), a popular strategy
for model selection in model-based clustering. Therefore, for each m, we compute the 5 TMIX clusterings
according to the 5 covariance models and we retain the best solution according to the BIC.

It’s well known that initialization is a particularly difficult task in clustering. EMMIXskew implements several
strategies: fully random initials, k-means initialization, etc. In the experiments these methods produced
somewhat unstable results. In order to make a fair comparison, both OTRIMLE and TMIX have been
initialized using the robust initialization proposed in [1] and implemented in the OTRIMLE package of [2].

4 Survival Curves results

The survival curves for the clusters obtained with the OTRIMLE, SNF and TMIX algorithms are reported.
Here we show the figures for all the datasets by using coloured lines. In fact, also the figures for the BREAST
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cancer and LUNG cancer present in the main text are shown here.

C

Figure 1: Survival Curves of the BREAST dataset. (A) Survival curves of the clusters obtained with the
OTRIMLE algorithm with m∗ = 2 and γ = 5. (B) survival curves obtained with the SNF algorithm with
α∗ = 0.5. (C) survival curves obtained with the TMIX algorithm with m∗ = 2

C

Figure 2: Survival Curves LUNG dataset.(A) survival curves of the clusters obtained with the OTRIMLE
algorithm by using m∗ = 11 and γ∗ = 10. (B) survival curves obtained with the SNF algorithm with
α∗ = 0.5. (C) survival curves obtained with the TMIX algorithm with m∗ = 7.

C

Figure 3: Survival Curves of the GLIO dataset. (A) Survival curves of the clusters obtained with the
OTRIMLE algorithm with m∗ = 17 and γ∗ = Inf. (B) survival curves obtained with the SNF algorithm
with α∗ = 0.4. (C) survival curves obtained with the TMIX algorithm with m∗ = 21.
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C

Figure 4: Survival Curves of the KIDNEY dataset. (A) survival curves of the clusters obtained with the
OTRIMLE algorithm by using m∗ = 7 and γ∗ = 20. (B) survival curves obtained with the SNF algorithm
with α∗ = 0.4. (C) survival curves obtained with the TMIX algorithm with m∗ = 11.

C

Figure 5: Survival Curves of the COLON dataset. (A) survival curves of the clusters obtained with the
OTRIMLE algorithm by using m∗ = 28 and γ∗ = 3. (B) survival curves obtained with the SNF algorithm
with α∗ = 0.7. (C) survival curves obtained with the TMIX algorithm with m∗ = 3.
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5 Over-represented KEGG pathways

Here we report the results of the KEGG pathways over-representation analysis performed on the clusters
obtained with the OTRIMLE, SNF and TMIX algorithms. For each cluster the most relevant pathways
over-represented by the lists of down-regulated (left column) and up-regulated (right column) genes are
reported. The darker are the points in the figure the higher is their relevance, in terms of p-values, and of
the association of the pathways to the up/down regulated genes.

Figure 6: Results of the KEGG pathways over-representation analysis on the SNF clustering of the breast
cancer patients.
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Figure 7: Results of the KEGG pathways over-representation analysis on the TMIX clustering of the breast
cancer patients.

8



Figure 8: Results of the KEGG pathways over-representation analysis on the SNF clustering of the lung
cancer patients.
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Figure 9: Results of the KEGG pathways over-representation analysis on the TMIX clustering of the lung
cancer patients.
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Figure 10: Results of the KEGG pathways over-representation analysis on the SNF clustering of the colon
cancer patients.
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Figure 11: Results of the KEGG pathways over-representation analysis on the OTRIMLE clustering of the
colon cancer patients.
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Figure 12: Results of the KEGG pathways over-representation analysis on the TMIX clustering of the colon
cancer patients.
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Figure 13: Results of the KEGG pathways over-representation analysis on the SNF clustering of the glioblas-
toma patients.
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Figure 14: Results of the KEGG pathways over-representation analysis on the OTRIMLE clustering of the
glioblastoma patients.
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Figure 15: Results of the KEGG pathways over-representation analysis on the TMIX clustering of the
glioblastoma patients.
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Figure 16: Results of the KEGG pathways over-representation analysis on the SNF clustering of the kidney
cancer patients.
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Figure 17: Results of the KEGG pathways over-representation analysis on the OTRIMLE clustering of the
kidney cancer patients.
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6 Selection of the m parameter

Here we report the optimal m∗ decided by our algorithm compared to the distribution of the ordered
eigenvalues of the RSC matrix. For scaling reasons the following plots report the largest 100 components
only.
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Figure 18: Ordered eigenvalues of the RSC matrix for the BREAST data set. The vertical red line corre-
sponds to the optimal m∗ decided by the algorithm.
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Figure 19: Ordered eigenvalues of the RSC matrix for the COLON data set. The vertical red line corresponds
to the optimal m∗ decided by the algorithm.
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Figure 20: Ordered eigenvalues of the RSC matrix for the GLIO data set. The vertical red line corresponds
to the optimal m∗ decided by the algorithm.
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Figure 21: Ordered eigenvalues of the RSC matrix for the KIDNEY data set. The vertical red line corre-
sponds to the optimal m∗ decided by the algorithm.
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Figure 22: Ordered eigenvalues of the RSC matrix for the LUNG data set. The vertical red line corresponds
to the optimal m∗ decided by the algorithm.
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7 Sensitivity of RLEDmin value to the m and γ parameters for OTRIMLE
method

The experiments with the OTRIMLE algorithm were executed by performing a grid search on the m and γ
parameters. In particular, we consider m from 2 to 30 (by steps of 1), from 33 to 48 (by step of 3) and from
50 to 100 (by steps of 5). The grid for the γ is {1, 2, 3, 5, 10, 20, 50, 100, 500, 1000, 10000,+∞}. In this section
the behaviour of the RLEDmin measure for each combination of m and γ is reported in the following bubble
plots. The figures report the RLEDmin values for both the solutions with and without noise. For each
cluster, the p-value of the log rank text was also computed. Red dots identify solutions with no significant
p-values, while red ones identify clusterings with significant p-values. Blu points identify solutions that give
raise to small clusters (clusters with less than 21% of the patients in the dataset). Combinations that are
not marked in the bubble plots are those obtaining a number of clusters different from the desired one. Both
the blue and the empty solutions were discarded from the results.

Figure 23: Distribution of the RLEDmin value across the grid of γ and m values of the cluster identified
with the OTRIMLE algorithm in the BREAST data set.
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Figure 24: Distribution of the RLEDmin value across the grid of γ and m values of the cluster identified
with the OTRIMLE algorithm in the COLON data set.

Figure 25: Distribution of the RLEDmin value across the grid of γ and m values of the cluster identified
with the OTRIMLE algorithm in the GLIO data set.
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Figure 26: Distribution of the RLEDmin value across the grid of γ and m values of the cluster identified
with the OTRIMLE algorithm in the KIDNEY data set.

Figure 27: Distribution of the RLEDmin value across the grid of γ and m values of the cluster identified
with the OTRIMLE algorithm in the LUNG data set.
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8 Sensitivity of RLEDmin value to the α parameters for SNF method

The SNF algorithm was executed by different values of α in the interval going from 0.3 to 1 by step of 0.1.
Here we report the RLEDmin value distribution for all the clustering results in all the datasets. For each
cluster the p-value of the log rank text was also computed. Red dots identify solutions with no significant
p-values, while red ones identify clustering with significant p-value. Blu points identifies solutions that give
raise to small clusters (clusters with less that 21% of the patients in the dataset).
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Figure 28: Distribution of the RLEDmin value across the grid of α values of the cluster identified with the
SNF algorithm in the BREAST data set.
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Figure 29: Distribution of the RLEDmin value across the grid of α values of the cluster identified with the
SNF algorithm in the COLON data set.
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Figure 30: Distribution of the RLEDmin value across the grid of α values of the cluster identified with the
SNF algorithm in the GLIO data set.
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Figure 31: Distribution of the RLEDmin value across the grid of α values of the cluster identified with the
SNF algorithm in the KIDNEY data set.
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Figure 32: Distribution of the RLEDmin value across the grid of α values of the cluster identified with the
SNF algorithm in the LUNG data set.
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9 Sensitivity of RLEDmin value to the m parameters for TMIX method

The TMIX algorithm was executed by different values of m from 2 to 30 (by steps of 1), from 33 to 48 (by
step of 3) and from 50 to 100 (by steps of 5). Here we report the RLEDmin value distribution for all the
clustering results in all the datasets. For each cluster the p-value of the log rank text was also computed.
Red dots identify solutions with no significant p-values, while red ones identify clustering with significant
p-value. Only the m values for which a solution was obtained are reported.
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Figure 33: Distribution of the RLEDmin value across the grid of α values of the cluster identified with the
TMIX algorithm in the BREAST data set.
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Figure 34: Distribution of the RLEDmin value across the grid of m values of the cluster identified with the
TMIX algorithm in the COLON data set.
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Figure 35: Distribution of the RLEDmin value across the grid of m values of the cluster identified with the
TMIX algorithm in the GLIO data set.
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Figure 36: Distribution of the RLEDmin value across the grid of m values of the cluster identified with the
TMIX algorithm in the KIDNEY data set.
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Figure 37: Distribution of the RLEDmin value across the grid of m values of the cluster identified with the
TMIX algorithm in the LUNG data set.
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10 Execution time

In this section the execution time of the SNF, TMIX and of the proposed methods are reported for each data
set. The tests were performed on a windows system installed on a Intel(R) Core(TM) i7-4790K CPU(4GHz)
machine. In Table 2 the timing is reported for a single α value for the SNF algorithm. Table 3 reports the
OTRIMLE timing for m = 100 and γ = 1, which is the most demanding pair of inputs for the algorithm.
Table 4reports the OTRIMLE timing for m = 100, which is the most demanding pair of inputs for the
algorithm.In our study we considered 552 of these pairs, although, as highlighted in Section 3 of the paper,
the number of m values can be greatly reduced by concentrating the search around the elbow region of the
distribution of the eigenvalues of the RSC matrix (see Section 6 in this Supplement).

Table 2: SNF execution time (in seconds). The first column refers to the time needed to build the integrate
affinity matrix (W). The second column refers to the time needed to compute spectral clustering on W.

W Clustering
KIDNEY 0.13 0.01

GLIO 0.72 0.02
BREAST 0.87 0.02

LUNG 0.16 0.01
COLON 0.10 0.01

Table 3: OTRIMLE execution time (in seconds). The first column refers to the time needed to compute
the decomposition of the RSC matrix. The second column refers to the time needed perform OTRIMLE
clustering.

RSC OTRIMLE
KIDNEY 7.67 0.94

GLIO 2.48 1.22
BREAST 6.22 1.23

LUNG 2.25 1.01
COLON 6.25 1.12

Table 4: TMIX execution time (in seconds). The first column refers to the time needed to compute the
decomposition of the RSC matrix. The second column refers to the time needed perform TMIX clustering.

RSC TMIX
KIDNEY 7.67 0.04

GLIO 2.48 0.15
BREAST 6.22 0.12

LUNG 2.25 0.06
COLON 6.25 0.011
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Figure 38: The plot shows the relation between the computational time of OTRIMLE method and its gain
in term of RLEDmin for the 5 data sets analysed in this study. The x-axis shows how much bigger is
the computational time of OTRIMLE with respect to SNF and TMIX and it is computed as the ration
between OTRIMLE execution time sand SNF and TMX execution times respectively . The y-axis show
how much bigger is the increase of RLEDmin of OTRIMLE algorithm with respect to SNF and TMIX and
it is computed as the ration between OTRIMLE RLEDmin values and SNF and TMIX RLEDmin values
respectively

.
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