
“GIFT” — 2018/5/3 — 13:22 — page 8 — #8i
i

i
i

i
i

i
i

8 Lee et al.

Supplementary Information

1 Supplementary Methods

1.1 Tensor Preliminaries

In this section, we describe preliminaries of a tensor and its factorization
methods. Table 1 summarizes symbols used in this paper.

Table 1. Table of symbols.

Symbol Definition

X tensor (Euler script, bold letter)
X matrix (uppercase, bold letter)
x scalar (lower case, italic letter)
N order (number of modes) of a tensor

In, Jn dimensionality of the nth mode of input and core tensor
A(n) nth factor matrix (∈ RIn×Jn)

a
(n)
injn

(in, jn)th entry of A(n)

Ω set of observable entries of X
|Ω|, |G| number of observable entries of input and core tensor
λ regularization parameter for factor matrices
|| • || Frobenius norm
∗ element-wise multiplication

1.1.1 Tensor
A tensor is a multi-dimensional array which is a generalization of a matrix
and a vector. A mode or a way indicates each axis of a tensor, and an
order is the number of modes or ways. We denote a tensor using boldface
Euler script letters (e.g., X). A tensorX ∈ RI1×I2×···×IN is anN -order
tensor which hasN modes whose lengths are from I1 to IN . A vector and
a matrix are regarded as a 1- and a 2-order tensor, respectively. We denote
a matrix and a vector using boldface uppercase (e.g., X) and lowercase
letters (e.g., x), respectively. The i1th row of A is denoted by ai1:, and
the i2th column of A is denoted by a:i2 .

1.1.2 Tucker Decomposition for Partially Observable Tensors
Among many tensor decomposition methods, we use Tucker
factorization (Tucker, 1966; De Lathauwer et al., 2000), which allows
us to discover not only latent concepts but also relations between the
concepts hidden in tensors. Tucker factorization decomposes a given tensor
X into a core tensor G and factor matrices A(1), · · · ,A(N), as defined
in Definition 1.

Definition 1. (Tucker factorization) Given a tensor X ∈
RI1×I2×···×IN with observable entries Ω, Tucker factorization of rank
(J1, · · · , JN) finds a core tensor G ∈ RJ1×···×JN and factor matrices
A(1) ∈ RI1×J1 , · · · ,A(N) ∈ RIN×JN which minimize the following
objective function.

L(G,A(1), · · · ,A(N)) =

∑
∀(i1,...,iN)∈Ω

(
X(i1,...,iN) −

∑
∀(j1,...,jN)∈G

G(j1,...,jN)

N∏
n=1

a
(n)
injn

)2

+ λ

(
N∑
n=1

||A(n)||2F

)
(1)

Note that λ denotes a regularization parameter for factor matrices, and
we used L2-regularization to prevent overfitting, which has been widely
used in machine learning (Koren et al., 2009; Shin et al., 2017a).

Equation (1) only utilizes observed entries of a tensor during
factorizations as missing entries of X have unknown values. In addition,
there are no constraints (e.g., non-negativity or orthogonality) on factor

matrices in Equation (1). Each column vector of a factor matrix generally
represents a concept or a pattern. A higher value in a vector indicates
that the corresponding element is highly related to the concept. The core
tensor encodes how these concepts are related to each other. Assuming a
given tensor is movie rating data with (movie - user - time) triples, then
a column vector in a movie-factor matrix can have a concept such as a
horror or comic genre.

Fig. 1. An illustration of an update rule for a row of a factor matrix. P-Tucker requires three
intermediate dataB(n)

in
, c(n)
in:

, and δ(n)

(i1,...,iN)
for updating the inth row ofA(n) . Note

that λ is a regularization parameter, and IJn is a Jn × Jn identity matrix.

1.2 Baseline Approach: P-Tucker

P-Tucker is a scalable and accurate Tucker factorization method which
updates factor matrices in a row-wise manner based on ALS. Algorithm 2
and Figures 1 and 2 illustrate how P-Tucker updates factor matrices. In
Algorithm 2, P-Tucker first initializes all A(n) and G with random real
values between 0 and 1 (line 1). After which P-Tucker updates a single
factor matrix in a row-wise manner and iterates it for all factor matrices
(lines 3-8). When all factor matrices are updated, P-Tucker measures
reconstruction error using (5) (line 9). P-Tucker stops iterations if the
error converges or the maximum iteration is reached (line 10). Finally, P-
Tucker performs a optional QR decomposition on all A(n) to make them
orthogonal and updates G (lines 12-14). Specifically, QR decomposition
on each A(n) is defined as follows:

A(n) = Q(n)R(n), n = 1...N (2)

where Q(n) ∈ RIn×Jn is column-wise orthonormal and R(n) ∈
RJn×Jn is upper-triangular. Therefore, by substituting Q(n) for A(n),
P-Tucker succeeds in making factor matrices orthogonal. When QR
decomposition is performed, core tensor G must be updated accordingly
in order to maintain the same reconstruction error. The update rule of core
tensor G is given as follows:

G← G×1 R(1) · · · ×N R(N). (3)

Note that performing QR decomposition is optional, and GIFT skips this
process as QR decomposition may sweep out latent patterns in factor
matrices.

Given a row of a factor matrix, an update rule is derived by computing
a gradient with respect to the given row and setting it as zero, which
minimizes the loss function (1). The update rule for the inth row of the
nth factor matrix A(n) (see Figure 1) is given as follows.

Theorem 1 (Row-wise update rule of factor matrices with no masking
constraints). The proposed row-wise update rule (4) minimizes the loss
function (1) regarding the updated parameters.

arg min

[a
(n)
in1

,...,a
(n)
inJn

]

L(G,A
(1)
, ...,A

(N)
) = c

(n)
in: × [B

(n)
in

+ λIJn]
−1 (4)

“GIFT” — 2018/5/3 — 13:22 — page 9 — #9i
i

i
i

i
i

i
i

GIFT: Guided and Interpretable Factorization for Tensors 9

Fig. 2. An overview of P-Tucker. P-Tucker performs a row-wise ALS which updates each row of a factor matrix A(n) while keeping all the others fixed. Since all rows of a factor matrix
are independent of each other in terms of minimizing the loss function (1), P-Tucker fully exploits multi-core parallelism to update all rows of A(n) . First, all rows are carefully distributed
to all threads to achieve a uniform workload among them. After that, all threads update their allocated rows in a fully parallel way. In a single thread, the allocated rows are updated in a
sequential way. Finally, P-Tucker aggregates all updated rows from all threads to update A(n) . P-Tucker iterates this update procedure for all factor matrices one by one.

where B
(n)
in

is a Jn × Jn matrix whose (j1, j2)th entry is

∑
∀(i1,...,iN)∈Ω

(n)
in

δ
(n)
(i1,...,iN)

(j1)δ
(n)
(i1,...,iN)

(j2), (5)

c
(n)
in: is a length Jn vector whose jth entry is

∑
∀(i1,...,iN)∈Ω

(n)
in

X(i1,...,iN)δ
(n)
(i1,...,iN)

(j), (6)

δ
(n)
(i1,...,iN)

is a length Jn vector whose jth entry is

∑
∀(j1...jn=j...jN)∈G

G(j1...jn=j...jN)

∏
k 6=n

a
(k)
ikjk

, (7)

Proof.
∂L

∂a
(n)
injn

= 0, ∀jn, 1 ≤ jn ≤ Jn

⇔
∑
∀α∈Ω

(n)
in

((
Xα −

∑
∀β∈G Gβ

∏N
n=1 a

(n)
injn

)
×
(
− δ(n)

α (jn)

))
+ λa

(n)
injn

= 0

⇔ [a
(n)
in1, ..., a

(n)
inJn

]

(∑
∀α∈Ω

(n)
in

(
δ
(n)T
α δ

(n)
α

)
+ λIJn

)
=
∑
∀α∈Ω

(n)
in

(
Xαδ

(n)
α

)

⇔ [a
(n)
in1, ..., a

(n)
inJn

] = c
(n)
in: × [B

(n)
in

+ λIJn]−1

Ω
(n)
in

indicates the subset of Ω whose nth mode’s index is in, λ is
a regularization parameter, and IJn is a Jn × Jn identity matrix.
As shown in Figure 1, the update rule for the inth row of A(n)

requires three intermediate data B
(n)
in

, c
(n)
in: , and δ

(n)
(i1,...,iN)

. Those

data are computed by the subset of observable entries Ω
(n)
in

. Thus,
computational costs of updating factor matrices are proportional to the
number of observable entries, which lets P-Tucker fully exploit the
sparsity of given tensors. Note that a matrix [B

(n)
in

+ λIJn] is positive-
definite and invertible, and the full version of Proof 1.3 is available at
https://datalab.snu.ac.kr/ptucker/supple.pdf.

Algorithm 2 P-Tucker

Input: A tensor X ∈ RI1×···×IN with observable entries Ω, mask matrices
M(1), · · · ,M(N), rank (J1, · · · , JN), and a regularization parameter λ.

Output: A core tensor G and factor matrices A(1), · · ·A(N).
1: initialize G and A(1), · · · ,A(N) randomly
2: repeat
3: for n = 1, · · · , N do
4: for in = 1, · · · , In do
5: calculate intermediate data δ, B(n)

in
, and c

(n)
in: by Eq. (2) – (4)

6: update a row a(n)
in: by c

(n)
in: × [B

(n)
in

+ λIJn]−1

7: end for
8: end for
9: compute reconstruction error by Eq. (5)
10: until a convergence criterion is met
11: for n = 1...N do
12: A(n) → Q(n)R(n)

13: A(n) ← Q(n)

14: G← G×n R(n)

15: end for

1.3 GIFT Algorithm for General N-order Tensors

GIFT adapts the row-wise update rule proposed for P-Tucker with modified
loss function. The derivation of the update rules are similar to that of
P-Tucker as provided in the following Theorem 2 and proof.

Theorem 2 (Row-wise update rule of factor matrices with masking
constraints). The proposed row-wise update rule (8) minimizes the loss
function (6) regarding the updated parameters.

arg min
[a

(n)
in:]

L(G,A(1), ...,A(N),M(1), ...,M(N)) = c
(n)
in: × [B

(n)
in

+ λD
(n)
in

]−1

(8)
where D

(n)
in

is a Jn × Jn diagonal matrix whose (jn, jn)th entry is

m
(n)
in,jn

,B(n)
in

is aJn × Jn matrix whose (j1, j2)th entry is Equation (5),

c
(n)
in: is a length Jn vector whose jth entry is Equation (6), and δ(n)

α is a
length Jn vector whose jth entry is Equation (7).

Proof.
∂L

∂a
(n)
injn

= 0, ∀jn, 1 ≤ jn ≤ Jn

⇔
∑
∀α∈Ω

(n)
in

((
Xα −

∑
∀β∈G Gβ

∏N
n=1 a

(n)
injn

)
×
(
− δ(n)

α (jn)

))
+ λm

(n)
injn

a
(n)
injn

= 0

“GIFT” — 2018/5/3 — 13:22 — page 10 — #10i
i

i
i

i
i

i
i

10 Lee et al.

⇔ a
(n)
in:

(∑
∀α∈Ω

(n)
in

(
δ
(n)T
α δ

(n)
α

)
+ λD

(n)
in

)
=

∑
∀α∈Ω

(n)
in

(
Xαδ

(n)
α

)

⇔ [a
(n)
in1, ..., a

(n)
inJn

] = c
(n)
in: × [B

(n)
in

+ λD
(n)
in

]
−1

With the derived row-wise update rules, the GIFT algorithm for N -
order tensor is provided in the Algorithm 3.

Algorithm 3 N-order GIFT

Input: A tensor X ∈ RI1×···×IN with observable entries Ω, mask matrices
M(1), · · · ,M(N), rank (J1, · · · , JN), and a regularization parameter λ.

Output: A core tensor G and factor matrices A(1), . . . ,A(N).
1: initialize G and A(1), · · · ,A(N) randomly
2: repeat
3: for n = 1, · · · , N do
4: for in = 1, · · · , In do
5: calculate intermediate data δ, B(n)

in
, and c

(n)
in: by Eq. (2) – (4)

6: calculate diagonal matrix D
(n)
in

, where its (jn, jn)th entry is M(n)
injn

7: update a row a(n)
in: by c

(n)
in: × [B

(n)
in

+ λD
(n)
in

]−1

8: end for
9: end for
10: compute reconstruction error by Eq. (5)
11: until error converges or exceeds maximum iteration

1.4 Theoretical analyses of GIFT

In this section, we offer theoretical analyses of GIFT in terms of
time, memory, and convergence. Specifically, we analyze time and
memory complexity of GIFT (P-Tucker and Silenced-TF have the same
complexities to GIFT). For simplicity, we assume I1 = ... = IN = I

and J1 = ... = JN = J . Table 2 summarizes the time and memory
complexities of GIFT. Note that we calculate time complexity per iteration,
and we focus on memory complexity of intermediate data, not of all
variables.

Table 2. Complexity analysis of GIFT with respect to time
and memory. Note that memory complexity indicates
the space requirement for intermediate data. |Ω| is the
number of observable entries in X and T is the number
of threads.

Algorithm Time Complexity Memory
(per iteration) Complexity

GIFT O(NIJ3 +N2|Ω|JN) O(TJ2)

Theorem 3 (Time complexity of GIFT). The time complexity of GIFT
is O(NIJ3 +N2|Ω|JN).

Proof. Given the inth row of A(n) (lines 3-4) in Algorithm 1 ,
computing δ (line 5) takes O(N |Ω(n)

in
|JN). Updating B

(n)
in

, c
(n)
in: ,

and D
(n)
in

(lines 5-6) takes O(|Ω(n)
in
|J2) since δ is already calculated.

Inverting [B
(n)
in

+ λD
(n)
in

] (line 7) takes O(J3), and updating a row
(line 7) takes O(J2). Thus, the time complexity of updating the inth
row of A(n) (lines 5-7) is O(J3 + N |Ω(n)

in
|JN). Iterating it for all

rows of A(n) takes O(IJ3 + N |Ω|JN). Finally, updating all A(n)

takes O(NIJ3 +N2|Ω|JN). According to (5), reconstruction (line 10)
takes O(N |Ω|JN). Thus, the time complexity of GIFT is O(NIJ3 +

N2|Ω|JN).

Theorem 4 (Memory complexity of GIFT). The memory complexity of
GIFT is O(TJ2).

Proof. The intermediate data of GIFT consist of two vectors δ and c
(n)
in:

(∈ RJ) , and two matrices B
(n)
in

and [B
(n)
in

+ λD
(n)
in

]−1 (∈ RJ×J).
Memory spaces for those variables are released after updating the inth

row of A(n). Thus, they are not accumulated during the iterations. Since
each thread has their own intermediate data, the total memory complexity
of GIFT is O(TJ2).

Theorem 5 (Convergence of GIFT). GIFT converges since (1) is
bounded and decreases monotonically.

Proof. According to Theorem 1, the loss function (1) never increases
since every update in GIFT minimizes it, and (1) is bounded by 0. Thus,
GIFT converges.

2 Supplementary Results
In this section, we offer additional experimental results of GIFT and other
methods. In detail, we first introduce value distributions of masked and
unmasked entries derived by P-Tucker and Silenced-TF. After that, we
describe pattern stability of GIFT, justifications for a hyperparameter
selection, and scalability of the algorithms with respect to the number
of observed entries in a tensor.

2.1 Interpretability

As shown in Figure 3 middle, P-Tucker fails to make a distinction between
masked and unmasked entries. The results are easily expected since P-
Tucker does not differentiate the masked and unmasked ones when it
updates factor matrices.

10

10

10

10

10

10

10

10

Unmasked Entries Masked Entries

10

10

10

10

10

10

10

10

10

10

10

10

10

10

G
IF

T
P-

Tu
ck

er
Si

le
nc

ed
-T

F

Fig. 3. Distributions of values in a gene factor matrix derived by GIFT, P-Tucker and
Silenced-TF with λ = 10.

On the other hand, Silenced-TF produces interpretable results, as
presented in Figure 3 bottom. The values of masked entries are fixed to
zeros, while the values of unmasked entries are varying from 0 to 0.3.
Although Silenced-TF provides interpretable results, it cannot retrieve
important masked entries as the values of them are set to zeros.

2.2 Pattern Stability

We repeat GIFT 10 times with random initializations in the default setting
(λ = 10 and rank = 30 × 50 × 2). As shown in Tables 3 and 4,
coefficient of variation (average / standard deviation) of two criteria are
0.02 and 0.061, respectively. The small values tell us that GIFT shows
stable convergence regardless of random initialization. Note that ‘Fit’ is

defined as 1− ||X−X′||
||X|| , where higher ‘Fit’ value indicates high accuracy.

“GIFT” — 2018/5/3 — 13:22 — page 11 — #11i
i

i
i

i
i

i
i

GIFT: Guided and Interpretable Factorization for Tensors 11

Table 3. Stability experiments of GIFT. We repeat GIFT 10 times with random initializations. All parameters are set
as default (λ=10 and rank=30× 50× 2).

Experiments 1 2 3 4 5 6 7 8 9 10

Fit 0.85762 0.86785 0.82672 0.86191 0.82902 0.85963 0.82409 0.85601 0.82875 0.83383

Test RMSE 0.06842 0.06703 0.07939 0.0698 0.07531 0.07057 0.07419 0.0719 0.0805 0.07259

Table 4. Stability summary of GIFT. GIFT
has small standard deviations compared to its
averages, which implies that GIFT shows stable
convergence with respect to reconstruction error
and test RMSE.

Fit Test RMSE

Average 0.844543 0.07297

Standard Deviation 0.01648 0.004447

2.3 Hyperparameter Selection

One of the strengths of GIFT is that there are only few hyperparameters to
be manually adjusted. The major parameter is a regularization coefficient
λ, and we selected λ = 10 through various experiments, as presented in
Table 5 (bold indicates the best one). Our criteria for choosing λ include
1) high interpretability 2) low test RMSE. Regarding interpretability, λ =

100 is the best choice since it clearly distinguishes masked and unmasked
entries (refer to Figure 4). Although it provides more interpretable results,
it is hard to reveal important masked entries when λ = 100 as masked
entries have too small values due to high penalties. Meanwhile, in the case
of test RMSE,λ = 1 records the lowest value. Thus, we choose the middle
of the parameters as λ = 10 since it has high interpretability and almost
the same test RMSE to λ = 1. We note that it is not straightforward to
make the optimization process automatic as interpretability is hard to be
derived in a numerical format. In the case of rank, we choose the best one
30× 50× 2 considering running time and accuracy.
A B

Fig. 4. Distributions of values in a gene factor matrix derived by GIFT (λ = 100) for
unmasked (A) and masked entries (B). The values of unmasked entries are much larger
than that of masked ones.

2.4 Significant Factor Value

Significance of a gene factor value is chosen based on distribution of the
factor values. Fig. 3 show gene factor value distribution of unmasked
entries (gene set members) and masked entries solved via GIFT. Many
unmasked entries had significant factor values (≥ 8 or≤ −8) and majority
of the masked entries had insignificant factor values. This shows that GIFT

Table 5. Hyperparameter experiment of GIFT. λ = 10 was selected as
the best parameter with respect to interpretability and accuracy.

λ 0.001 0.01 0.1 1 10 100

Training RMSE 0.0362 0.038425 0.038 0.0448 0.0731 0.08

Test RMSE 0.08659 0.097444 0.01 0.0747 0.075 0.082

has learned the latent relationships of cancer patients to gene sets and
significant genes in the gene set by encoding prior knowledge during its
training. P-Tucker, on the other hand, produces a gene factor matrix with
value distribution that has small or no correlation to a gene set. (refer to
Supplementary Figure 3 for gene factor distribution of Silenced-TF and
P-Tucker).

2.5 Scalability

We vary the number of observable entries by randomly sampling 20%,
40%, 60%, 80%, and 100% from the PANCAN12 tensor. As shown in
Figs 5, P-Tucker (A) and Silenced-TF (B) scale near linearly in terms of
the number of observable entries.

 200

 400

 600

 800

 1000

 1200

 1400

 0.2 0.4 0.6 0.8 1

Ti
m

e
pe

r
ite

ra
tio

n
(s

ec
s)

Sampling ratio

P-Tucker

 200

 400

 600

 800

 1000

 1200

 1400

 0.2 0.4 0.6 0.8 1
Sampling ratio

Silenced-TF

A B

Fig. 5. Scalability of P-Tucker (A) and Silenced-TF (B) with respect to the number of
observable entries in the tensor. As the number of observed entries increases, a running
time of P-Tucker and Silenced-TF increases proportionally.

Figure 6 shows total running time of GIFT in terms of density of a
tensor. GIFT shows linear scalability regarding the number of non-zeros.

 4000

 8000

 12000

 16000

 20000

 24000

 0.2 0.4 0.6 0.8 1

To
ta

l r
un

ni
ng

 t
im

e
(s

ec
s)

Sampling ratio

Fig. 6. Total running time of GIFT with respect to the number of non-zeros of a tensor.
GIFT presents linear scalability similar to the case of per iteration time.

Moreover, we underline that GIFT is still scalable with the large-
scale dataset since GIFT only stores non-zeros of a tensor and does not
require huge intermediate data during its computation (refer to Table
6). The current size of the PanCan12 dataset is up to 2 GB and easily
handled by modern hardware. However, provided that the dataset is scaled
up enormously due to increased samples or platforms (e.g., 100, 000 ×
14, 000× 100), the total size would be 2 TB (1,000 times larger), which
cause out-of-memory error for standard Tucker methods.

Table 6. Scalability experiment of GIFT for a large-scale tensor.
GIFT shows small time and memory overhead for the large-scale
dataset (2 TB).

Scale Time per iteration Memory

4000 x 14000 x 5 (2 GB) 1131.290453 5.61 GB
100000 x 14000 x 100 (2 TB) 1148.971755 5.66 GB

“GIFT” — 2018/5/3 — 13:22 — page 12 — #12i
i

i
i

i
i

i
i

12 Lee et al.

References
De Lathauwer,L., De Moor,B. and Vandewalle,J. (2000) A multilinear singular value

decomposition. SIAM J. Matrix Anal.& Appl, 21 (4), 1253–1278.

Koren,Y., Bell,R. and Volinsky,C. (2009) Matrix factorization techniques for
recommender systems. Computer, 42 (8), 30–37.

Tucker,L.R. (1966) Some mathematical notes on three-mode factor analysis.
Psychometrika, 31 (3), 279–311.

