snpAD: an ancient DNA genotyper

Supplementary Tables and Figures

June 19, 2018

Contents

1	Figures	4
2	Tables	17
3	Comparison to GATK and samtools3.1Altai Neandertal Chromosome 213.2Vindja 33.19 Neandertal Chromosome 21	32 32 34
4	Comparison to ATLAS	35

List of Figures

1	Schematic description of default error model	4
2	Histogram of quality scores in ancient samples	5
3	Effect of quality score filtering on pairwise sequence divergence for	
	ancient samples	6
4	Runtime for simulated datasets	7
5	Memory usage with simulated datasets	8
6	Error estimates for Vindija 33.19 data on chromosome 21	9
7	Discordant genotype calls in Vindija 33.19 subsamples compared	
	to the full 30x coverage calls	10
8	Classification of discordant genotype calls in Vindija 33.19 sub-	
	samples	11
9	Classification of discordant genotype calls in Vindija 33.19 sub-	
	samples $(GQ30)$	12
10	Classification of discordant genotype calls in Vindija 33.19 sub-	
	samples $(GQ50)$	13
11	Expected proportion of sites with at least 4-fold coverage in low-	
	coverage genomes	14
12	Damage patterns in single stranded libraries	15
13	Damage patterns in double stranded libraries	16

List of Tables

1	Datasets used in this study	17
2	Simulated genotype frequencies	17
3	Estimated genotype frequencies from simulations	18
4	Estimates from 100M simulated sites at exactly 3-fold coverage	18
5	Genotype frequency estimates for 3x simulated coverage when true	
	error rates are given	18
6	Genotype frequency estimates for simulations with 1-3x with a	
	poisson distributed coverage	19
7	Simulated genotype frequencies with reference bias	19
8	Estimated genotype frequencies and reference bias from simula-	
	tions with reference bias	20
9	Estimated genotype frequencies and reference bias from simula-	
	tions without reference bias	21
10	Vindija 33.19: previous and new genotype frequency estimates for	
	30x chromosome 21	22
11	Estimated genotype frequencies for subsampled Vindija 33.19 data	22

Estimated genotype frequencies for subsampled Vindija 33.19 data	
with reference bias	23
Comparison of called genotypes in Vindija 33.19 subsamples to 30x	
calls	24
Comparison of called genotypes at GQ30 in Vindija 33.19 subsam-	
ples to 30x calls.	25
Comparison of called genotypes at GQ50 in Vindija 33.19 subsam-	
ples to 30x calls.	26
Vindija 33.15: genotype frequency estimates with and without ref-	
erence bias	27
Comparison of Vindija 33.19 and 33.15 chr21 genotypes with and	
without reference bias	28
Genotype frequencies for subsampled Vindija 33.19 data restricting	
to at least 4-fold coverage	29
Genotype frequencies for low-coverage archaic and modern humans	
with at least 4-fold coverage	30
ATLAS' genome-wide estimates of θ for Motala12	31
GATK and samtools vs. snpAD heterozygous calls on Altai chro-	
mosome 21	33
GATK and samtools vs. snpAD heterozygous calls on Vindija	
33.19 chromosome 21	34
	Estimated genotype frequencies for subsampled Vindija 33.19 data with reference bias

Figures

Figure 1: Schematic description of default error model. The first 15 and last 15 bases of each sequence are represented by separate base substitution matrices. Bases in the interior are assigned to a 31st matrix. This schema is expected to capture differences in substitution probabilities caused by ancient DNA damage (see e.g. Figs.12 and 13).

Figure 2: Histogram of quality scores in ancient samples: The majority of bases are of high-quality $(Q \ge 30)$. See Table 1 for a description of the samples. Note that the maximum quality score is 40 in the Motala12 data and 60 for all other samples.

Motala were compared to the human genome hg19. Analysis was restricted to chromosome 1 for low-coverage and chromosome 21 for high-coverage samples. See Supplementary Figure S7 in Prüfer et al. (2017) for a similar Shown are the average that increasing quality scores are expected to produce a linear decrease on that scale. The Altai and Goyet Neandertal samples were compared to the Altai genotype calls excluding heterozygous positions. Loschbour and number of mismatching bases to a reference genome for all substitutions (left) and for any substitution, except for reference C to sample T or reference G to sample A (right). Note that the y-scale is on a log scale, and Figure 3: Effect of quality score filtering on pairwise sequence divergence for ancient samples. analysis of Vindija 33.19.

Figure 4: Runtime in CPU minutes for estimates with and without reference bias on simulated datasets. Wall clock time ranged from 23 to 83 minutes parellelizing over 30 cores of a multi-core Intel Xeon server.

Figure 5: Maximum RAM usage in GiB during estimation of parameters with and without reference bias on simulated datasets. Note that the estimates overlap almost perfectly between the runs with and without reference bias so that points appear in light gray. Y-axis starts at 4GiB.

Figure 6: Error estimates for Vindija 33.19 data on chromosome 21. Left: Error estimates compared to substitutions of the Vindija 33.19 sequences to the previously published Vindija 33.19 genotypes. Right: Error estimates compared to substitutions of the data to the Altai Neandertal genotypes.

Figure 7: Discordant genotype calls in Vindija 33.19 subsamples compared to the full 30x coverage calls. Frequency of discordant genotypes is on a logscale. Colors indicate whether all genotypes were considered, or only those with a genotype quality >30 or >50.

1/2:1/1 0/1:0/0 0/0:0/1

Figure 10: Classification of discordant genotype calls in Vindija 33.19 subsamples. A genotype quality cutoff of ≥ 50 was applied. No discordant calls were observed for coverage 1 and 25. For counts see Table 13. Legend shows genotypes in order 30x:subsample.

Figure 11: Expected proportion of sites with at least 4-fold coverage in lowcoverage genomes according to the Lander-Waterman statistics.

2 Tables

Group	Name	Coverage	Reference
Neandertal	Altai (from Denisova cave)	52x	Prüfer et al. (2014)
Neandertal	Vindija 33.19	30x	Prüfer et al. (2017)
Modern human	Loschbour	22x	Lazaridis $et \ al. \ (2014)$
Neandertal	Les Cottés Z4-1514	2.7x	Hajdinjak et al. (2018)
Modern human	Motala 12	2.4x	Lazaridis $et \ al. \ (2014)$
Neandertal	Goyet Q56-1	2.2x	Hajdinjak et al. (2018)
Neandertal	Mezmaiskaya 2	1.7x	Hajdinjak <i>et al.</i> (2018)
Neandertal	Vindija 87	1.3x	Hajdinjak et al. (2018)
Neandertal	Spy 94a	1.0x	Hajdinjak et al. (2018)

Table 1: Datasets use	ed in this study.
-----------------------	-------------------

Cov.	AC	AG	AT	CG	CT	GT
3	0.0994	0.193	0.0979	0.0958	0.197	0.0977
4	0.0983	0.2045	0.1008	0.0977	0.2074	0.1056
5	0.0987	0.2035	0.105	0.1006	0.2051	0.092
6	0.1001	0.1973	0.1002	0.103	0.2035	0.0975
7	0.0998	0.2004	0.1001	0.1024	0.2083	0.1037
8	0.103	0.1964	0.1007	0.1014	0.1985	0.0961
9	0.0966	0.2057	0.0916	0.0972	0.1986	0.095
10	0.1039	0.1952	0.096	0.1	0.2053	0.1003
12	0.1051	0.2022	0.1	0.0949	0.2033	0.0989
15	0.0994	0.1985	0.1009	0.099	0.2003	0.1027
17	0.1014	0.2019	0.0992	0.0993	0.2026	0.0964
20	0.099	0.1939	0.1018	0.0998	0.2012	0.1031
25	0.1045	0.2009	0.0971	0.0964	0.2007	0.0986
30	0.0976	0.2051	0.1019	0.0974	0.2011	0.0976

Table 2: Simulated genotype frequencies (per 1000bp). Deviation from specified parameters are due to the use of a pseudo random number generator during simulation.

Cov.	AC	AG	AT	CG	CT	GT
3	0.141943	0.487617	0.132684	0.217547	0.518872	0.145262
4	0.0978802	0.217037	0.106058	0.103366	0.207338	0.107778
5	0.0977911	0.19909	0.102525	0.0982538	0.213814	0.0922814
6	0.0982396	0.2003	0.100129	0.100975	0.2039	0.0957835
7	0.0994662	0.205249	0.099413	0.101335	0.211202	0.102465
8	0.102891	0.202079	0.100336	0.101366	0.195546	0.0962143
9	0.0961095	0.201015	0.0916744	0.0967756	0.198276	0.0956978
10	0.102898	0.195699	0.0955418	0.10141	0.209569	0.100444
12	0.105482	0.200895	0.100301	0.0951686	0.204228	0.0986684
15	0.0998465	0.199688	0.100235	0.0986095	0.199992	0.10304
17	0.101299	0.202168	0.0993153	0.0990021	0.201701	0.0962989
20	0.0985454	0.194164	0.101311	0.099694	0.200358	0.103154
25	0.104501	0.200799	0.0970826	0.0963994	0.200622	0.0985396
30	0.0976482	0.20494	0.101913	0.0973725	0.201186	0.0976336

Table 3: Estimated genotype frequencies (per 1000bp) from simulations (see Table 2).

Genotype	Simulated freq.	Estimated freq.	Exp-Obs/Exp
AC	0.10027	0.132199	-0.318
AG	0.19781	0.242159	-0.224
AT	0.10025	0.020440	0.7961
CG	0.10238	0.230882	-1.255
CT	0.19831	0.235709	-0.189
GT	0.10012	0.131489	-0.313

Table 4: Estimated genotype frequencies (per 1000bp) from a simulation with 100million sites at exactly 3-fold coverage.

Genotype	Simulated freq.	Estimated freq. with	Exp-Obs/Exp
		true error rates	
AC	9.94e-05	9.67491e-05	0.026669014084507
AG	0.000193	0.000178968	0.0727046632124353
AT	9.79e-05	9.88342e-05	-0.00954239019407561
CG	9.58e-05	9.81046e-05	-0.0240563674321503
CT	0.000197	0.000211775	-0.0750000000000001
GT	9.77e-05	0.000102151	-0.0455578300921188

Table 5: Genotype frequency estimates for 3x simulated coverage when true error rates are given.

Cov.	AC	AG	AT	CG	CT	GT
1	1.99e-4	7.38e-4	9.21e-5	2.66e-4	6.13e-4	2.00e-4
2	1.12e-4	2.00e-4	8.03e-5	9.77e-5	2.48e-4	9.92e-5
3	9.34e-5	2.06e-4	1.00e-4	1.03e-4	1.97e-4	1.03e-4

Table 6: Genotype frequency estimates for 1-3x simulated average coverage. In contrast to the fixed coverage in the previous simulations, the simulated coverage follows a poisson distribution. Each simulation encompasses 10 million simulated sites, including sites that had no coverage.

Cov.	AC	AG	AT	CG	CT	GT	ref.bias
3	0.1071	0.2018	0.0989	0.094	0.1988	0.104	0.5511
4	0.0983	0.1951	0.1047	0.1017	0.199	0.098	0.5494
5	0.0983	0.1975	0.0975	0.0969	0.1965	0.1011	0.5461
6	0.096	0.203	0.0977	0.0977	0.1991	0.0996	0.5498
7	0.0993	0.1914	0.0976	0.1003	0.1969	0.0972	0.5464
8	0.0997	0.1981	0.0993	0.0992	0.201	0.0998	0.5475
9	0.1027	0.1996	0.0977	0.105	0.2007	0.097	0.5510
10	0.0958	0.2	0.0991	0.1047	0.2023	0.0966	0.5515
12	0.0976	0.2029	0.0985	0.0987	0.1966	0.0995	0.5508
15	0.0962	0.1955	0.0966	0.1	0.2036	0.1045	0.5501
17	0.1018	0.1918	0.0966	0.0953	0.202	0.0966	0.5503
20	0.1019	0.1963	0.0992	0.1039	0.1928	0.0958	0.5485
25	0.0964	0.2025	0.0946	0.0986	0.2072	0.1016	0.5488
30	0.0996	0.2049	0.1047	0.1009	0.1997	0.1044	0.5514

Table 7: Simulated genotype frequencies with reference bias (per 1000bp).

Cov.	AC	AG	AT	CG	CT	GT	ref.bias
3	1		1	1		1	0.95417
4	1		1	1		1	0.953826
ប	1	, _ 1	1	1		1	0.956578
6	1		1	1		1	0.958906
2	1	, 1	1	1		1	0.958269
∞	1		1	1		1	0.953793
6	1	Ц	1	1	Н	1	0.950293
10	0.103956	0.251935	0.107054	0.115078	0.252771	0.104944	0.608715
12	0.0993383	0.22121	0.0997244	0.101436	0.21645	0.102138	0.5730837
15	0.0977169	0.202107	0.0976777	0.100955	0.210079	0.104663	0.558126
17	0.101805	0.197107	0.0978276	0.096013	0.203464	0.0969439	0.5546397
20	0.101403	0.198897	0.0989341	0.104611	0.195179	0.0956663	0.5505485
25	0.0970535	0.201382	0.0935319	0.0976879	0.20715	0.101026	0.549275
30	0.0996463	0.20537	0.104621	0.101775	0.202138	0.104083	0.5518523

÷	le	
е 7	tł	
ld1	lat	
Ê	th	
ee	ute	
s.	ica	
ias	nd	
e p		
nc	an(
ere	e	
efe	lui	
'n ı	cec	
wit	IO	
ls	1 L	
ior	ior	
lat	zat	
nu	nii	
\sin	tij	
ш	jo	
frc	he	
las	rt	
j.	\mathbf{fo}	
nce	\mathbf{es}	
rel	alu	
efe	Ň	
л П	ial	
an(nit	
â	е і	
q	$_{\mathrm{th}}$	
00	$_{\mathrm{to}}$	
r^{1}	Ъ	
pe	00	
ss (esp	
cié	LTC	
len	5	e. Ge
gl	dq	/er
fr(00	NUC
pe	10	ŭ
oty	$\frac{1}{2}$	lot
enc	of	q
<u></u>	\mathbf{GS}	di
tec	lCi	ιm
na'	uer	ith
tir	eqi	Sor
$\mathbf{E}_{\mathbf{S}}$	Η	al£
$\stackrel{\infty}{\sim}$		
ole		
lat		

Cov.	AC	AG	AT	CG	CT	GT	ref.bias
co Co	1	1	1	1	1	1	0.953438
4	1	1	1	1	1	1	0.953484
ŋ	1	1	1	1	1	1	0.956395
9	1	1	1	1	1	1	0.958075
2	1	1	1	1	1	1	0.956719
∞	1	1	1	1	1	1	0.95392
9	0.103322	0.237223	0.0982436	0.104155	0.234996	0.103418	0.5754379
10	0.105007	0.207003	0.0977101	0.103477	0.22399	0.103373	0.5405103
12	0.10596	0.208124	0.0997445	0.0944469	0.20766	0.100264	0.518081
15	0.100901	0.20544	0.100627	0.0985946	0.197782	0.102163	0.50840239
17	0.10114	0.202382	0.0990932	0.0991423	0.202261	0.0962275	0.50315541
20	0.0986462	0.194231	0.102811	0.0999103	0.200908	0.103067	0.5000655172
25	0.104676	0.19986	0.0975324	0.0960198	0.201889	0.0984695	0.50172859
30	0.0975958	0.204819	0.10192	0.0974037	0.201259	0.0976113	0.50130228

Table 9: Estimated genotype frequencies (per 1000bp) and reference bias from simulations without reference bias (see Table 2). Simulations included no reference bias (r = 0.50), but fluctuated between 0.498-0.502 due to the use of a pseudo random number generator.

Genotype	Previous estimates	Current estimates	Exp-Obs/Exp
AC	0.02637483448	0.0266535	-0.0106
AG	0.08703966695	0.0871984	-0.0018
AT	0.02642543445	0.0267161	-0.0110
CG	0.02333611154	0.0235279	-0.0082
CT	0.08398376852	0.0839987	-0.0002
GT	0.02822805388	0.028621	-0.0139

Table 10: Vindija 33.19: previous and new genotype frequency estimates for 30x chromosome 21. Previous estimates were based on an error rates derived from comparing Vindija 33.19 sequences to the Altai Neandertal genotypes, while the new procedure co-estimates the error. Genotype frequencies are given per 1000bp.

Cov.	AC	AG	AT	CG	СТ	GT
1	0.156481	1	0.099432	0.181886	1	0.148702
2	0.0235957	0.0915316	0.00995462	0.0212318	0.0902833	0.0243273
3	0.0194142	0.0793266	0.015004	0.0183244	0.0831413	0.0229132
4	0.0230869	0.0873542	0.0164465	0.0204864	0.0896604	0.0222243
5	0.022984	0.0841431	0.017246	0.0208929	0.0846063	0.0221146
6	0.0225169	0.0834912	0.016566	0.0198478	0.0836662	0.022483
7	0.0222535	0.0854938	0.0175251	0.0195863	0.0812381	0.022945
8	0.0218176	0.087055	0.0177506	0.0197764	0.0823211	0.0221323
9	0.0228057	0.0861142	0.0181263	0.0209766	0.0837547	0.0230667
10	0.0220717	0.0843099	0.0190784	0.0205518	0.0859023	0.0233493
12.5	0.0238188	0.0871949	0.0201923	0.0209605	0.0845151	0.0239949
15	0.0237837	0.0878583	0.020731	0.0214662	0.0845611	0.0245654
17.5	0.0247929	0.0860958	0.0219419	0.0216504	0.0842108	0.0253737
20	0.0241059	0.0887325	0.0234373	0.0222888	0.0844751	0.0255594
25	0.0260217	0.0867229	0.0250622	0.0230925	0.0845706	0.0275897
30	0.0266535	0.0871984	0.0267161	0.0235279	0.0839987	0.028621

Table 11: Estimated genotype frequencies (per 1000bp) for subsampled Vindija33.19 data and full data (30-fold coverage) for Chromosome 21.

	AG	AT	CG	CT	GT	ref.bias.
1	1	1	1	1	1	0.488789
	_	1	1	1	1	0.483124
	1	1	1	1	1	0.482451
	Ţ,	1	1	1	1	0.483107
	1	1	1	1	1	0.483965
	, _ 1	1	1	1	1	0.484572
	_	1	1	1	1	0.484614
1 1		1	1	1	1	0.484388
, ,		1	1	1	1	0.48411
1 1		1	1	1	1	0.48357
	0.102948	0.0211019	0.0233485	0.0974866	0.0260767	0.0780759
	0.095778	0.0220548	0.0220069	0.0927085	0.0257213	0.0641697
$\overline{}$	0.0917879	0.0226941	0.0221606	0.0896427	0.0262666	0.055925
	0.0911584	0.0243382	0.0229291	0.0882428	0.0274094	0.0526592
_	0.0896112	0.0260777	0.0234638	0.0872355	0.0283603	0.0495509
	0.0892411	0.0278416	0.0238781	0.086252	0.0291206	0.0471163

Table 12: Estimated genotype frequencies (per 1000bp) and reference bias for subsampled Vindija 33.19 data and full data(30-fold coverage) for Chromosome 21.

																	_
25×	130	43	0	203	0	0	11	2	0	2	9	22755575	5964	37159	26	0	9
20x	194	122	0	404	0	0	28	2	0	0	18	22754464	5760	37040	16	2	11
17.5x	228	204	0	544	1	0	37	2	0	1	19	22753357	5616	36981	14	3	17
15×	259	370	0	687	1	0	39	1	0	7	23	22751474	5471	36897	6	4	23
12.5x	303	784	0	892	2	0	45	1	1	5	26	22747418	5261	36801	2	2	22
10×	318	1981	0	1191	e	0	51	1	1	2	25	22735585	4940	36681	9	1	16
9x	313	3022	0	1362	e	0	50	1	0	2	24	22723853	4754	36612	9	1	14
8x	306	4773	0	1559	4	0	49	1	0	5	23	22703546	4535	36508	9	1	16
7×	284	7623	0	1748	4	0	51	0	1	1	20	22664220	4308	36402	2	1	15
6x	247	12343	0	1975	ъ 2	0	64	0	1	1	19	22585939	4039	36169	4	1	17
5×	222	20669	1	2230	×	0	89	0	1	1	18	22419936	3711	35754	3	2	25
4x	180	34348	0	2469	8	0	108	0	1	1	19	22061259	3339	35026	1	2	37
3x	94	55902	0	2632	13	0	149	0	2	0	15	21245357	2936	33441	0	0	57
2x	63	84857	0	2542	15	0	192	0	1	0	12	19237587	2468	29995	0	0	53
1x	5152	99102	8	1711	19	2	197	7	0	0	6	14054746	1845	21578	0	1	68
Genotypes	0/0:0/1	0/0:1/1	0/0:1/2	0/1:0/0	0/1:1/1	0/1:1/2	1/1:0/0	1/1:1/2	1/2:0/0	1/2:0/1	1/2:1/1	concordant 0/0	concordant 0/1	concordant 1/1	concordant 1/2	discordant 0/1	discordant 1/1

a give the combination	ate matched, but the	
calls. Genotypes colum	the events where the s	
3.19 subsamples to $30x$	cordant genotypes list t	
genotypes in Vindija 3	r 30x:subsample. Disc	
: Comparison of called	of genotypes in orde	called alleles differed
Table 13		

Genotypes	1x	2x	3x	4x	5x	6x	7×	8x	9x	10x	12.5x	15x	17.5x	20x	25x
0/0:0/1	6	1	1	0	0	1	1	2	2	1	0		1	1	0
0/0:1/1	1515	1878	1299	806	463	290	169	114	73	40	13	3	0	0	0
0/1:0/0	266	774	735	628	528	411	332	270	246	204	134	87	52	29	5
0/1:1/1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1/1:0/0	8	7	4	5 L	3	0	0	0	0	0	0	0	0	0	0
1/2:0/1	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0
1/2.1/1	0	33	9	ъ 2	4	e	2	33	ĉ	2	1	1	1	1	0
concordant 0/0	4298057	13965648	17863618	20021659	21188632	21822227	22167988	22364540	22483197	22557762	22653561	22695379	22717659	22730345	22742667
concordant 0/1	217	694	767	916	1132	1447	1847	2225	2589	2946	3702	4254	4641	4941	5321
concordant 1/1	5573	20989	27162	30751	32771	33982	34655	35098	35375	35587	35903	36096	36234	36313	36450
concordant 1/2	0	0	0	1	1	2	2	2	ŝ	4	4	ъ 2	6	10	10
discordant 1/1	1	2	4	7	1	0	0	0	0	0	0	0	0	0	0

~:
C 2
Ð
Ы
a
Н
Ц
a,
\mathbf{s}
[]
Ę
Ĕ
•
S
al
Ö
X
80
$\tilde{\mathbf{O}}$
tc
$\tilde{\mathbf{S}}$
Ыć
đ
Ϋ́́
ŝ
qı
SI
6
÷.
$\dot{\mathbf{c}}$
က္
ja
i T
ă
√i]
l Vii
in Vi
0 in Vi
30 in Vi
Q30 in Vi
GQ30 in Vi
st GQ30 in Vi
ast GQ30 in Vi
least GQ30 in Vii
t least GQ30 in Vii
at least GQ30 in Vi
of at least GQ30 in Vi
s of at least GQ30 in Vi
oes of at least GQ30 in Vi
ypes of at least GQ30 in Vi
otypes of at least GQ30 in Vi
notypes of at least GQ30 in Vii
genotypes of at least GQ30 in Vii
l genotypes of at least GQ30 in Vii
ed genotypes of at least GQ30 in Vii
lled genotypes of at least GQ30 in Vii
called genotypes of at least GQ30 in Vii
f called genotypes of at least GQ30 in Vii
of called genotypes of at least GQ30 in Vii
m of called genotypes of at least GQ30 in Vii
son of called genotypes of at least GQ30 in Vi
rison of called genotypes of at least GQ30 in Vi
barison of called genotypes of at least GQ30 in Vi
aparison of called genotypes of at least GQ30 in Vii
mparison of called genotypes of at least GQ30 in Vi
Comparison of called genotypes of at least GQ30 in Vi
: Comparison of called genotypes of at least GQ30 in Vii
4: Comparison of called genotypes of at least GQ30 in Vi
14: Comparison of called genotypes of at least GQ30 in Vii
le 14: Comparison of called genotypes of at least GQ30 in Vi
whe 14: Comparison of called genotypes of at least GQ30 in Vi
Table 14: Comparison of called genotypes of at least GQ30 in Vi

Genotypes	1×	2x	3x	4x	5x	6x	7×	8x	9x	10x	12.5x	15x	17.5x	20x	25x
0/0:0/1	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0
0/1:0/0	0	19	42	50	60	47	56	49	44	34	26	18	9	2	0
1/2:1/1	0	0	0	0	0	1	1	1	1	1	0	0	0	0	0
concordant 0/0	748	1241358	3509091	6215502	9257342	12043092	14401637	16302760	17780674	18908590	20692904	21590412	22064492	22322058	22565822
concordant 0/1	4	31	89	222	398	617	949	1272	1615	2030	2900	3586	4107	4490	5011
concordant 1/1	4	1394	4170	7831	12069	16264	19988	23158	25644	27635	30965	32820	33917	34557	35347
concordant 1/2	0	0	0	0	0	1	1	2	2	2	4	5 2	5	5	9
					- _		· · · · · ·			-		11 I II	•		
Table 15: Co	ompa	TISON OI	called 5	enotype	es or at	Jeast G		indija 33	Sons eros	samples t	0 JUX Ca	IIS. LaD	els as in	Table 13	

က်
le
q
Ца
E.
Ŋ
0
Slo
ğ
່ອ
Ц
Ĩ
Ca
ŭ
õ
$\hat{\mathbf{r}}$
Q
÷
ĕ
pl
E
[g]
SC
E,
\mathbf{v}
0
_
Ř
ري. ج
: <u>5</u>
5
in.
h
\geq
2
in V
50 in V
250 in V
3Q50 in V
t GQ50 in V
$\operatorname{ast}\operatorname{GQ50}\operatorname{in}\operatorname{V}$
east GQ50 in V
t least GQ50 in V
at least $GQ50 in V$
of at least GQ50 in V
s of at least GQ50 in V
es of at least $GQ50 \text{ in } V$
${ m pes} { m of} { m at least GQ50 in V}$
types of at least GQ50 in V
otypes of at least GQ50 in V
enotypes of at least GQ50 in V
genotypes of at least GQ50 in V
d genotypes of at least GQ50 in V
led genotypes of at least $GQ50$ in V
alled genotypes of at least $GQ50$ in V
called genotypes of at least GQ50 in V
of called genotypes of at least GQ50 in V
1 of called genotypes of at least GQ50 in V
on of called genotypes of at least GQ50 in V
ison of called genotypes of at least GQ50 in V
arison of called genotypes of at least $GQ50 \text{ in V}$
parison of called genotypes of at least GQ50 in V
mparison of called genotypes of at least GQ50 in V
omparison of called genotypes of at least GQ50 in V
Comparison of called genotypes of at least GQ50 in V
5: Comparison of called genotypes of at least GQ50 in V
15: Comparison of called genotypes of at least GQ50 in V
≈ 15 : Comparison of called genotypes of at least GQ50 in V
ole 15: Comparison of called genotypes of at least GQ50 in V

Genotype	Vindija 33.15 without ref.bias	Vindija33.15 with ref. bias
AC	0.0266134	0.0287228
AG	0.0963167	0.109077
AT	0.0244506	0.0271335
CG	0.0233174	0.0246703
CT	0.0962895	0.110025
GT	0.0257977	0.0272471

Table 16: Vindija 33.15: genotype frequency estimates with and without reference bias. The estimated reference bias for the third column was 10.14% (r = 0.6014). Genotype frequencies are given per 1000bp.

GT Vi.33.15	GT Vi.33.19	$\neg RB vs. \neg RB$	RB vs. $\neg RB$	⊣RB vs. RB	RB vs. RB
0/0	0/0	17461981	17461610	17461954	17461583
0/0	0/1	112	102	139	129
0/0	1/1	1	1	1	1
0/1	0/0	352	722	347	717
0/1	0/1	3785	3793	3790	3798
0/1	1/1	79	39	62	39
1/1	0/0	1	2	1	2
1/1	0/1	12	14	12	14
1/1	1/1	26117	26157	26117	26157
1/2	1/1	1	1	1	1
1/2	1/2	ວ	ប	5	ប

Table 17: Comparison of Vindija 33.19 and 33.15 chr21 genotypes with and without reference bias. The samples Vindija 33.19 and 33.15 have been found to originate from the same individual. The first two columns shows the observed configuration of genotypes. The remaining columns show the counts of genotypes of each configuration observed when calling Vindija 33.15 and Vindija 33.19 with (RB) or without (¬RB) taking reference bias into account. Parameter estimates for genotype frequencies with and without reference bias are listed in Tables 12 and 11, respectively, for Vindija 33.19 and in Table 16 for Vindija 33.15.

Vi33.19 coverage	AC	AG	AT	CG	CT	GT
$0.9 \mathrm{x}$	0.0195129	0.109353	0.0205452	0.0187133	0.11283	0.022431
$1.0 \mathrm{x}$	0.0193746	0.100528	0.0202986	0.0174671	0.101193	0.0219828
1.2x	0.0191059	0.092621	0.0208953	0.0169481	0.0982858	0.0200446
$1.5 \mathrm{x}$	0.0188508	0.0847961	0.0201072	0.016174	0.0860951	0.0185336
$2.0 \mathrm{x}$	0.0189877	0.0808416	0.0205732	0.0161658	0.0862022	0.0179353
$30x^*$	0.0197930	0.065936	0.0205161	0.0195035	0.0646958	0.0203278

for autosomal sites with at least 4-fold coverage. * 30x coverage estimate is the average, weighted by chromosome size, of the previously published genotype frequencies. Table 18: Estimated genotype frequencies (per 1000bp) for subsampled Vindija 33.19 data and full data (30-fold coverage)

Vi33.19 coverage	AC	AG	АТ	CG	CT	GT
Goyet	0.0167772	0.058848	0.0183608	0.0169625	0.0592227	0.0181386
LesCottés	0.0195414	0.0562096	0.0269036	0.014648	0.0600958	0.0209159
Mez2	0.017562	0.0569594	0.0176347	0.0175739	0.0576068	0.0180015
Vindija87	0.0201796	0.0758009	0.0240558	0.0203436	0.0809328	0.022701
Spy	0.031233	0.0893976	0.0394828	0.0264985	0.0949992	0.031182
Loschbour 1x	0.0510422	0.19892	0.0425446	0.0373921	0.195768	0.0535498
Loschbour 2x	0.0510101	0.201208	0.0409543	0.0388374	0.202462	0.052122
Motala12	0.0549699	0.260431	0.0425594	0.0612579	0.259056	0.0556023
Loschbour $22x^*$	0.05067	0.20966	0.04319	0.05325	0.20831	0.05103

Table 19: Estimated genotype frequencies (per 1000bp) for low-coverage archaic and modern human data on autosomes for sites with at least 4-fold coverage. * Genome-wide average, weighted by chromosome sizes, of previous snpAD estimates.

Parameter	No mapability	$map35_100$
depth	1.83309693	0.859994221
fracMissing	0.44624482	0.728850233
fracTwoOrMore	0.55375518	0.271149767
pi(A)	0.233486339	0.217336017
pi(C)	0.245584846	0.262575431
pi(G)	0.262368764	0.283677311
pi(T)	0.258560051	0.236411241
theta_MLE	0.00218729023	0.00123814321
theta_C95_l	0.00177227373	0.000745217841
theta_C95_u	0.00260230673	0.00173106857
LL	-241726.674	-117295.226

Table 20: ATLAS' genome-wide estimates of θ for Motala12 with and without mapability track.

3 Comparison to GATK and samtools

3.1 Altai Neandertal Chromosome 21

Previous analyses used GATK to call genotypes for the high-coverage Denisovan and Altai Neandertal genomes (Meyer *et al.*, 2012; Prüfer *et al.*, 2014). Both genomes were treated with an enzyme to remove most of the ancient DNA damage (Briggs *et al.*, 2010), leaving only the first and last two bases of sequences to carry elevated C to T exchanges.

To test whether an earlier version of snpAD improves the genotypes for these genomes, the calls of GATK were previously compared to those from snpAD for the Altai Neandertal chromosome 21 (Prüfer *et al.*, 2017). This chromosome contains an \approx 19Mb long region that appears nearly devoid of heterozygous sites. The presence of such regions in the genome of the Altai Neandertal indicates that the individuals parents were closely related (at the level of half-siblings), causing long regions of homozygosity in the offspring (Prüfer *et al.*, 2014). The comparison of snpAD and GATK showed that snpAD calls a significantly smaller fraction of heterozygous sites in the inbred region than GATK. Note that the inbred regions were discovered based on the GATK calls and are therefore expected to be biased in favor of low heterozygosity in these calls.

Repeating this analysis, the Altai chromosome 21 was re-genotyped with the latest snpAD version. As before, single and double stranded libraries were regarded separately. The software was otherwise run with default parameters. Both GATK and snpAD calls were filtered according to the minimal recommended filters. Table 21 shows that snpAD continues to call a significantly lower fraction of heterozygous sites in the inbred region, where few to no heterozygous sites are expected (Fisher's exact test $p < 2 \times 10^{-9}$).

MapDamage can process bam files to lower the quality of bases that may be affected by ancient DNA damage. To test whether this approach yields an improvement, the quality scores in the Altai chromosome 21 bam file were rescaled with mapDamage (version: 2.0.2-6-gdb9ad80) using the option **--single-stranded** followed by genotyping with GATK as described before (Prüfer *et al.*, 2014). The number of heterozygous sites called by GATK are lower after rescaling than without rescaling. Their distribution in inbred and non-inbred regions does not differ significantly between rescaled GATK calls and GATK calls based on sequences where T's at the first or last two positions were masked (p > 0.6). As for the non-rescaled GATK calls, snpAD calls show a significantly smaller fraction of heterozygous sites in inbred regions compared to the rescaled GATK calls ($p < 4 \times 10^{-8}$; Table 21).

To test whether GATK calls could be improved by applying a genotype quality cutoff (QUAL field), I tested increasing cutoffs (steps of 10) until the number of rescaled GATK heterozygous sites for the inbred region were close to the number of snpAD calls. At QUAL \geq 590, GATK+mapDamage yielded 92 heterozygote calls (QUAL \geq 600 yielded 90). However, this cutoff also led to a substantial decrease in called heterozygotes outside of the inbred region (GATK called 35% less heterozygotes compared to snpAD; see Table 21; Fisher's exact test of ratios p = 0.004). The difference between snpAD and GATK in called heterozygotes between inbred and non-inbred region can thus not be eliminated by applying quality cutoffs on GATK genotypes.

Genotype calls were also produced by running samtools (version: 1.3.1-21g874baf3) followed by bcftools (version: 1.4) with the options "-c" (consensus caller) or "-m" (multiallelic caller). The samtools genotyping was run with and without quality score rescaling using mapDamage. All VCFs were filtered using the minimal recommended filters for the Altai Neandertal. No significant difference in the ratio of heterozyzgous calls within and outside of the inbred region was detected in comparison to snpAD, indicating a similar quality of calls.

Genotyper	inbred	non-inbred	p-value to snpAD
snpAD	91	2291	-
GATK	501	2689	$< 2 \times 10^{-16}$
GATK*	206	2431	2×10^{-9}
GATK+mapDamage	191	2387	4×10^{-8}
$GATK+mapDamage (QUAL \geq 590)$	92	1497	4×10^{-3}
samtools (-c)	96	2293	0.78
samtools (-m)	84	2280	0.64
samtools+mapDamage (-c)	95	2298	0.82
samtools+mapDamage (-m)	88	2281	0.88

Table 21: GATK and samtools vs. snpAD heterozygous calls within and outside of an autozygous region on Altai chromosome 21. The region spans bases chr21:17081807-35881807 in hg19 coordinates. Brackets after samtools give the option used for calling with bcftools. Column "p-value" shows the result of a Fisher's exact test of the inbred/noninbred counts against the counts for snpAD. * These calls for GATK were based on a modified input file in which T's at the first and last two positions were masked (see also (Prüfer *et al.*, 2017)).

3.2 Vindja 33.19 Neandertal Chromosome 21

Due to the enzyme treatment, few erroneous C to T exchanges remain in the sequences of the high-coverage Altai Neandertal. In contrast, only a quarter of the high-coverage Vindija 33.19 Neandertal data come from enzyme treated libraries, resulting in common C to T exchanges in the majority of sequences. To test how the snpAD calls compare to those produced by other genotyper-software for this more challenging dataset, I ran samtools and GATK with and without mapDamage quality score rescaling on the chromosome 21 data of Vindija 33.19. MapDamage rescaling was run separately for the data of treated and untreated libraries using the option --single-stranded. All VCF files were restricted to sites that pass the recommended minimum filters for Vindija 33.19 (Prüfer *et al.*, 2017).

Table 22 shows the number of called heterozygous sites for all runs together with the transition/transversion (ts/tv) ratio of these sites. SnpAD yielded with 2.06 the lowest ts/tv ratio among all runs. Note that this value falls within the range of ts/tv ratios observed for GATK calls of 25 modern human genomes of diverse ancestry (1.95-2.17; A and B-panel from Meyer *et al.* (2012) and Prüfer *et al.* (2014)). For the remaining genotypers, the calls with mapDamage rescaling are consistently smaller in their ts/tv ratios than those without, indicating that mapDamage is reducing the influence of C to T exchanges. However, even after correction the ts/tv values fall outside of the range observed in present-day human genomes, suggesting that the calls still contain a large number of errors due to ancient DNA damage.

Genotyper	AC	AG	AT	CG	CT	GT	ts/tv
snpAD	441	1638	335	390	1645	424	2.06
GATK	472	114789	370	406	115047	449	135.44
GATK+mapDamage	472	8496	370	406	8703	449	10.13
samtools (-c)	415	6188	287	376	6281	395	8.47
samtools+mapDamage (-c)	415	3927	288	376	3999	395	5.38
samtools (-m)	414	4363	284	375	4380	390	5.98
samtools+mapDamage (-m)	414	3022	285	374	3018	391	4.13

Table 22: GATK and samtools vs. snpAD heterozygous calls on Vindija 33.19 chromosome 21. Shown are the number of heterozygous calls for each genotype. Column ts/tv gives the transition/transversion ratio. The ts/tv ratio of snpAD is significantly lower than those of all other genotypers (Fisher's exact test on the ts and tv counts: $p < 2.2 \times 10^{-16}$ for all pairwise tests)

4 Comparison to ATLAS

ATLAS 1.0 was downloaded on 2017-11-23 from the authors github page (rev. 9b2390c). Conserved regions were downloaded according to the authors instructions and modified to fit the coordinates in bam files:

```
cat original_hg19_UCNE_coord.bed |
    sed -e 's/^chr//g' > hg19_UCNE_coord.bed
```

ATLAS was then run with the *recal* option using the following steps:

- atlas task=estimatePMD bam=motala12.bam $\$ fasta=hg19_evan/whole_genome.fa $\$ length=25
- atlas task=recalBAM bam=motala12.bam \ recal=motala12_recalibrationEM.txt \ pmdFile=motala12_PMD_input_Empiric.txt \ fasta=hg19_evan/whole_genome.fa \ withPMD maxOutQuality=42 verbose

The resulting recalibrated quality scores appeared to shift all quality scores to values less than 10:

Running ATLAS with the minDepth=2 option did not change the result.

A new version of ATLAS 1.0 was downloaded on 2018-03-15 (commit 49f1fea). PMD estimation was run with the command:

```
atlas task=estimatePMD \
bam=motala12.bam \
fasta=hg19_evan/whole_genome.fa \
length=25
```

The command failed with the message "Error: Length mismatch!".

Using the previous estimates of the older ATLAS version for the *estimatePMD* step, the following commands were run:

- atlas task=recal bam=motala12.bam \ pmdFile=motala12_PMD_input_Empiric.txt \ regions=hg19_UCNE_coord.bed verbose
- atlas task=recalBAM bam=motala12.bam \ recal=motala12_recalibrationEM.txt \ pmdFile=motala12_PMD_input_Empiric.txt \ fasta=hg19_evan/whole_genome.fa withPMD \ maxOutQuality=42 verbose

The execution of recalBAM failed with the same message as before, but left an indexable recalibrated bam file with a more reasonable quality score distribution:

Genome-wide theta on the autosomes were estimated for all regions and for regions passing a 35mer mapability filter (map35_100) that was used in the analysis of the Altai Neandertal and Vindija Neandertal, and for all snpAD estimates in this paper:

```
pmdFile=motala12_PMD_input_Empiric.txt \
recal=motala12_recalibrationEM.txt \
thetaGenomeWide limitChr=22 \
regions=hs37m_filt35_99.bed.gz \
minDepth=2 verbose
```

The resulting estimates are shown in Table 20.

References

- Briggs, A. W., Stenzel, U., Meyer, M., Krause, J., Kircher, M., and Pääbo, S. (2010). Removal of deaminated cytosines and detection of in vivo methylation in ancient DNA. *Nucleic Acids Research*, 38(6), e87.
- Hajdinjak, M., Fu, Q., Hübner, A., Petr, M., Mafessoni, F., Grote, S., Skoglund, P., Narasimham, V., Rougier, H., Crevecoeur, I., Semal, P., Soressi, M., Talamo, S., Hublin, J.-J., Gušić, I., Kućan, Ž., Rudan, P., Golovanova, L. V., Doronichev, V. B., Posth, C., Krause, J., Korlević, P., Nagel, S., Nickel, B., Slatkin, M., Patterson, N., Reich, D., Prüfer, K., Meyer, M., Pääbo, S., and Kelso, J. (2018). Reconstructing the genetic history of late Neanderthals. *Nature*, page in press.
- Lazaridis, I., Patterson, N., Mittnik, A., Renaud, G., Mallick, S., Kirsanow, K., Sudmant, P. H., Schraiber, J. G., Castellano, S., Lipson, M., Berger, B., Economou, C., Bollongino, R., Fu, Q., Bos, K. I., Nordenfelt, S., Li, H., de Filippo, C., Prüfer, K., Sawyer, S., Posth, C., Haak, W., Hallgren, F., Fornander, E., Rohland, N., Delsate, D., Francken, M., Guinet, J.-M., Wahl, J., Ayodo, G., Babiker, H. A., Bailliet, G., Balanovska, E., Balanovsky, O., Barrantes, R., Bedoya, G., Ben-Ami, H., Bene, J., Berrada, F., Bravi, C. M., Brisighelli, F., Busby, G. B. J., Cali, F., Churnosov, M., Cole, D. E. C., Corach, D., Damba, L., van Driem, G., Dryomov, S., Dugoujon, J.-M., Fedorova, S. A., Gallego Romero, I., Gubina, M., Hammer, M., Henn, B. M., Hervig, T., Hodoglugil, U., Jha, A. R., Karachanak-Yankova, S., Khusainova, R., Khusnutdinova, E., Kittles, R., Kivisild, T., Klitz, W., Kučinskas, V., Kushniarevich, A., Laredj, L., Litvinov, S., Loukidis, T., Mahley, R. W., Melegh, B., Metspalu, E., Molina, J., Mountain, J., Näkkäläjärvi, K., Nesheva, D., Nyambo, T., Osipova, L., Parik, J., Platonov, F., Posukh, O., Romano, V., Rothhammer, F., Rudan, I., Ruizbakiev, R., Sahakyan, H., Sajantila, A., Salas, A., Starikovskaya, E. B., Tarekegn, A., Toncheva, D., Turdikulova, S., Uktveryte, I., Utevska, O., Vasquez, R., Villena, M., Voevoda, M., Winkler, C. A., Yepiskoposyan, L., Zalloua, P., Zemunik, T., Cooper, A., Capelli, C., Thomas, M. G., Ruiz-Linares, A., Tishkoff, S. A., Singh, L., Thangaraj, K., Villems, R., Comas, D., Sukernik, R., Metspalu, M., Meyer, M., Eichler, E. E., Burger, J., Slatkin, M., Pääbo, S., Kelso, J., Reich, D., and Krause, J. (2014). Ancient human genomes suggest three ancestral populations for present-day Europeans. Nature, 513(7518), 409-413.
- Meyer, M., Kircher, M., Gansauge, M.-T., Li, H., Racimo, F., Mallick, S., Schraiber, J. G., Jay, F., Prüfer, K., Filippo, C. d., Sudmant, P. H., Alkan, C., Fu, Q., Do, R., Rohland, N., Tandon, A., Siebauer, M., Green, R. E., Bryc, K., Briggs, A. W., Stenzel, U., Dabney, J., Shendure, J., Kitzman, J., Hammer, M. F., Shunkov, M. V., Derevianko, A. P., Patterson, N., Andrés, A. M., Eichler, E. E., Slatkin, M., Reich, D., Kelso, J., and Pääbo, S. (2012). A High-Coverage Genome Sequence from an Archaic Denisovan Individual. *Science*, 338(6104), 222–226.
- Prüfer, K., Racimo, F., Patterson, N., Jay, F., Sankararaman, S., Sawyer, S., Heinze, A., Renaud, G., Sudmant, P. H., de Filippo, C., Li, H., Mallick, S., Dannemann, M., Fu, Q., Kircher, M., Kuhlwilm, M., Lachmann, M., Meyer, M., Ongyerth, M., Siebauer, M., Theunert, C., Tandon, A., Moorjani, P., Pickrell, J., Mullikin, J. C., Vohr, S. H., Green, R. E., Hellmann, I., Johnson, P. L. F., Blanche, H., Cann, H., Kitzman, J. O., Shendure, J., Eichler, E. E., Lein, E. S., Bakken, T. E., Golovanova, L. V., Doronichev, V. B., Shunkov, M. V., Derevianko, A. P., Viola, B., Slatkin, M., Reich, D., Kelso, J., and Pääbo, S. (2014). The complete genome sequence of a Neandertal from the Altai Mountains. *Nature*, **505**(7481), 43–49.
- Prüfer, K., de Filippo, C., Grote, S., Mafessoni, F., Korlević, P., Hajdinjak, M., Vernot, B., Skov, L., Hsieh, P., Peyrégne, S., Reher, D., Hopfe, C., Nagel, S., Maricic, T., Fu, Q., Theunert, C., Rogers, R., Skoglund, P., Chintalapati, M., Dannemann, M., Nelson, B. J., Key, F. M., Rudan, P., Kućan, Ž., Gušić, I., Golovanova, L. V., Doronichev, V. B., Patterson, N., Reich, D., Eichler, E. E., Slatkin, M., Schierup, M. H., Andrés, A. M., Kelso, J., Meyer, M., and Pääbo, S. (2017). A high-coverage Neandertal genome from Vindija Cave in Croatia. *Science* (New York, N.Y.), 358(6363), 655–658.