
appreci8: A Pipeline for Precise Variant Calling Integrating 8 Tools

1 Data characteristics

Table S1: Data characteristics of samples in the two training sets.
Training set 1 Training set 2

Number of samples 54 111
Sequencing platform Illumina HiSeq Illumina NextSeq

Total reads 4,084,151 7,401,621
Mapped reads 4,045,417 7,360,841
Mapped reads (rel) 0.99 0.99
Qual mean 59.58 59.58
Uniquely mapped reads 4,033,456 7,328,568
Uniquely mapped reads (rel) 1.00 1.00

Target size 42,322 42,322
Reads on target 711,090 2,699,476
Target coverage x 1,366.58 7,294.20
Target coverage σ 1,019.50 10,329.65
Target bases larger 1x 41,742 24,448
Target bases larger 1x (rel) 0.99 0.58
Target bases larger 50x 39,777 23,592
Target bases larger 50x (rel) 0.94 0.56

Target size (coding) 23,162 23,162
Reads on target 477,613 2,704,763
Target coverage x 1,484.46 13,134.20
Target coverage σ 1,024.03 10,762.31
Target bases larger 1x 22,889 2,2947
Target bases larger 1x (rel) 0.99 0.99
Target bases larger 50x 22,103 22,542
Target bases larger 50x (rel) 0.95 0.97

Background noise 5.39 · 10−3 6.26 · 10−3
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Table S2: Data characteristics of samples in the five test sets.
Test set 1 Test set 2 Test set 3 Test set 4 Test set 5

Number of samples 237 46 89 22 119
Sequencing platform Illumina HiSeq Illumina HiSeq Roche 454 Illumina NextSeq Illumina HiScanSQ

Total reads 3,990,586 5,284,383 56,053 10,483,971 7,811,781
Mapped reads 3,943,585 5,205,918 54,726 10,436,588 7,725,166
Mapped reads (rel) 0.98 0.98 0.98 1.00 0.99
Qual mean 59.60 59.26 59.69 59.78 57.55
Uniquely mapped reads 3,930,573 5,158,725 54,677 10,382,190 7,287,032
Uniquely mapped reads (rel) 1.00 0.99 1.00 0.99 0.94

Target size 42,322 42,322 42,322 139,767 958,547
Reads on target 767,645 939,871 45,105 10,288,590 5,674,948
Target coverage x 1,473.80 1,789.57 219.73 13,062.47 575.27
Target coverage σ 1,339.67 1,446.52 334.67 10,132.05 701.29
Target bases larger 1x 41,675 41,739 23,330 139,365 915,639
Target bases larger 1x (rel) 0.98 0.99 0.55 1.00 0.96
Target bases larger 50x 37,727 38,639 20,975 138,237 780,972
Target bases larger 50x (rel) 0.89 0.91 0.50 0.99 0.81

Target size (coding) 23,162 23,162 23,162 78,866 218,179
Reads on target 533,553 647,573 45,134 9,111,624 2,724,889
Target coverage x 1,684.40 2,012.08 388.50 15,092.04 870.10
Target coverage σ 1,366.72 1,476.70 369.78 11,245.09 846.80
Target bases larger 1x 22,835 22,896 21,537 78,746 215,566
Target bases larger 1x (rel) 0.99 0.99 0.93 1.00 0.99
Target bases larger 50x 21,197 21,590 19,563 78,391 204,473
Target bases larger 50x (rel) 0.92 0.93 0.84 0.99 0.94

Background noise 4.15 · 10−3 5.02 · 10−3 3.63 · 10−3 6.63 · 10−3 1.56 · 10−3
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2 Variant calls

Table S3: Number of variants, artifacts, sensitivity and PPV considering variant calling in general
and mutation calling in particular (expert-based classification) in training set 1.
Approach Calling variants Calling mutations

Variants Artifacts Sens PPV Mutations Artifacts Sens PPV

GATK 268 49 0.92 0.85 90 49 0.80 0.65
Platypus 272 67 0.93 0.80 94 67 0.84 0.58
VarScan 258 7 0.89 0.97 83 7 0.74 0.92
LoFreq 265 502 0.91 0.35 90 502 0.80 0.15
FreeBayes 290 8,040 1.00 0.03 112 8,040 1.00 0.01
SNVer 271 25 0.93 0.92 95 25 0.85 0.79
SAMtools 248 38 0.85 0.87 71 38 0.63 0.65
VarDict 283 11 0.97 0.96 108 11 0.96 0.91
8 tools 291 8,043 1.00 0.03 112 8,043 1.00 0.01
single-appreci8 285 6 0.98 0.98 106 7 0.95 0.94
appreci8 285 2 0.98 0.99 106 2 0.95 0.98

Biological truth 291 112

Table S4: Number of variants, artifacts, sensitivity and PPV considering variant calling in general
and mutation calling in particular (expert-based classification) in training set 2.
Approach Calling variants Calling mutations

Variants Artifacts Sens PPV Mutations Artifacts Sens PPV

GATK 516 210 0.82 0.71 154 211 0.67 0.42
Platypus 585 794 0.93 0.42 184 796 0.80 0.19
VarScan 294 108 0.47 0.73 77 108 0.33 0.42
LoFreq 490 1648 0.78 0.23 176 1649 0.77 0.10
FreeBayes 627 40,159 0.99 0.02 226 40,160 0.98 0.01
SNVer 344 4,376 0.55 0.07 130 4,378 0.57 0.03
SAMtools 402 119 0.64 0.77 67 120 0.29 0.36
VarDict 595 3,508 0.94 0.15 205 3,510 0.89 0.06
8 tools 631 40,466 1.00 0.02 230 40,467 1.00 0.01
single-appreci8 622 1,177 0.99 0.35 221 1,184 0.96 0.16
appreci8 620 40 0.98 0.94 219 41 0.95 0.84

Biological truth 631 230

Table S5: Number of variants, artifacts, sensitivity and PPV considering variant calling in general
and mutation calling in particular (expert-based classification) in test set 1.
Approach Calling variants Calling mutations

Variants Artifacts Sens PPV Mutations Artifacts Sens PPV

GATK 1,120 250 0.92 0.82 322 250 0.77 0.56
Platypus 1,138 272 0.93 0.81 337 272 0.81 0.55
VarScan 1,026 191 0.84 0.84 264 191 0.63 0.58
LoFreq 1,197 2,984 0.98 0.29 402 2,985 0.96 0.12
FreeBayes 1,206 49,731 0.99 0.02 405 49,731 0.97 0.01
SNVer 1,115 115 0.91 0.91 327 115 0.78 0.74
SAMtools 1,004 208 0.82 0.83 223 208 0.53 0.52
VarDict 1,176 339 0.96 0.78 392 340 0.94 0.54
8 tools 1,217 50,362 1.00 0.02 415 50,362 1.00 0.01
single-appreci8 1,207 158 0.99 0.88 405 161 0.98 0.72
appreci8 1,199 16 0.98 0.99 397 16 0.95 0.96

Biological truth 1,219 417
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Table S6: Number of variants, artifacts, sensitivity and PPV considering variant calling in general
and mutation calling in particular (expert-based classification) in test set 2.
Approach Calling variants Calling mutations

Variants Artifacts Sens PPV Mutations Artifacts Sens PPV

GATK 223 83 0.90 0.73 62 85 0.71 0.42
Platypus 231 49 0.93 0.83 70 51 0.80 0.58
VarScan 203 75 0.82 0.73 50 77 0.57 0.39
LoFreq 244 101 0.98 0.71 85 103 0.98 0.45
FreeBayes 247 22,344 1.00 0.01 86 22,346 0.99 0.004
SNVer 233 54 0.94 0.81 73 55 0.84 0.57
SAMtools 201 66 0.81 0.75 42 68 0.48 0.38
VarDict 245 573 0.99 0.30 84 575 0.97 0.13
8 tools 248 22,357 1.00 0.01 87 22,359 1.00 0.004
single-appreci8 248 80 1.00 0.76 87 82 1.00 0.51
appreci8 248 3 1.00 0.99 87 5 1.00 0.95

Biological truth 248 87

Table S7: Number of variants, artifacts, sensitivity and PPV considering variant calling in general
and mutation calling in particular (expert-based classification) in test set 3.
Approach Calling variants Calling mutations

Variants Artifacts Sens PPV Mutations Artifacts Sens PPV

GATK 370 829 0.95 0.31 69 827 0.85 0.08
Platypus 378 2,465 0.97 0.13 72 2,463 0.89 0.03
VarScan 356 338 0.91 0.51 58 336 0.71 0.15
LoFreq 366 824 0.94 0.31 59 825 0.73 0.07
FreeBayes 388 5,340 0.99 0.07 79 5,340 0.98 0.01
SNVer 380 3,473 0.97 0.10 76 3,472 0.94 0.02
SAMtools 361 168 0.93 0.68 57 169 0.70 0.25
VarDict 388 1,163 0.99 0.25 79 1,166 0.98 0.06
8 tools 388 6,901 0.99 0.05 79 6,899 0.98 0.01
single-appreci8 387 676 0.99 0.36 78 686 0.96 0.10
appreci8 387 121 0.99 0.76 78 119 0.96 0.40

Biological truth 390 81

Table S8: Number of variants, artifacts, sensitivity and PPV considering variant calling in general
and mutation calling in particular (expert-based classification) in test set 4.
Approach Calling variants Calling mutations

Variants Artifacts Sens PPV Mutations Artifacts Sens PPV

GATK 163 60 0.86 0.73 51 60 0.70 0.46
Platypus 173 397 0.91 0.30 57 396 0.78 0.13
VarScan 139 115 0.73 0.55 45 114 0.62 0.28
LoFreq 138 9,075 0.73 0.01 39 9,070 0.53 0.004
FreeBayes 180 33,709 0.95 0.01 66 33,698 0.90 0.002
SNVer 121 2,571 0.64 0.04 49 2,570 0.67 0.02
SAMtools 133 116 0.70 0.53 33 115 0.45 0.22
VarDict 173 1,727 0.91 0.09 63 1,727 0.86 0.04
8 tools 189 34,079 0.99 0.01 73 34,064 1.00 0.002
single-appreci8 176 762 0.93 0.19 65 871 0.89 0.07
appreci8 176 94 0.93 0.65 65 79 0.89 0.45

Biological truth 190 73
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Table S9: Number of variants, artifacts, sensitivity and PPV considering variant calling in general
and mutation calling in particular (expert-based classification) in test set 5.
Approach Calling variants Calling mutations

Variants Artifacts Sens PPV Mutations Artifacts Sens PPV

GATK 4005 2,75 0.92 0.94 433 270 0.77 0.62
Platypus 3,928 233 0.90 0.94 371 252 0.66 0.60
VarScan 3,100 188 0.71 0.94 291 207 0.52 0.58
LoFreq 3,460 482 0.79 0.88 494 500 0.88 0.50
FreeBayes 4,174 12,626 0.96 0.25 535 12,640 0.96 0.04
SNVer 3,169 61 0.73 0.98 457 70 0.82 0.87
SAMtools 3,740 25 0.86 0.99 252 45 0.45 0.85
VarDict 4,223 891 0.97 0.83 534 984 0.96 0.35
8 tools 4,374 13,212 1.00 0.25 553 13,230 0.99 0.04
single-appreci8 4,224 144 0.96 0.97 544 373 0.98 0.59
appreci8 4,371 5 1.00 1.00 550 16 0.99 0.97

Biological truth 4,377 556

3 Alignment

All training- and test sets were aligned to the reference genome (GRCh37.67) using BWA mem
[Li and Durbin, 2009] (version 0.7.8). The default settings were not changed. BAM- and BAI-files were
generated from the SAM-files using Picard tools (version 1.118; https://broadinstitute.github.io/picard/).

4 Normalization and combination

Appreci8 performs variant calling by combining and filtering the output of eight variant calling tools.
Previous analyses have shown that basically all tools show considerable differences with respect to
how variants are reported [Sandmann et al., 2017]. These differences do not only consider the output
file format. Main differences can be identified in the way indels and MNVs are reported.

To combine the variant calling results of eight tools, we consider four steps to normalize the raw
output of each caller.

1. Converting indels: This step is mainly important to handle the VarScan output. The tool
reports deletions with a “-” (e.g. C>-A; normalized: CA>C) and insertions with a “+” (e.g. C>+A;
normalized: C>CA).

2. Converting multi nucleotide variants (MNVs): We define an MNV as a variant for which the
reported length of the reference is of the same length as the reported variant, e.g. CA>GT, but also
ATG>GTC. We decided to break MNVs down to the smallest possible variants, i.e. SNVs. Thus, the
MNV CA>GT is converted to a C>G and an A>T variant.

3. Checking alternative bases: If more than one alternate allele is reported, e.g. C>A,T we decided
to break this variant down as well (here: C>A and C>T).

4. Finding differing strings: FreeBayes and SAMtools both report indels by considering the sur-
rounding bases as well. If e.g. a CAA>C deletion is located within a homopolymer of 4 A’s, it is
reported as CAAAAC>CAAC. To normalize these variants, we compare the reference- and the al-
ternative string – first the end, then the beginning – and check the bases for differences. Only the first
non-differing base is kept (here: CAA>C). Additionally, this normalization step detects and removes
calls where no base is changing. This can happen if an MNV like ATG>GTC is broken down to three
distinct variants: A>G, T>T and G>C. As T>T is no variant, it is removed by this normalization
step.

Investigating the tools’ raw output, we found out that additional left-aligning of the indels is not
necessary in case of the eight tools we consider.

Only those variants that share – after normalization – the same position, the same reference string
and the same alternate string, are combined.
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5 Filtering calls with appreci8

Variant calling with appreci8 involves several steps of filtration. As Figure 1 in the main paper shows,
off-target calls are initially removed. Furthermore, we remove all calls located in the 3’-UTR, 5’-UTR,
downstream, upstream, intron, intergenic, intragenic, protein-protein-contact and in the splice site
region. Silent mutations are removed as well. These filters are exemplary and can be easily adjusted
to fit every user’s requirements. The remaining list of calls covers all potentially true variants of
interest in the analyzed data set. Subsequently, two additional filtration steps are applied, both of
them based on the calls’ characteristics.

5.1 Filtration based on “Characteristics (1)”

To identify and exclude obvious artifacts due to sequencing errors, a hard filter is applied. The filter
is based on parameters characterizing the raw alignment data: depth (DP), the number of alternate
reads (#ALT), the variant allele frequency (VAF), the mean base quality (PHRED value) for the
reference- (BQ ref) and alternate allele (BQ alt).

We exclude all calls with V AF < 1%. Although it is possible to detect variants at lower allelic
frequencies with ultra-deep sequencing, we observe background noise between 5.39·10−3 and 6.26·10−3

in our training sets. Furthermore, mean target coverage is only 1,366.58 in training set 1 (1,484.46
when considering only coding bases). Thus, it does not seem feasible to aim for variant calling at
lower frequencies.

We also exclude calls with DP < 50 and/or #ALT < 20. These thresholds base on the united
long-time experience of molecular biology experts. We assume that it is not feasible to evaluate a
variant call in targeted NGS data at lower frequencies. Altogether, only eight calls in training set 2
are excluded due to this criteria. These calls include four long deletions of 50 to 100 base pairs on
CEBPA, which are covered by 4 to 22 reads. Two short deletions of 1, resp. 3 base pairs on CEBPA,
which are covered by 37, resp. 3 reads. Additionally, two SNVs on RUNX1, covered by 8 to 13 reads,
are excluded.

Analyzing the distribution of base quality in both training sets reveals huge differences between
artifacts and true variants. Figure S1 shows the distribution of the alternate allele’s mean base quality.

Although both training sets show considerable differences in the distribution, BQ alt of true vari-
ants is higher compared to BQ alt of artifacts in case of both training sets. A majority of true variants
features BQ alt between 30 and 40, while many artifacts feature BQ alt below 20. Considering dif-
ferences between the two training sets, we opted for excluding all calls with BQ alt < 15.

However, when considering base quality, it is not only important to consider BQ alt, but also the
difference in BQ alt and BQ ref . We assume that in case of a true variant BQ alt is not expected to
be significantly lower compared to BQ ref . By contrast, BQ alt may be significantly higher compared
to BQ ref in case of a true variant. Regarding homozygous polymorphisms, 100% of the reads are
expected to contain the alternate allele. However, due to sequencing errors, a low number of reads may
also contain the reference allele. In this case we expect BQ ref to be significantly lower compared to
BQ alt.

Figure S2 shows the distribution of BQ diff = BQ ref − BQ alt considering artifacts and true
variants.

It can be observed that the distribution of BQ diff matches our expectations in case of both
training sets. Artifacts are on average characterized by a high BQ diff value. True variants feature
a maximum of BQ diff = 0. A minority of true variants is observed to feature a high negative value
of BQ diff .

Considering both training sets, we opted for excluding all calls with BQ diff > 7.

5.2 Filtration based on “Characteristics (2)”

Subsequent to the hard filtration based on “Characteristics (1)”, a second, more elaborate set of
characteristics is determined for the remaining calls. This set includes the presence of a variant in
various databases as well as the variant’s influence on the corresponding protein based on Provean1.1.5.
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a)

b)

Figure S1: Distribution of mean BQ alt (PHRED) in a) training set 1, b) training set 2.

For every call present in the two training sets, we consider the determined characteristics and
the manually assigned category – mutation, polymorphism or artifact. The categorization has been
validated by Sanger sequencing, re-sequencing on the same or another platform as well as manual
investigation by independent biological experts. When considering this manual investigation in detail,
several call characteristics can be identified that biologists consider as typical for each category. These
characteristics can be straight-forward (e.g. presence of a call in the 1000 Genomes database is a
typical characteristic for polymorphisms), as well as more complex (e.g. a frame-shift variant that is
present in all samples, that features an allelic frequency close to 1.00 and that cannot be found in any
database is typically an artifact). This expert knowledge does not only base on the two training sets,
but on long-time, everyday routine in this field.

Based on this knowledge, we derived a set of 41 conditions, investigating typical characteristics
of mutations, polymorphisms and artifacts. Each condition features an assigned weight indicating
its importance. The concrete weight of every condition was determined exploratively, achieving best
automatic classification of all calls present in the two training sets.

Twenty-nine conditions serve to separate potential variants from potential artifacts. A positive
weight is assigned to those conditions, which we assume to be typical for artifacts. A negative weight
is assigned to conditions, which we consider to be typical for actual mutations. Together, they make
up the artifact score. For every call, every condition is evaluated. If it is true, the assigned weight
is added to the initial artifact score of zero. If it is false, the score does not change. The score is
calibrated in a way that a call is classified as being a potential variant, if the artifact score is below
zero, i.e. in summary there is more evidence that a call is rather true but than false.

Twelve conditions serve to identify polymorphisms in the initial sets of potential variants and
potential artifacts. A positive weight is assigned to those conditions, which we assume to be typical
for polymorphisms. A negative weight is assigned to conditions, which we consider to be atypical for
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a)

b)

Figure S2: Distribution of BQ diff = BQ ref − BQ alt (PHRED) in a) training set 1, b) training
set 2.

polymorphisms. Together, these conditions make up the polymorphism score. Just like in case of
the artifact score, every condition is evaluated in case of every call. If it is true, the assigned weight
is added to the initial polymorphism score of zero. If it is false, the score does not change. To be
classified as a polymorphism, a call needs a polymorphism score of at least 2.

For the appreci8 pipeline, the final analysis step involves combination of all previously determined
information and calculation of the artifact- and a polymorphism score for every call by evaluating
the set of 41 conditions. Figure S3 shows the conditions evaluated in case of the artifact score, their
weight and the percentage of artifacts and true variants that fulfill the conditions for the two training
sets.

Although we evaluated a wide set of parameters and conditions, Figure S3 clearly shows that there
is no condition that perfectly separates all artifacts from all true variants. Thus, an artifact can only
be identified if several conditions are mutually evaluated.

In case of both sets it can be observed that a majority of artifacts does indeed fulfill conditions
with a positive weight, while true variants fulfill conditions with a negative weight. For example,
> 60% of the artifacts in training set 1 and > 40% of the artifacts in training set 2 are not present
in any of the considered databases, but are called in more than 50% of the samples (“1: no database
AND detected >27x”, resp. “1: no database AND detected >55x”). On the contrary, this condition
is not fulfilled by true variants.

However, it can also be observed that some conditions with a positive weight (“2: detected >27x”,
resp. “2: detected >55x”, “2: detected >3x” and “2: detected >3x AND VAF>0.85”) are fulfilled by
both artifacts and true variants. This observation is due to some especially abundant polymorphisms
and hotspots. While misclassification of the hotspots is prevented by conditions like “-3: known hot-
spot”, it can happen that some polymorphisms are initially classified as potential artifacts. However,
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a)

b)

Figure S3: Conditions evaluated and their weight contributing to the artifact score. The percentage
of artifacts (red) and true variants, separated into polymorphisms (dark green) and likely pathogenic
mutations (light green), meeting the displayed conditions is displayed in a) training set 1, b) training
set 2.

as Figure 2 of the main paper shows, evaluation of the polymorphism score in case of all calls leads
to the final identification and correct classification of these polymorphisms.

The different conditions that are evaluated in terms of the polymorphism score, their weight and
the percentage of artifacts and true variants that fulfill these conditions is displayed in Figure S4.

Altogether, the polymorphism score serves two purposes: separating polymorphisms from (likely
pathogenic) mutations in the set of potential variants and identifying polymorphisms in the initial set
of potential artifacts.

Considering the first purpose, Figure S4 shows that polymorphisms almost exclusively fulfill con-
ditions with a positive weight. Only a low percentage of polymorphisms is detected in only one sample
(“-1: detected 1x”) or not present in any polymorphism database (“-1: no polymorphism database”).
On the contrary, likely pathogenic mutations do either not fulfill any of the considered conditions or
they fulfill conditions with a negative weight. Only a minority of mutations fulfills a condition with a
positive weight. However, as the weight is only 1 per condition and a score of at least 2 is necessary
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a)

b)

Figure S4: Conditions evaluated and their weight contributing to the polymorphism score. The
percentage of artifacts (red) and true variants, separated into polymorphisms (dark green) and likely
pathogenic mutations (light green), meeting the displayed conditions is displayed in a) training set 1,
b) training set 2.

for classification as a polymorphism, misclassification is not expected to occur.
Considering the second purpose of our polymorphism score, Figure S4 shows that artifacts differ

considerably form true variants with respect to the conditions evaluated in case of the polymorphism
score. A vast majority of artifacts fulfills the conditions “1: detected >3x” and “-1: no polymorphism
database”. Thus, the resulting score would be zero. However, as a call needs a polymorphism score of at
least 2 to be classified as a polymorphism, the chance of artifacts being misclassified as polymorphisms
can assumed to be low. On the contrary, true polymorphisms fulfill considerably more conditions with
a positive weight. In training set 1, the top-four conditions with a positive weight are fulfilled by
83-97% of the polymorphisms. In training set 2, even 88-96% of the polymorphisms fulfill these
conditions. As hardly any polymorphism fulfills a condition with a negative weight, a score between
3 and 4 can be expected in case of actual polymorphisms, which allows for a clear distinction from
artifacts.
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5.3 ROC curve

Appreci8’s final decision on a call – whether it is classified as a true variant or an artifact – is influenced
by several parameters. The artifact score and the threshold applied to this score has got direct influence
on sensitivity and PPV. We consider ROC curves for for calling mutations with appreci8, evaluating
a successive increase of the artifact score threshold. The results on the two training sets and the five
test sets are displayed in Figure S5.

a) b)

Figure S5: ROC curve for a) training sets 1 and 2, b) test sets 1-5. A successive increase of the artifact
score threshold is considered. The chosen threshold – zero – is marked.

Different from classical ROC curves, we decided to plot the false discovery rate FDR, i.e. defined
as FDR = 1 − PPV . Usually, the false positive rate FPR, that is defined as FPR = 1 − specificity,
is plotted.

In our evaluation of tools and algorithms, we opted against the analysis of specificity. The reason
lies in the considerable amount of true negative calls and the relatively low number of false positive
calls. For a vast majority of tools and scenarios, specificity would be close to 1. Thus, this parameter
provides little information. In contrast to this, PPV considers the number of true positive and false
positive calls. Values between 0 and 1 can usually be observed.

In Figure S5, it can be observed that most ROC curves do not end in (1,1). This observation is due
to the filtration based on coverage and base quality that is performed prior to evaluating the artifact
score. Some true mutations are filtered by this step. The threshold applied on the artifact score does
not have any effect on these calls. In this case, the number of false negative calls is always > 0. Thus,
sensitivity is always < 1.00 (see test set 3). Additionally, several artifacts are filtered by this step. In
this case, the number of false positive calls is always > 0. Thus, the FDR is always < 1.00 (see e.g.
training set 1).

In all cases, the ROC curves are clearly above the diagonal. Consequently, discrimination between
true mutations and artifacts by the help of appreci8 is much better than random guess. Furthermore,
evaluation of the training sets shows that the selected threshold of zero leads to the best compromise
between high sensitivity and low FDR. Similar results can be observed in case of test sets 1, 2 and 5.
Both test sets 3 and 4 feature a relatively high FDR. Decreasing the applied threshold to -1 (test set
4), or even -2 (test set 3) would be an option to improve FDR. However, it has to be considered that
this increase in FDR would lead to a decrease in sensitivity.

6 8 tools

Appreci8’s performance is compared to an alternative approach we refer to as ‘8 tools’. This approach
considers all variants that have been reported by at least one out of eight tools. The approach follows
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the appreci8-pipeline, but leaves out the last filtration step, involving artifact- and polymorphism
score calculation.

The method ‘8 tools’ allows us to consider two important aspects of variant calling: First, the
number of true variants. As not a single tool succeeds in detecting all mutations present in the two
training sets and in the five test sets, ‘8 tools’ allows us to study if different tools using different
algorithms for variant calling tend to miss the same true variants or not. Second, the number of called
artifacts. The number of reported artifacts per tools varies considerably. ‘8 tools’ allows us to study
if different tools tend to call the same artifacts despite using different algorithms for variant calling.

7 Single-appreci8

In addition to ‘8 tools’, appreci8 is also compared to an alternative approach we refer to as ‘single-
appreci8’. It is an experimental variant of our algorithm. The approach follows the original appreci8-
pipeline (including the final filtration step). However, every sample is evaluated independently. In-
formation on other samples analyzed in the same run, featuring the same calls is disregarded.

Considering the artifact score, the conditions “2: detected >27x, resp. >55x”, “2: detected >3x”,
“2: detected >3x AND VAF>85%” and “1: no database AND detected >27x, resp. >55x” are
disabled. As all conditions share a positive weight contributing to the artifact score, it is expected
that less artifacts can successfully be identified by ‘single-appreci8’.

Considering the polymorphism score, the condition “1: detected >3x” is disabled, while the con-
dition “-1: detected 1x” is always true for independently analyzed samples.

The method ‘single-appreci8’ allows us to analyze the extend by which different data sets as well
as our pipeline are influenced by re-occuring variants that are often systematic sequencing artifacts.

8 Alternative approach

Using eight variant calling tools instead of only one has got negative influence on run-time. Further-
more, appreci8 necessitates complex post-processing of the raw results. A solution involving less than
eight tools would be beneficial.

We considered all possible combinations of the eight variant calling tools – from one to eight tools.
A call is categorized as true if it is reported by all tools of the considered combination. For both
training sets as well as for the five test sets, we determined sensitivity, PPV and the F1 score for all
possible combinations. The results can be found in Supplementary Data S9.

Using the training sets as a basis, we determined the best combinations of one to eight tools. The
best combination is assumed to feature the highest average F1 score over both training sets. We also
took the best combination for training set 1 and the best combination for training set 2 into account.
The results can be found in tables S10 and S11.

Considering the best combinations of tools, it becomes obvious that it is not beneficial to com-
bine tools with different detection algorithms, e.g. VarScan (heuristic/statistical method), SNVer
(frequentist approach), LoFreq (Poisson-binomial distribution) and GATK, Platypus, FreeBayes or
SAMtools (bayesian approach).

Regarding the performance of the different combinations in comparison to appreci8, it can be
observed that our solution features a better, more stable performance over all analyzed data sets in
comparison to any other solution.

9 Calculating background noise

Background noise is calculated for ever sample in the training set, as well as in the test set.
We consider an exemplary sample s with target region t. Every position ti with i = 1, ..., n is

investigated and compared to the reference. If 100 reads can be mapped to t1 (reference base G)
and 98 out of 100 reads feature a G, while 2 reads feature a C, then the background noise for t1
would be 2/100=2%. The overall background noise for sample s is the mean over all position-specific
background noises.
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Table S10: Sensitivity, PPV and F1 score for training sets 1 and 2 considering the best combination
of one to eight tools over both training sets, the best combination based on training set 1, the best
combination based on training set 2 and appreci8.
Best combi- Tools Training set 1 Training set 2
nation of Sens PPV F1 Sens PPV F1

1 tool GATK 0.92 0.85 0.88 0.82 0.71 0.76
2 tools Platypus, VarDict 0.91 0.99 0.95 0.88 0.96 0.92
3 tools Platypus, FreeBayes, VarDict 0.91 0.99 0.95 0.88 0.96 0.92
4 tools GATK, Platypus, FreeBayes, VarDict 0.90 1.00 0.95 0.78 0.98 0.87
5 tools GATK, Platypus, LoFreq, FreeBayes, 0.83 1.00 0.91 0.70 0.98 0.82

VarDict
6 tools GATK, Platypus, LoFreq, FreeBayes, 0.81 1.00 0.90 0.57 0.99 0.72

SAMtools, VarDict
7 tools GATK, Platypus, VarScan, LoFreq, 0.80 1.00 0.89 0.38 0.99 0.55

FreeBayes, SAMtools, VarDict
8 tools GATK, Platypus, VarScan, LoFreq, 0.76 1.00 0.87 0.17 0.98 0.28

FreeBayes, SNVer SAMtools, VarDict
Training set 1 VarDict 0.97 0.96 0.97 0.94 0.15 0.25
Training set 2 Platypus, FreeBayes, VarDict 0.91 0.99 0.95 0.88 0.96 0.92

appreci8 0.98 0.99 0.98 0.98 0.94 0.96

Table S11: Sensitivity, PPV and F1 score for test sets 1 to 5 considering the best combination of one to
eight tools over both training sets, the best combination based on training set 1, the best combination
based on training set 2 and appreci8.
Best combi- Test set 1 Test set 2 Test set 3 Test set 4 Test set 5
nation of Sens PPV F1 Sens PPV F1 Sens PPV F1 Sens PPV F1 Sens PPV F1
1 tool 0.92 0.82 0.87 0.90 0.73 0.81 0.95 0.31 0.47 0.86 0.73 0.79 0.81 0.88 0.85
2 tools 0.91 0.99 0.95 0.92 0.99 0.96 0.97 0.50 0.66 0.85 0.95 0.89 0.83 0.88 0.86
3 tools 0.90 0.99 0.95 0.92 1.00 0.96 0.97 0.65 0.78 0.83 0.95 0.88 0.81 0.88 0.85
4 tools 0.89 0.99 0.94 0.88 1.00 0.94 0.94 0.79 0.86 0.80 0.97 0.88 0.79 0.93 0.85
5 tools 0.88 0.99 0.93 0.87 1.00 0.93 0.89 0.97 0.93 0.62 0.99 0.76 0.61 0.93 0.74
6 tools 0.80 1.00 0.89 0.79 1.00 0.88 0.88 0.99 0.93 0.59 1.00 0.75 0.59 0.98 0.73
7 tools 0.77 1.00 0.87 0.75 1.00 0.86 0.86 1.00 0.92 0.56 1.00 0.72 0.55 0.98 0.71
8 tools 0.73 1.00 0.84 0.72 1.00 0.84 0.85 1.00 0.92 0.32 1.00 0.48 0.31 0.98 0.47
Training set 1 0.97 0.78 0.86 0.99 0.30 0.46 0.99 0.25 0.40 0.91 0.09 0.17 0.90 0.16 0.28
Training set 2 0.90 0.99 0.95 0.92 1.00 0.96 0.97 0.65 0.78 0.83 0.95 0.88 0.84 0.37 0.52
appreci8 0.98 0.99 0.98 1.00 0.99 0.99 0.98 0.76 0.86 0.93 0.65 0.77 1.00 1.00 1.00

To account for true variants, we accept more than one reference base at positions where sample
s is known to feature a polymorphism or a pathogenic mutation. For example, if 100 reads can be
mapped to t2 (reference T), sample s is known to feature the heterozygous polymorphism T>G at t2,
and out of 100 reads 50 feature a T, 49 feature a G and 1 features a C, the background noise for t2
would be 1/100=1% and not 50/100=50%.

The background noise per data set is determined as the mean over the background noise per
sample.

10 Calling mutations

The detection of actual mutations is expected to be more challenging compared to polymorphisms.
This is mainly due to the on average lower allelic frequencies of pathogenic mutations. Polymorph-
isms are germline variants and are therefore generally observed in 50 or 100% of the reads, whereas
hematological malignancies have a (sub)clonal composition and mutations can occur at considerably
lower frequencies.

Appreci8 is able to distinguish likely pathogenic mutations from polymorphisms. To train and test
our pipeline, we analyze every individual tool’s and our pipeline’s ability to call those variants that
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are categorized as likely pathogenic on the basis of at least two independent experts. To separate
likely pathogenic mutations from polymorphisms, information on the VAF, the number of samples
featuring the same variant, the predicted effect and the presence of a variant in polymorphism- as
well as mutation databases is evaluated. Additionally, we consider information on common hotspot
mutations (e.g. [Haferlach et al., 2014], [Papaemmanuil et al., 2013]). This approach allows us to
categorize even those variants that are of “unknown significance” according to ClinVar in the absence
of matching germline samples.

Variants that have been categorized as likely pathogenic by appreci8, but identified as polymorph-
isms, are considered as being false positives. All variants that are successfully identified as polymorph-
isms by appreci8 are excluded from analysis, also when evaluating the individual tools.

10.1 Training appreci8

Sensitivity and PPV of the different variant calling approaches, considering only likely pathogenic
mutations in the two training sets, is displayed in Figure S6 (for details see Supplementary Tables S3
and S4).

Figure S6: Relation between positive predictive value and sensitivity in case of GATK, Platypus,
VarScan, LoFreq, FreeBayes, SNVer, SAMtools, VarDict, the combined output of all tools (8 tools),
single-appreci8 and appreci8 in training sets 1 and 2 considering only likely pathogenic mutations.

When comparing Figure S6 to Figure 3 in the main paper, it can be observed that sensitivity and
PPV are – on average – lower when concentrating on the detection of likely pathogenic mutations.
This observation matches our expectations that the successful calling of mutations is more challenging
compared to polymorphisms.

Considering training set 1, every individual tool’s sensitivity ranges between 0.63 and 0.83. The
only exceptions from this observation are FreeBayes (sens = 1.00) and VarDict (sens = 0.96). Re-
garding PPV, not a single individual tool features a value above 0.95. Instead, PPV ranges between
0.01 (FreeBayes) and 0.92 (VarScan). Combining the output of all tools results in perfect sensitivity
and PPV = 0.01. Just like in case of calling all variants, application of appreci8 leads to a considerable
increase in PPV and only to a minor decrease in sensitivity (sens = 0.95, PPV = 0.98).

With respect to training set 2, similar results are observed. FreeBayes features highest sensitivity
(sens = 0.98), while sensitivity of most of the other tool ranges between 0.56 and 0.89. Especially
low sensitivity can be observed in case of VarScan (0.33) and SAMtools (0.29). PPV ranges between
0.01 (FreeBayes) and 0.42 (GATK). By combining the output of all tools, sensitivity increases to 1.00,
while PPV decreases to 0.01. Application of appreci8 leads to a considerable improvement of the
results, especially in case of its actual functionality. Sensitivity decreases slightly (0.95), while PPV
shows a significant increase to 0.84, which is twice as high as the highest PPV that can be observed
in case of the individual tools.
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10.2 Testing appreci8

In order to test appreci8’s performance regarding the automatic identification of likely pathogenic
mutations, we consider the same five data sets that have already been analyzed in section “Testing
appreci8” of the main paper. The results regarding sensitivity and PPV are summed up in Figure S7
(for details see Supplementary Tables S5 to S9).

Figure S7: Relation between positive predictive value and sensitivity in case of GATK, Platypus,
VarScan, LoFreq, FreeBayes, SNVer, SAMtools, VarDict, the combined output of all tools (8 tools),
single-appreci8 and appreci8 in test sets 1-5 considering only likely pathogenic mutations.

When comparing Figure S7 to Figure 4 in the main paper, an overall shift to lower sensitivity and
PPV is observed. Considering test sets 1 and 2, FreeBayes, LoFreq and VarDict still feature highest
sensitivity by far, ranging between 0.94 and 0.99, while the remaining individual tools partly feature
sensitivity as low as 0.48 (test set 2, SAMtools). PPV ranges between 0.004 (test set 2, FreeBayes)
and 0.74 (test set 1, SNVer). In contrast, the application of appreci8 leads to results with equally high
sensitivity and PPV (test set 1: sens = 0.95, PPV = 0.96; test set 2: sens = 1.00, PPV = 0.95).

Considering the detection of actual mutations in Roche 454 data (test set 3) a considerable decrease
in PPV can be observed in comparison to Figure 4. Sensitivity ranges between 0.70 (SAMtools) and
0.98 (FreeBayes and VarDict), while PPV ranges between 0.01 (FreeBayes) and 0.25 (SAMtools).
Although appreci8’s performance on Roche 454 data is worse than in case of Illumina data, it still
outperforms every individual tool (sens = 0.96, PPV = 0.40).

Similar observations can be made when considering test sets 4 and 5. In general, the individual
tools show a decrease in sensitivity and PPV. However, appreci8 still succeeds in calling mutations
with sensitivity comparable to the best individual tools (test set 4: Freebayes sens = 0.90, appreci8
sens = 0.89; test set 5: FreeBayes sens = 0.96, appreci8 sens = 0.99), while PPV is at least
comparable (test set 4: GATK PPV = 0.46, appreci8 PPV = 0.45) or even better than the best
individual tool (test set 5: SAMtools PPV = 0.87, appreci8 PPV = 0.97).
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11 Calling variants in an Ion Torrent data set

We developed appreci8 by analyzing two well-characterized sets of Illumina data. In our manuscript,
we tested appreci8 on four independent sets of Illumina data and one set of Roche 454 data.

Another widely used sequencing platform is Ion Torrent. The sequencing technique differs from
Illumina as well as Roche 454. Data is characterized by a different error profile, conditioned by the
sequencing technique itself. Nevertheless, we decided to test our method on an exemplary Ion Torrent
data set. We analyzed 24 targeted sequencing samples, sequenced on Ion Torrent PGM. All samples
result from patients with AML. The target region covers 30,671 bp. All samples are available as
duplicates. Additionally, all samples were re-sequenced on Illumina NextSeq.

The Ion Torrent data set was analyzed according to the standard appreci8 pipeline. Thresholds
were not changed (#ALT ≥ 20, DP≥ 50, VAF≥ 1%, BQ alt ≥ 15 and BQ diff ≤ 7). The results
of the eight individual tools and our appreci8 approach are summed up in table S12. Detailed results
can be found in Supplementary Data S10.

Table S12: Number of variants, artifacts, sensitivity and PPV considering variant calling in general
and mutation calling in particular (expert-based classification) in the Ion Torrent data set.
Approach Calling variants Calling mutations

Variants Artifacts Sens PPV Mutations Artifacts Sens PPV

GATK 165 2,249 0.85 0.07 67 2,249 0.77 0.03
Platypus 157 3,007 0.81 0.05 60 3,007 0.69 0.02
VarScan 161 694 0.83 0.19 63 694 0.72 0.08
LoFreq 154 21 0.80 0.88 56 21 0.64 0.73
FreeBayes 185 20,001 0.96 0.01 79 20,001 0.91 0.00
SNVer 182 6,392 0.94 0.03 80 6,392 0.92 0.01
SAMtools 136 66 0.70 0.67 44 66 0.51 0.40
VarDict 165 1,172 0.85 0.12 69 1,172 0.79 0.06
appreci8 177 3 0.92 0.98 73 3 0.84 0.96

Biological truth 193 87

Table S12 indicates that appreci8 is not only applicable on Illumina or Roche 454 data, but also on
Ion Torrent data. Two tools, FreeBayes and SNVer perform slightly better with respect to sensitivity.
However, PPV is lowest for these tools. Furthermore, it has to be noted that that six out of 14
mutations missed by appreci8 are highly difficult to detect with the help of Ion Torrent sequencing
data (insertion of a G in a homopolymeric stretch of eight G’s).

Considering both, sensitivity and PPV, appreci8 outperforms the eight individual tools with respect
to variant calling in general as well as mutation calling in particular.

12 Calling variants in a public data set

To test our method on a completely independent data set, we analyzed a public targeted sequencing
data set available at the Sequence Read Archive (PRJEB14077). Colon Adenoma Cells have been
studied using – among others – a targeted colorectal cancer DNA sequencing panel with 71 different
oncogenes and tumor suppressor genes often mutated in colorectal cancers [Dame et al., 2018].

As the panel itself was not published, we had to deduce a target region on the basis of the reported
mutations. We conclude that if a mutation in a certain gene is reported, the gene had to be part of
the target region. Altogether, we could identify 41 genes that had to be part of the target panel. For
these genes, we include the corresponding coding regions.

The public data set differs from our training- and test sets in a way that matching controls were
available. For alignment and variant calling, a commercial matched-sample approach was used (QIAseq
DNA enrichment portal; allele frequency threshold for variant calling 5%). Thus, no information on
germline calls or systematic artifacts, present in the tumor and control samples, was available.

When analyzing the data, we followed our usual pipeline – using BWA mem for alignment and
appreci8 for variant calling. The detection threshold was increased to 5% - just like in case of the
commercial software. We decided to analyze the normal samples and the tumor samples independently.
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Subsequently, the results were combined and evaluated manually. This way, we are able to report
somatic as well as germline calls. The results of the eight individual tools and our appreci8 approach
can be found in table S13. Detailed results can be found in Supplementary Data S8.

Table S13: Number of somatic variants, germline variants, artifacts, sensitivity and PPV considering
variant calling in a public targeted sequencing data set.
Approach Somatic variants Germline variants Artifacts Sensitivity PPV

GATK 57 950 1 0.98 1.00
Platypus 60 953 0 0.99 1.00
VarScan 34 737 4 0.75 0.99
LoFreq 41 748 152 0.77 0.84
FreeBayes 70 954 746 1.00 0.58
SNVer 69 956 142 1.00 0.88
SAMtools 21 898 3 0.90 1.00
VarDict 62 945 138 0.98 0.88
appreci8 62 950 0 0.99 1.00

Biological truth 70 956

A call is classified as a somatic variant if it is present on the published list of mutations and
cannot be found in the normal control. It was interesting to observe that five reported calls were also
detected in the normal samples with high coverage and a comparable frequency. We inspected all calls
manually. As data quality was high, we decided to categorize these five calls as germline variants.

In addition to the reported somatic variants, we found two additional variants that are likely to
be somatic mutations as well.

Regarding the germline variants, no information was published. Assuming that a true germline
call has to be present in both, the control and the tumor sample, the two files per sample can be
interpreted and analyzed as re-sequencing experiments. If a variant has been called in the tumor and
in the normal sample with a comparable allele frequency, the call can be a germline call. Taking the
presence of the variant in databases, the prediction, the allele frequency itself and the base quality
into account, we came to a decision. Additional manual inspection was performed with the help of
the IGV.

For calling variants with appreci8, we neither used a hotspot list nor primer information. If this
information was available, we expect it to have positive influence on variant calling with appreci8.
Still, our pipeline performs as good as the best individual tool, i.e. in this case Platypus. In general,
it can be observed that all tools perform better with respect to PPV, compared to our training- and
test sets. This is likely to be due to the fact that we increased the detection threshold to 5%.

13 Analyzing the influence of reoccurring variants

Three out of five test sets feature the same target region compared to our training sets. Every
test set features mutations and polymorphisms that have also been detected in the training sets.
We investigate, whether our appreci8 pipeline performs better in case of reoccurring variants, i.e.
mutations or polymorphisms that have already been called in the training sets, compared to unknown
variants. Furthermore, we consider the frequency of the variant in the training sets. The results are
summed up in table S14.

Altogether, we consider five different frequency categories: 0% for variants that have not been
detected in the training sets; 0%< x ≤1% for unique variants (1/165=0.61%); 1%< x ≤10% for rare
variants (2 to 16 out of 165 samples); 10%< x ≤50% for relatively common variants (17 to 82 out of
165 samples); >50% for common variants (more than 82 out of 165 samples).

The combined results of training sets 1 and 2 indicate that unique variants are more difficult to
classify (sens = 0.93) compared to variants present in more than 10% of the samples (sens = 1.00).
However, when considering the five test sets, only one out of five sets supports this hypothesis. In case
of all the other test sets, perfect sensitivity can be observed, when considering unique variants. It has
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Table S14: Number of true positives, false negatives and sensitivity in both training sets and test sets
1 to 5. Results are reported, dependent on the variant frequency in the training sets.
Data set Variant frequency True False Sens

in training sets positives negatives

Training sets 1 and 2 0% / / /
0%< x ≤1% 190 15 0.93

1%< x ≤10% 204 2 0.99
10%< x ≤50% 97 0 1.00

>50% 414 0 1.00

Test set 1 0% 238 15 0.94
0%< x ≤1% 58 2 0.97

1%< x ≤10% 203 3 0.99
10%< x ≤50% 128 0 1.00

>50% 572 0 1.00

Test set 2 0% 42 0 1.00
0%< x ≤1% 10 0 1.00

1%< x ≤10% 44 0 1.00
10%< x ≤50% 38 0 1.00

>50% 114 0 1.00

Test set 3 0% 35 2 0.95
0%< x ≤1% 32 0 1.00

1%< x ≤10% 67 1 0.99
10%< x ≤50% 29 0 1.00

>50% 224 0 1.00

Test set 4 0% 90 12 0.88
0%< x ≤1% 6 0 1.00

1%< x ≤10% 17 2 0.89
10%< x ≤50% 8 0 1.00

>50% 55 0 1.00

Test set 5 0% 3,88 6 1.00
0%< x ≤1% 23 0 1.00

1%< x ≤10% 136 1 0.99
10%< x ≤50% 46 0 1.00

>50% 286 0 1.00

to be noted that the low number of false negative calls makes interpretation of the results difficult.
This also affects the analysis of variants that have not been detected in the training sets. In test sets
1, 3 and 4, sensitivity is lowest for this category, indicating that our pipeline works best for variants
known from the training sets. However, sensitivity is only slightly lower compared to all the other
analyzed scenarios. Furthermore, test sets 2 and 5 show perfect sensitivity for this category.

Altogether, our results indicate that appreci8’s performance is only marginally influenced by the
variant frequency in the training sets. The correct classification of variants that have not been detected
in the training sets does, in general, not result in inferior performance of appreci8.

Supplementary Data S1

Tables containing all true positive mutations, true positive polymorphisms, false negative mutations,
false negative polymorphisms, false positive mutations, false positive polymorphisms and true negative
mutations (at two stages of filtration) detected by appreci8 in training set 1.
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Supplementary Data S2

Tables containing all true positive mutations, true positive polymorphisms, false negative mutations,
false negative polymorphisms, false positive mutations, false positive polymorphisms and true negative
mutations (at two stages of filtration) detected by appreci8 in training set 2.

Supplementary Data S3

Tables containing all true positive mutations, true positive polymorphisms, false negative mutations,
false negative polymorphisms, false positive mutations, false positive polymorphisms and true negative
mutations (at two stages of filtration) detected by appreci8 in test set 1.

Supplementary Data S4

Tables containing all true positive mutations, true positive polymorphisms, false negative mutations,
false negative polymorphisms, false positive mutations, false positive polymorphisms and true negative
mutations (at two stages of filtration) detected by appreci8 in test set 2.

Supplementary Data S5

Tables containing all true positive mutations, true positive polymorphisms, false negative mutations,
false negative polymorphisms, false positive mutations, false positive polymorphisms and true negative
mutations (at two stages of filtration) detected by appreci8 in test set 3.

Supplementary Data S6

Tables containing all true positive mutations, true positive polymorphisms, false negative mutations,
false negative polymorphisms, false positive mutations, false positive polymorphisms and true negative
mutations (at two stages of filtration) detected by appreci8 in test set 4.

Supplementary Data S7

Tables containing all true positive mutations, true positive polymorphisms, false negative mutations,
false negative polymorphisms, false positive mutations, false positive polymorphisms and true negative
mutations (at two stages of filtration) detected by appreci8 in test set 5.

Supplementary Data S8

Tables containing all true positive somatic variants, false negative somatic variants, false positive so-
matic variants, true positive germline variants, false negative germline variants, false positive germline
variants and true negative calls (at two stages of filtration) detected by appreci8 in a public data set.
Additionally, variants excluded from consideration are reported.

Supplementary Data S9

Sensitivity, PPV and F1 score for all possible combinations of 1 to 8 tools considering training sets 1
and 2 and test sets 1 to 5.
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Supplementary Data S10

Tables containing all true positive mutations, true positive polymorphisms, false negative mutations,
false negative polymorphisms, false positive mutations, false positive polymorphisms and true negative
mutations (at two stages of filtration) detected by appreci8 in the Ion Torrent data set.
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