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Abstract

Motivation: Metagenomics investigates the DNA sequences directly recovered from environmental sam-
ples. It often starts with reads assembly, which leads to contigs rather than more complete genomes.
Therefore, contig binning methods are subsequently used to bin contigs into operational taxonomic units
(OTUs). While some clustering-based binning methods have been developed, they generally suffer from
problems related to stability and robustness.
Results: We introduce BMC3C, an ensemble clustering-based method, to accurately and robustly bin
contigs by making use of DNA sequence Composition, Coverage across multiple samples, and Codon
usage. BMC3C begins by searching the proper number of clusters and repeatedly applying the k-means
clustering with different initializations to cluster contigs. Next, a weight graph with each node representing
a contig is derived from these clusters. If two contigs are frequently grouped into the same cluster, the
weight between them is high, and otherwise low. BMC3C finally employs a graph partitioning technique to
partition the weight graph into subgraphs, each corresponding to a genome bin. We conduct experiments
on both simulated and real-world datasets to evaluate BMC3C, and compare it with the state-of-the-art
binning tools. We show that BMC3C has an improved performance than these tools. To our knowledge,
this is the first time that the codon usage features and ensemble clustering are used in metagenomic contig
binning and lead to improved performance of binning methods.
Availability: The codes of BMC3C are available at http://mlda.swu.edu.cn/codes.php?name=BMC3C.
Contact: gxyu@swu.edu.cn(G-X. Yu);hluo2006@gmail.com (H. Luo)
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Dataset
The Sharon dataset includes 18 libraries sequenced from 11 fecal micro-
biome samples from a premature infant, 7 of which were subject to
re-sequencing. This dataset was downloaded from NCBI (SRA052203).
The HMP dataset contains 10 samples. They were downloaded from the
HMP website (http://hmpdacc.org/), and the SRS IDs of the ten reads
files are SRS014689, SRS014691, SRS015378, SRS016203, SRS018778,
SRS019027, SRS055426, SRS062540, SRS063215, and SRS064645. The

Human gut dataset includes 264 human gut microbial samples, which
were downloaded from NCBI (ERP000108). The Amazon dataset con-
tains three Amazon River plume samples(SRR1182512, SRR1186214,
and SRR1199271). The COPD dataset contains eight sputum sam-
ples from eight COPD patients (ERS799128, ERS799129, ERS799130,
ERS799131, ERS799132, ERS799133, ERS799134, and ERS799135).
The later two datasets were downloaded from NCBI.
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2 Evaluation Criteria
We use three representative evaluation metrics, precision, recall, and Adju-
sted Rand Index (ARI), to evaluate the clustering results. These metrics
are calculated from True Positive (TP), False Positive (FP), False Nega-
tive (FN), and True Negative (TN). TP and FP are the number of pairwise
contigs with the same labels being clustered into the same and different
clusters, respectively. FN and TN are the number of pairwise contigs with
different labels being clustered into the same and different clusters, respe-
ctively. Next, we define a matrix Z ∈ Rk∗×c, where k∗ is the number
of clusters obtained by a particular clustering method, c is the number of
ground-truth cluster labels, andZh,j represents the shared number of con-
tigs between the h-th cluster and the j-th label. The Rand index (RI) is a
measure of the similarity between real labels and results of clustering. The
Adjusted Rand Index (ARI) is the corrected-for-chance version of the RI,
and it may yield negative values for low-quality clustering. ARI is defined
as follow:

ARI =
2(TP × TN − FP × FN)

FP2 + FN2 + 2TP × TN + (TP + TN) × (FP + FN)
(1)

Precision and recall are calculated as:

precision = 1
n

∑k∗

h=1 maxj

{
Zh,j

}
(2)

recall = 1
n

∑c
j=1 maxh

{
Zh,j

}
(3)

3 The effect of ensemble k-means
BMC3C utilizes multiple clusterings obtained by repeating k-means to
build a graph. To evaluate BMC3C under different numbers of base clu-
sterings, we increase the number of base clusterings from 5 to 60 with a
step size of 5 (Figure S1).

We show that BMC3C has a reduced performance when the number of
base clusterings is less than 30. This is largely because k-means initiali-
zes the centroids randomly, and some bad initializations lead to unreliable
results and thus reduce the overall performance. Among the three eva-
luation metrics, ARI is less stable than precision and recall. This is
because ARI depends on TP , FP , FN and TN , and it decreases when
eitherFP orFN increases (see Eq. (1)). Thus, ARI has a greater discrimi-
native power than precision and recall. As the number of base clusterings
exceeds 45, BMC3C tends to be stable, but a further increase of this num-
ber reduces the computing efficiency. We thus choose 50 as the number of
base clusterings in the present study.
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Fig. S1. Results of BMC3C with different numbers of base clusterings (k-means). The
horizontal axis is the number of base clusterings for ensemble clustering.

To demonstrate the improved performance of our ensemble method
compared to the base k-means method, we repeat k-means 50 times and
compare the average and optimal results of this separate experiment with
the ensemble result, which integrates 50 base k-means clusterings. For all

three metrics, the ensemble method BMC3C performs significantly bet-
ter than the average run of these base k-means clustering in both Species
and Strain datasets (Figure S2). Even the optimal run of these base k-
means clusterings is chosen as the comparison, the conclusion remains
that BMC3C performs better for both Species (the ARI , precision, and
recall of the optimal k-means run are 0.8814, 0.8750, and 0.7240, respe-
ctively) and Strain (the best ARI , precision, and recall of k-means
are 0.9037, 0.9339, and 0.9361, respectively) datasets. This compari-
son shows that the ensemble clustering indeed significantly improves the
robustness and accuracy of single clusterings, and thus produces better
performance in binning contigs.
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Fig. S2. Results of BMC3C and base clusterings (k-means) on two simulated datasets are
shown with regards to ARI, Precision, and Recall. Left : Species dataset; Right : Strain
dataset.

Next, we compare the performance of BMC3C when the integrated
base clusterings use different numbers of clusters (k). We increase k in
base clustering from 2k∗ to 20k∗ with a step size of 2k∗, where k∗

is the final number of clusters in the ensemble result. We show that the
performance of BMC3C is unsatisfactory when k is smaller than 8k∗, and
reaches a plateau in all three metrics when k is greater than 10k∗ (Figure
S3). A possible reason is that a small k cannot reveal the underlying local
structure of the dataset. Thus, we choose 10k∗ as the number of clusters
in base clustering, but users can set other values of k.
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Fig. S3. Results of BMC3C with different numbers of clusters (k) in base clustering (k-
means). The horizontal axis is the number of clusters in base clustering. k∗ is the final
number of clusters, 2k∗ means the number of clusters (k) in base clustering is the twice of
k∗ .

4 Sensitivity analysis of weights
We further investigate how different weights of the three distinct featu-
res (Composition, Coverage, and Codon usage) affect the performance of
BMC3C. We increase each weight from 0 to 1 with a step size of 0.2. For
example, the weight 0 for the Composition features means this type of
features is excluded and the other two types of features are using the same
weight for concatenation, namely X = [0.5 ∗ R̃, 0.5 ∗ Ỹ] are used for
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binning contigs. Likewise, 0.2 means the Composition features have the
weight of 0.2 and the other two each have the weight 0.4 to concatenate
the feature vector X = [0.2 ∗ H̃, 0.4 ∗ R̃, 0.4 ∗ Ỹ]. As shown in Figure
S4, BMC3C generally has the best performance when all three types of
features are used. However, different weights affect its performance. For
the Sharon and the COPD datasets, BMC3C has stable performance with
varying weights of features. Particularly, BMC3C has reduced performa-
nce when one or two types of features are used. As to the Amazon dataset,
BMC3C has the best performance when the weight of the Composition
features is set as 0, and its performance is decreased with the weight of the
Composition features increasing. The possible reason is that some bacte-
ria are too similar in sequence and have similar Composition features.
On the other hand, BMC3C has increased performance as the weight of
the Composition features increases in the HMP dataset, suggesting that
the Composition features are more helpful in this dataset than the other
two types of features. For the Human gut dataset, BMC3C also has stable
performance when all three types of features are used, and has reduced per-
formance when using only one or two types of features. In summary, the
Coverage and Composition features are more informative than the Codon
usage features. However, Codon usage is a highly desirable feature, since
it further increases the performance of BMC3C. We observe that tuning
the weights for these types of features improves the performance in bin-
ning contigs. However, different types of datasets have different optimal
weight assignments. For simplicity, BMC3C equally weights these types
of features, but its performance can be further improved by tuning the
weights.
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Fig. S4. Results of BMC3C under different weights of three types (Composition, Coverage
and Codon usage) of features on the five real world datasets. ‘Weight of Composition’
represents the weight of Composition features in concatenating the numeric feature matrix
X. In ‘Weight of Composition’, 0 means the Composition features are excluded and X is
constructed based on the Coverage features and the Codon usage features with equal weight
as 0.5 = (1 − 0)/2, namely X = [0.5 ∗ R̃, 0.5 ∗ Ỹ]; 1 means only the Composition
features are used to constructX = [H̃]; 0.2 means the Composition features have the weight
as 0.2, and the other two types of features have the equal weight as 0.4 = (1 − 0.2)/2,
X = [0.2 ∗ H̃, 0.4 ∗ R̃, 0.4 ∗ Ỹ]. Note, when the weight of the Composition features
is close to 1/3, X is constructed using the three types of features with equal weight.
The ‘Weight of Coverage’ and ‘Weight of Codon usage’ follow the similar notations and
meanings.


