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1 Unsupervised multiple kernel and KPCA in mixOmics

Methods presented in the paper are available on CRAN in the R package mixKernel and a full
tutorial on the mixOmics R package WEB site at http://mixomics.org/mixkernel/. Kernels can be
computed using the function compute.kernel that allows to choose between linear, phylogenetic and
abundance kernels. Unifrac and weighted Unifrac distances are processed using functions taken from
the phyloseq package [McMurdie and Holmes, 2013]. Bray-Curtis dissimilarities are computed with
the vegan package. The function combine.kernels implements methods described in Section 2.1 and
returns a meta-kernel which can be used as an input for the function kernel.pca. The KPCA result
can then be displayed using the mixOmics plot function plotInd.

To assess variable influence in the different datasets, the function kernel.pca.permute computes
Crone-Crosby distances resulting from permutations. In this function, the user can specify the level at
which the permutations must be performed. The most important variables can then be plotted using
the plotVar mixOmics function. A subset of TARA Oceans datasets and a tutorial are also provided
in the package to help users processing their own data. In addition, the tutorial is also available on
the mixOmics web site http://mixomics.org/mixkernel/ and the method is scheduled to be part
of the next version of mixOmics.

2 TARA Oceans selected datasets and samples

Ocean samples used in [Sunagawa et al., 2015, de Vargas et al., 2015, Brum et al., 2015,
Roux et al., 2016] were collected at various locations, representing all main oceanic regions at
different depth layers. The analysis, presented in Section 4.1, was performed on the whole available
material but only with samples for which all the prokaryotic, eukaryotic and viral information
was available: in [de Vargas et al., 2015], 334 size-fractionated samples were analysed from 47
stations at two water-column depths of the photic-zone: SRF and DCM. The different size-fractions
filters used during the sampling allowed to split samples into four major eukaryotic organism sizes:
piconanoplankton, nanoplankton, microplankton and mesoplankton. Finally, [Brum et al., 2015]
and [Roux et al., 2016] analysed respectively 43 and 89 viral-fractioned samples, collected from 45
stations from the SRF, the DCM and the MES layers. As shown in Supplementary Figure S1, this
resulted in 48 common sampling locations which included two depth layers (SRF and MES) and 31
stations. From these selected samples, 8 dissimilarities were computed:

• The phychem kernel is a similarity measure obtained from environmental variables. To com-
pute this kernel, 22 numerical features were used, including, e.g., temperature, salinity. This
dataset was extracted from Table W8, available on the companion website of

[Sunagawa et al., 2015]1. Missing values were previously imputed using a k-nearest neighbour

1http://ocean-microbiome.embl.de/companion.html
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approach, as implemented in the R package DMwR (for k = 5). Finally, the linear kernel,
K(xi, xj) = xTi xj, was computed between pairs of ocean samples from this dataset;

• The pro.phylo dissimilarity describes the phylogenetic dissimilarities between ocean sam-
ples. The companion website of [Sunagawa et al., 2015]2 gives access to the abundance table
of 35,650 OTUs summarized at different taxonomic levels as well as to the OTUs of 16S ri-
bosomal RNA gene sequences. A phylogenetic tree was built from these data using fasttree
[Price et al., 2010]. The weighted Unifrac distance was then computed using the R package

phyloseq [McMurdie and Holmes, 2013]: dwUF (xi, xj) =
∑

e
le|pe−qe|∑
e
(pe+qe)

, in which, for each branch

e, le is the branch length and pe (respectively qe) is the fraction of the community of ocean
sample xj (respectively of ocean sample xj) below branch e;

• The pro.NOGs dissimilarity provides a measure of prokaryotic functional processes dissimi-
larities between ocean samples. It was obtained using the Bray-Curtis dissimilarity

dBC(xi, xj) =

∑
s |nis − njs|∑
s(nis + njs)

, (1)

computed on the gene abundances of 39,246 bacterial genes. In Equation (1), nis is the number
of counts of bacterial gene number s in ocean sample xi. Genes were annotated using the
ocean microbial reference gene catalogue2 and summarized at eggNOG gene families (genes
annotated by eggNOG version 3 database: [Powell et al., 2012]). The gene abundance table is
freely available from the companion website of [Sunagawa et al., 2015]2;

• The ocean eukaryotic aspect is assessed by four dissimilarities, one for each eukaryotic organism
size collected: euk.pina for piconanoplankton, euk.nano for nanoplankton, euk.micro for
microplankton and euk.meso mesoplankton. The Bray-Curtis dissimilarity, defined in Equa-
tion (1), is computed on the abundance table of ∼ 150, 000 eukaryotic plankton OTUs. The
dataset can be downloaded from the companion website of [de Vargas et al., 2015] 2;

• The vir.VCs dissimilarity measures ocean viral communities and was computed using the
Bray-Curtis dissimilarity, defined in Equation (1), on the abundance table of 867 Viral Clusters
(VCs) available from the supplementary materials of [Roux et al., 2016].

All dissimilarities, d, described above (pro.phylo, pro.NOGs, euk.pina, euk.nano,
euk.micro, euk.meso and vir.VCs) were transformed into similarities as suggested

in [Lee and Verleysen, 2007]: Kij = −1
2

(
d(xi, xj)− 1

N

∑N
k=1 (d(xi, xk) + d(xk, xj)) +

1
N2

∑N
k, k′=1 d(xk, xk′)

)
, where d is the weighted Unifrac distance or the Bray-Curtis dissimilar-

ity. The eight similarities obtained are all positive and are thereby kernels, which are all centred by
definition. To avoid scaling effects in kernel integration, all kernels were scaled using the standard
cosine transformation [Ben-Hur and Weston, 2010]: K̃ij = Kij√

KiiKjj
.

3 Proof of concept with a restricted number of TARA

Oceans datasets

In the present section, only the datasets analysed in [Sunagawa et al., 2015] are explored. The re-
sults described in this paper are used as a ground truth to validate the relevance of our strategy.
Kernels used are the environmental kernel, phychem, and the two prokaryotic kernels, pro.phylo

2http://taraoceans.sb-roscoff.fr/EukDiv/



Supplementary Figure S1: Common sampling locations among prokaryotic, eukaryotic and viral
samples. Figure was obtained using jvenn [Bardou et al., 2014].

and pro.NOGs described in Supplementary Section S2. Kernels were computed on the 139 prokary-
otic samples analysed in [Sunagawa et al., 2015], which were collected from 68 stations and spread
across three depth layers: the surface (SRF), the deep chlorophyll maximum (DCM) layer and the
mesopelagic (MES) zones. Supplementary Figure S2 (left) provides the sample projection of the first
two axes of the KPCA (full-UMKL kernel). The 10 most important variables for each dataset are
displayed in Supplementary Figure S2 (first axis) and in Supplementary Figure S3 (second axis).
Both figures were obtained by randomly permuting the 22 environmental variables, the eggNOG
gene families at 23 functional levels of the gene ontology and the proteobacteria abundances at 102
order levels. Additionally, the explained variance supported by the first 15 axes is provided in Sup-
plementary Figure S4. Using the R package mixKernel on a 1 cpu computer with 16GB memory,
the computational cost to combine the three kernels is ∼5 seconds. Permutations to assess the
pro.phylo kernel important variables were performed in ∼9 hours without parallelization. This
computational cost is due to the weighted Unifrac distance computation, which is high compared to
others β-diversity measures such as the Bray-Curtis dissimilarity.



Supplementary Figure S2: Only datasets of [Sunagawa et al., 2015]. Left: Projection of the
observations on the first two KPCA axes. Colours represent the oceanic regions and shapes the
depth layers. Right: The 10 most important variables for the first KPCA axis, ranked by decreasing
Crone-Crosby distance.

Supplementary Figure S3: Only datasets of [Sunagawa et al., 2015]. The 10 most important
variables for the second KPCA axis, ranked by decreasing Crone-Crosby distance. Variables of the
pro.phylo kernel were permuted at the phylum level.

Supplementary Figure S4: Only datasets of [Sunagawa et al., 2015]. Entropy preserved by the
15 first axes of the KPCA performed on the meta-kernel obtained using the full-UMKL approach.



Supplementary Figure S5: Only datasets of [Sunagawa et al., 2015]. Projection of the obser-
vations on the first two KPCA axes. Colours represent the relative abundance of clade SAR11 : blue
for low values and red for high values.

First, note that Supplementary Figure S2 shows very similar results to the ones returned
by the PCA performed on community composition dissimilarities (Bray-Curtis) presented in
[Sunagawa et al., 2015]: samples are separated by their depth layer of origin, i.e., SRF, DCM or
MES, with stronger differences for MES samples.

Supplementary Figure S2 exhibits that both the abundance of clade SAR11 and the temperature
lead to the largest Crone-Crosby distances, meaning that they contribute the most to the first
KPCA axis definition. This result is validated by displaying the values of this variable on the KPCA
projection (see Supplementary Figure S5 and S6). On both figures, a gradient can be observed on
the first KPCA axis between the left (lowest abundances of clade SAR11 and lowest temperatures),
and the right (highest values of these variables). Those results are similar to the ones presented in
[Sunagawa et al., 2015]: the vertical stratification of prokaryotic communities is mostly driven by
temperature and proteobacteria (more specifically clade SAR11 and clade SAR86 ) dominate the
sampled areas.

Similarly, Supplementary Figure S3 shows that cyanobacteria abundance and the nitracline mean
depth (i.e. water layer in which the nitrate concentration changes rapidly with depth) contribute the
most to the second KPCA axis definition. The display of the nitracline mean depth on KPCA pro-
jection (Supplementary Figure S7) shows a gradient on the second KPCA axis. Supplementary Fig-
ure S8, displaying cyanobacteria abundance, shows a gradient between the top-left and the bottom-
right of the KPCA projection, because cyanobacteria abundance also ranks as the third important
variable on the first axis (see Supplementary Figure S9). Those results are consistent with findings of
[Sunagawa et al., 2015]: cyanobacteria were found abundant and the nitracline strongly correlated to
the taxonomic composition (p-value < 0.001). On both first two axes of the KPCA, unknown func-
tions lead to the largest Crone-Crosby distances between variables used to compute the pro.NOGs
kernel. Again, this result is in agreement with a conclusion made in [Sunagawa et al., 2015]: a large
fraction of the ocean gene families encode for unknown functions.

These results demonstrate that the proposed method gives a fast and accurate insight to the main
variability explaining the differences between the different samples, viewed through different omics
datasets. In particular, for both pro.phylo and phychem kernels, the most important variables are
those used in [Sunagawa et al., 2015] to state the main conclusions.



Supplementary Figure S6: Only datasets of [Sunagawa et al., 2015]. Projection of the observa-
tions on the first two KPCA axes. Colours represent the temperature: blue for cold waters and red
for warm waters.

Supplementary Figure S7: Only datasets of [Sunagawa et al., 2015]. Projection of the observa-
tions on the first two KPCA axes. Colours represent the nitracline mean depth: blue for low values
and red for high values.

4 Similarities between kernels

4.1 Similarities between TARA Oceans kernels

To have a general overview on the 8 datasets to integrate, the similarity measure between kernels
defined in Equation (2) is computed. The pairwise values are displayed in Supplementary Figure S10.

The figure shows that pro.phylo and pro.NOGs are the most correlated pair of kernels. This
result is expected as both kernels provide a summary of prokaryotic communities. Second, the kernel
that is the less correlated (in average) with the other ones is euk.meso and the kernel that is the



Supplementary Figure S8: Only datasets of [Sunagawa et al., 2015]. Projection of the observa-
tions on the first two KPCA axes. Colours represent the relative abundance of cyanobacteria: blue
for low values and red for high values.

Supplementary Figure S9: Only datasets of [Sunagawa et al., 2015]. The 10 most important
variables for the second axis of KPCA, ranked by decreasing Crone-Crosby distance. Variables of
the pro.phylo kernel were permuted at the phylum level.

most correlated (in average) with the other ones is euk.pina. These facts are supported by the
conclusions stated in [de Vargas et al., 2015]: mesoplanktonic communities are strongly geographi-
cally structured, according to their basin of origin, whereas piconanoplankton communities are more
homogeneous across the world oceans.

When focusing on similarities to environmental and physical variables, as measured by phy-
chem, the figure shows that the kernels that are the most correlated to this kernel are pro.phylo
and euk.pina kernels and that, again, euk.meso provides a different image of the oceans. These
results are supported by a conclusion made in [Sunagawa et al., 2015] and [de Vargas et al., 2015]:



Supplementary Figure S10: Similarities between TARA Oceans kernels computed using the STATIS-
UMKL approach.

the vertical stratification of the ocean microbiome is mainly driven by temperature rather than geog-
raphy, but geography plays a strong role to structure communities with respect to the large organism
size fractions.

Finally, vir.VCs is also more similar to small size organisms kernels than kernels representing
larger ones. This is explained by the fact that the biographical structure of viruses is due to host
community structure and to a passive transport by oceanic currents [Brum et al., 2015].

These results confirm the discussion reported in Supplementary Section S5: STATIS-UMKL
allows to have an overview on the different datasets and should be used when the integrated analysis
focuses on correlated informations.

4.2 Similarities between breast cancer kernels

As performed in the previous section, similarities between breast cancer kernels are computed and
presented in Supplementary Figure S11. Results show that the strongest correlations are obtained
with TCGA.mRNA, which is expected as levels of mRNA expression is the main signature to
classify breast tumours into subtypes.

5 Comparison of the different integration options

In the following section, the different methods proposed and especially the relevance of using a specific
approach to perform the integration is evaluated. To perform this analysis, environmental, prokary-
otic, eukaryotic and viral datasets are integrated together using the three proposed approaches: full-
UMKL, sparse-UMKL and STATIS-UMKL. The weights obtained for each methods are presented in
Supplementary Figure S12.

First, note that, Supplementary Figure S12 shows that STATIS-UMKL gives more weights to
euk.micro, euk.pina, pro.NOGs and pro.phylo, meaning that these kernels are strongly cor-
related. In the contrary, full-UMKL gives more importance to atypical kernels, i.e., euk.meso,
euk.micro, pro.NOGs and vir.VCs, which are the only kernels selected by the sparse-UMKL
approach, the other ones being discarded from the final meta-kernel.



Supplementary Figure S11: Similarities between breast cancer kernels computed using the STATIS-
UMKL approach.

Supplementary Figure S12: Kernels weights obtained for the three proposed approaches: full-UMKL,
sparse-UMKL and STATIS-UMKL. Colours represent the different kernels.

Results show that the three proposed methods are complementary and can be used depending on
the research question and the analysis step. The STATIS-UMKL approach allows to have an overview
on the correlation between the different datasets to analyse and to integrate them in a consensual
way. sparse-UMKL can be used to focus on a more even contribution of the various images provided
by the different kernels and to remove redundant informations. Finally, a similar goal is achieved
with the full-UMKL method, that should be preferred when the analysis requires to be performed
on the whole material.

6 KPCA analysis of TCGA datasets

In addition to KSOM, the meta-kernel obtained from the three TCGA datasets is used as an input
for KPCA. Supplementary Figures S13 and 14 provide, respectively, the projection of the samples on
the first two axes of the KPCA and the 10 variables found as the most important to explain this axis.
The organization of the different samples on the first two axes of the KPCA (and especially on the



first one) is found to be consistent with the cancer subtype classification and typology, as described
by the result of KSOM. Additional analyses (not shown for the sake of paper length), performing a
KPCA on each single omic datasets, show that our multi-omics approach improves tumours subtype
discrimination on the first KPCA axis.

Variables found as important to explain the first axis are potential biomarkers that can dis-
criminate between the cancer subtypes. Their expression profiles are presented in Supplementary
Figure S15. First, note that the samples organization observed on the first axis of the KPCA is
consistent with the 10 most important mRNAs expression since a gradient can be observed from
samples of subtype LumA to samples of subtype Basal samples. Second, selected variables for the
TCGA.CpG kernel reveal a specific pattern for Basal samples, this suggests that the identified
CpGs may also be useful to identify this breast cancer subtype.

Supplementary Figure S13: Projection of the samples on the first two KPCA axes. Colours represent
the cancer subtype.

In addition, the 10 mRNA selected as the most important were also submitted to an GO anal-
ysis (performed with biomaRt and topGO) and compared to the reference list of the 2,000 mRNA
originally included in the data. Four biological processes were found to be significantly enriched in
this list (at risk 10% with a Fisher test): extracellular matrix organization, extracellular structure
organization, anatomical structure development and regulation of immune system process, that are
all known as biological processes involved in cancer development.

7 Supplementary figures



Supplementary Figure S14: The 10 most important variables for the first axis of the KPCA and for
each of the 3 datasets, ranked by decreasing Crone-Crosby distance.



Supplementary Figure S15: Expression profiles of the 10 most important variables for each datasets.
Samples were ranked by cancer subtypes and from the smallest to the highest coordinates on the
first axis of the KPCA. Colours represent the expression levels from high (white) to low values (red).



Supplementary Figure S16: The 5 most important variables for the second axis of the KPCA and
for each of the 8 datasets, ranked by decreasing Crone-Crosby distance.



Supplementary Figure S17: Entropy preserved by the 15 first axes of the KPCA performed on the
meta-kernel obtained using the full-UMKL approach and environmental, prokaryotic, eukaryotic and
viral datasets.

Supplementary Figure S18: Projection of the observations on the first two KPCA axes. Colours
represent the relative abundance of alveolata organisms in the nanoplanktonic community: blue for
low values and red for high values.



Supplementary Figure S19: Projection of the observations on the first two KPCA axes. Colours
represent the longitude: blue for low values and red for high values.

Supplementary Figure S20: Projection of the observations on the first two KPCA axes. Colours
represent the relative abundance of rhizaria organisms in the mesoplanktonic community: blue for
low values and red for high values.



Supplementary Figure S21: Projection of the observations on the first two KPCA axes. Colours
represent the relative abundance of opisthokonta organisms in the nanoplanktonic community: blue
for low values and red for high values.
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