
Implementations and Interoperability
Testing
In this supplement we describe the diverse implementations of the htsget protocol that were
developed, and the extensive testing performed to ensure that all implementations were fully
interoperable.

Please see the htsget servers list for the endpoint URLS of servers hosting the
interoperability test data.

1 Implementation details
In this section we provide some basic details about the various client and server
implementations tested. This illustrates the wide range of different technologies,
programming languages and platforms used.

1.1 DNAnexus
DNAnexus operates a demonstration htsget server, htsnexus, which serves access to BAM
and CRAM files hosted in Microsoft Azure Blob Storage (ABS) and Amazon S3. The
htsnexus server running under Node.js® consults a pre-loaded SQLite database with the
cloud locations and block-by-block indices of each read group set.

Clients querying htsnexus receive back URLs and byte ranges on the cloud storage service
directly, along with all necessary delegate credentials needed to access them. As a result,
the htsnexus server only dispenses the small JSON signalling messages, while the massive
read data payloads are transmitted to the client by ABS/S3 directly. This permits a small
htsnexus server to handle requests from many parallel clients without becoming overloaded.

In addition to the server, the open source code includes a simple htsget client script written
in Python.

URL: https://github.com/dnanexus-rnd/htsnexus
Contact: mlin@dnanexus.com

1.2 Google
The Google htsget server provides access to BAM (and, soon, CRAM) files stored in Google
Cloud Storage (GCS). The htsget server can be deployed inside Google Cloud projects and
read data from that project's (or any other project's) buckets with optional support for TLS
and simple access control (for restricting access in non authenticated cases).

http://samtools.github.io/hts-specs/htsget_interop.html
https://github.com/dnanexus-rnd/htsnexus
mailto:mlin@dnanexus.com

The server requires the target files to be indexed and the index files to be stored beside the
primary data. The server reads the index to determine which chunks of the data file must be
read and returned to the client.

The server is written in Go and is open source (Apache License).

URL: https://github.com/googlegenomics/htsget
Contact: kemp@google.com

1.3 Wellcome Sanger Institute NPG Ranger

Wellcome Sanger Institute provides, as one of its implementations of the htsget protocol, a
JavaScript package with both server and client. They work on top of Node.js® runtime
environment and rely on Node.js® streaming and process piping capabilities.

The server implementation is an abstraction layer which understands the protocol
specification and provides the expected protocol endpoints using http/https. The abstraction
layer decouples the data storage from the rest of the process, allowing for on-the-fly query
region extraction and merging underlying distributed resources, transcoding between
formats and limited capabilities for data integrity validation (through digest embedded in http
trailers).

By design, authentication and authorization are abstracted and expected to be provided by
external services. So far, the setup has been tested delegating authentication to Google
Authentication service and authorization to a service which understands the institute’s
internal data access policies.

The client is provided as a CLI, but key parts of the protocol are implemented as a library
which can be used independently. A proof of concept JavaScript genome browser was
modified to display data by wrapping htsget requests using this library and browserify to
transpile the Node.js JavaScript to a browser-friendly version.

URL: https://wtsi-npg.github.io/npg_ranger/
Contact: david.jackson@sanger.ac.uk

1.4 EGA
The European Genome-phenome Archive (EGA) is a service and database for permanent
archiving and sharing of all types of personally potentially identifiable genetic and phenotypic
human data resulting from biomedical research projects. In 2018, the EGA data access API
(v3) has added support for htsget. The archive and permissions structure of EGA
necessitates that IDs used are EGA File IDs, and the API requires a valid EGA or ELIXIR
AAI JWT to provide access.

https://github.com/googlegenomics/htsget
mailto:kemp@google.com
https://wtsi-npg.github.io/npg_ranger/

The htsget 1.0 compliant API is receives the request for BAM/CRAM files on /files/{id} and
for VCF/BCF Files on /variants/{id}, and returns a JSON response ticket containing the
URL(s) where the data can be downloaded. The Data/Blob server is part of the same
microservice.

The server is written in Java 1.8 and relies on htsjdk. All code is open source (Apache 2).

URL: https://ega.ebi.ac.uk:8051/elixir/data/tickets
GitHub: https://github.com/EGA-archive/ega-dataedge
Contact: asenf@ebi.ac.uk

1.5 Htslib
HTSlib is a C library which allows applications to read and write sequence alignments in
SAM, BAM and CRAM formats, and variant data in VCF and BCF2 files. It can access files
both on local storage and over the network using via FTP, HTTP and HTTPS (if linked with
the libcurl library). HTSlib includes file type detection so that reading different formats is, as
far as possible, transparent to the end user.

When it opens an htsget URL, HTSlib detects and parses the htsget JSON response. It then
downloads each chunk in sequence and passes the data back through the original file
handle. From the point of view of the reader, this makes htsget look like any other streamed
alignment file. This means most tools that use HTSlib for file access can read data via htsget
by simply specifying the htsget URL as the location of the input file.

Support for the current htsget specification was added in HTSlib release 1.6. Release 1.7
added basic support for sending Oauth2 bearer tokens. Support for htsget requires HTSlib to
be built against libcurl.

URL: https://github.com/samtools/htslib/
Contact: samtools-devel@lists.sourceforge.net

1.6 Htsget
Htsget is a Python client implementation of the htsget protocol (the software was named
before the protocol adopted the same name). It is based on the requests library, and is
tested on the Linux, Mac and Windows operating systems. Htsget provides a simple Python
API as well as a command line interface for the protocol, and can be installed from PyPI.

The library provides reliable access to data by retrying any chunks that fail to download a
configurable number of times, thus working around transient network issues. Download
performance is excellent, providing download speeds indistinguishable from using cURL or
wget.

Please see the documentation for more details.

https://ega.ebi.ac.uk:8051/elixir/data/tickets
https://github.com/EGA-archive/ega-dataedge
mailto:asenf@ebi.ac.uk
https://github.com/samtools/htslib/
http://docs.python-requests.org/
https://pypi.python.org/pypi/htsget
https://htsget.readthedocs.io/

URL: https://pypi.python.org/pypi/htsget
Contact: jerome.kelleher@well.ox.ac.uk

2 Testing and interoperability application
We developed an application to test the data integrity of client and server implementations.
The tester is provided a local copy of a BAM or CRAM file and a URL for a htsget endpoint
representing the same data. The tester operates by running a set of queries on the local and
remote version of the data, and then verifies that data returned is equivalent to the local
version. The tester is written in Python, and uses the pysam library for reading BAM and
CRAM files.

For a given client and server combination, the tester works by examining the local data, and
constructing a series of queries. For a given query, the tester calls the client under test with
the server URL and query parameters as arguments, and write the results to a temporary
file. This temporary file is then read, and compared to the data from the local source file
(which should be identical to the data stored on the server). Any data mismatches are
reported, and summarised at the end of a test run.

The queries run are a mixture of edge-cases overlapping the ends of contigs in various
ways, full contig fetches, and a configurable number of randomly generated start and end
coordinates.

The code is available on GitHub.

3 Test data
The data used for the interoperability tests was a mixture of CRAM and BAM data from the
1000 Genomes CEU trio (NA12878, NA12891 and NA12892) mapped to different reference
versions. RNASeq and Chip-seq BAMs were also included.

Description Assembly File Type

CEU Daughter GRCh37 NA12878.bai HiSeqX BAM index

 NA12878.bam HiSeqX BAM

CEU Father GRCh37 NA12891.bai HiSeqX BAM index

 NA12891.bam HiSeqX BAM

CEU Mother GRCh37 NA12892.bai HiSeqX BAM index

 NA12892.bam HiSeqX BAM

CEU Daughter GRCh38 NA12878.crai HiSeqX CRAM index

 NA12878.cram HiSeqX CRAM

CEU Father GRCh38 NA12891.crai HiSeqX CRAM index

https://pypi.python.org/pypi/htsget
mailto:jerome.kelleher@well.ox.ac.uk
https://github.com/pysam-developers/pysam
https://github.com/jeromekelleher/htsget-tester
ftp://gsapubftp-anonymous@ftp.broadinstitute.org/triosForGA4GH/b37/NA12878.bai
ftp://gsapubftp-anonymous@ftp.broadinstitute.org/triosForGA4GH/b37/NA12878.bam
ftp://gsapubftp-anonymous@ftp.broadinstitute.org/triosForGA4GH/b37/NA12891.bai
ftp://gsapubftp-anonymous@ftp.broadinstitute.org/triosForGA4GH/b37/NA12891.bam
ftp://gsapubftp-anonymous@ftp.broadinstitute.org/triosForGA4GH/b37/NA12892.bai
ftp://gsapubftp-anonymous@ftp.broadinstitute.org/triosForGA4GH/b37/NA12892.bam
ftp://gsapubftp-anonymous@ftp.broadinstitute.org/triosForGA4GH/hg38/NA12878.crai
ftp://gsapubftp-anonymous@ftp.broadinstitute.org/triosForGA4GH/hg38/NA12878.cram
ftp://gsapubftp-anonymous@ftp.broadinstitute.org/triosForGA4GH/hg38/NA12891.crai

 NA12891.cram HiSeqX CRAM

CEU Mother GRCh38 NA12892.crai HiSeqX CRAM index

 NA12892.cram HiSeqX CRAM

GM12878
immortalized cell
line of NA12878 GRCh38 ENCFF284YOU.bam RNAseq BAM

GM12878
immortalized cell
line of NA12878 GRCh37 ENCFF000VWO.bam ChIP-seq BAM

4 Interoperability results

 Servers

 WSI DAWS DAZ GCP EGA

Clients BAM CRAM BAM CRAM BAM CRAM BAM CRAM BAM CRAM

htsget n/a n/a

WSI n/a n/a

EGA n/a n/a

Samtools n/a n/a

Table 1: Interoperability status for clients (side) and servers (top). Green boxes indicate fully
passing interoperability (see 2 above for details), yellow indicates combination not supported
by the server. WSI=Wellcome Sanger Institute, DAWS=DNAnexus on Amazon AWS,
DAZ=DNAnexus on Azure, GCP=Google Cloud Platform, EGA=European
Genome-phenome Archive. Server URLs are given in section 1 above.

ftp://gsapubftp-anonymous@ftp.broadinstitute.org/triosForGA4GH/hg38/NA12891.cram
ftp://gsapubftp-anonymous@ftp.broadinstitute.org/triosForGA4GH/hg38/NA12892.crai
ftp://gsapubftp-anonymous@ftp.broadinstitute.org/triosForGA4GH/hg38/NA12892.cram
https://www.encodeproject.org/files/ENCFF284YOU/@@download/ENCFF284YOU.bam
https://www.encodeproject.org/files/ENCFF000VWO/@@download/ENCFF000VWO.bam

