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12 Markers used 26

The entire analysis is available as a reproducible workflow at http://www.github.com/
kieranrcampbell/ouija-paper but we summarise some steps here.
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1 Supplementary Figures
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Supplementary Figure 1: Compressibility of Trapnell et al. (2014) dataset. A The expression
patterns of many genes are highly correlated with the first and second principal components of the
data. B Variance explained by each PC.

Supplementary Figure 2: Comparison of DPT, TSCAN and Monocle 2 whole transcriptome de-
rived pseudotimes. Black shows correlations between DPT-TSCAN, DPT-Monocle 2 and TSCAN-
Monocle 2. Red show correlations of each algorithm with marker-based Ouija estimates.
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Supplementary Figure 3: Inferred pseudotemporal behaviour of marker genes from Shin et. al.
(2015).
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Supplementary Figure 4: Ouija is robust to gene behaviour misspecification. A The genes
Mef2c and Pik3r2 show the expected behaviour in a marker-based pseudotime fitted to the Li et al.
(2016) [1] dataset (“constant upregulation” and “transient upregulation” respectively). However, the
gene Scd1 (B) was claimed to have “tide wave” regulation (transient expression), but a LOESS fit over
pseudotime (black line) shows effectively constant expression over pseudotime. C We found very
low agreement between the different pseudotime inference algorithms for this dataset. Curiously,
the largest agreement was reported between Ouija using only markers and Monocle 2 using the 500
most variable genes. D We simulated datasets with genes either exhibiting switch-like expression
over pseudotime or transient expression, with an overdispersed, zero-inflated noise model to mimic
real data. E Ouija was benchmarked assuming all genes were switch-like when a certain proportion
were actually transient across a range of geneset sizes. Even at only 8 genes, half of which are actually
transient, Ouija still recovers amedian correlation of greater than 0.9 with the true pseudotime, which
only increases with increasing number of genes and switch-like behaviour.
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Supplementary Figure 5: Inferred pseudotemporal behaviour of marker genes from Li et. al.
(2016).
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Supplementary Figure 6: Absolute correlation of marker genes in the Chu et. al. (2016) dataset
reveal clustering into transient genes (blue) and switch-like genes (red).
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Supplementary Figure 7: PCA representation of Zhou et. al. (2016) dataset using 1,000 most
variable genes, coloured by cell type.
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Supplementary Figure 8: Consistency matrix for clustering with the Dulken et. al. (2017) dataset.
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Supplementary Figure 9: Consistency matrix for clustering with the Chu et. al. (2016) dataset.

Supplementary Figure 10: Example run times on a 2014 MacBook Pro of Ouija and Ouijaflow
for the cell cycle dataset for differing numbers of cells (A) and genes (B), for 3000 iterations of
Ouija and 1000 iterations of Ouijaflow. Both algorithms require variable numbers of iterations to
be considered converged; users should inspect MCMC diagnostics such as effective sample size for
Ouija; users should check that the lower bound has approximately converged for Ouijaflow. Note
that HMC (used in Ouija) has a data-dependent clock time per iteration.
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2 Supplementary Tables

1 2 3 4 5 6 7
aNSC 3 0 21 55 15 46 12
NPC 2 0 2 2 1 11 13
qNSC 22 33 10 0 1 1 2

Supplementary Table 1: Comparison of experimentally measured cell types (rows) and Ouija-
inferred cell types (columns) for the Dulken et al. dataset.

1 2 3 4 5 6 7 8
00h 81 11 0 0 0 0 0 0
12h 0 42 60 0 0 0 0 0
24h 0 0 65 0 1 0 0 0
36h 0 0 17 47 70 25 10 3
72h 0 0 0 0 33 42 18 45
96h 0 0 0 0 45 38 36 69

Supplementary Table 2: Comparison of cell capture times (rows) and Ouija-inferred cell types
(columns) for the Chu et al. dataset.

Number of genes Simulation regime p-value
6 Sigmoidal 2.6E-03
6 Complementary log-log 1.3E-05
6 Probit 1.3E-04
6 Threshold 5.9E-28
9 Sigmoidal 1.8E-04
9 Complementary log-log 6.7E-07
9 Probit 3.3E-09
9 Threshold 3.3E-12
12 Sigmoidal 2.0E-03
12 Complementary log-log 1.8E-06
12 Probit 2.5E-08
12 Threshold 9.2E-06
15 Sigmoidal 3.0E-03
15 Complementary log-log 4.2E-06
15 Probit 2.0E-09
15 Threshold 6.7E-03

Supplementary Table 3: P-values reported by Wilcoxon rank-sum test on the correlations to true
pseudotime comparing informative priors to noninformative priors.
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3 Data preprocessing

Trapnell et al. Data were downloaded from the Bioconductor package HSMMSingle-
Cell at http://bioconductor.org/packages/devel/data/experiment/html/
HSMMSingleCell.html. Cells were filtered to contain anywith State of 1 or 2. log2 FPKM + 1
values were used as expression. Genes were filtered to include any with a variance in ex-
pression greater than 1.

Shin et al. TPM expression values were downloaded from http://www.cell.com/
cms/attachment/2038326541/2052521610/mmc7.xlsx. log2 TPM + 1 values were
used as expression. Genes were filtered to include any with a variance in expression greater
than 1.

Zhou et al. FPKM values were downloaded from the Gene Expression Omnibus with
accession GSE67120. Cells were filtered to include only those with the desired cell type
mentioned in the main text. log2 FPKM + 1 values were used as expression.

Dulken et al. TMM-normalised counts were downloaded from http://www.cell.com/
cms/attachment/2081925929/2072608613/mmc5.xlsx. Expression values usedwere
log2(Norm-counts + 1). Cells were filtered to be of types qNSC, aNSC or NPC.

Chu et al. Raw counts were downloaded from the Gene Expression Omnibus with acces-
sion GSE75748. Counts were normalised using TMM normalisation. Expression values
used were log2(Norm-counts + 1)

Li et al. Log expression values were downloaded from the Gene Expression Omnibus
with accession GSE76157. Outlier cells were removed in a similar manner to the original
publication.

4 Modelling considerations

4.1 Mean-variance relationship

In normalised RNA-seq counts the variance for gene g in sample n is related to its mean
via

σ2
ng = µng(1 + φgµng) (1)
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where φg is a gene-specific dispersion factor. Such strong parametric forms are typically
required since for low sample sizes the estimates of the variance can be very unstable.

However, typically in single-cell data there are enough measurements (ie cells) to allow
robust estimation of both the mean and variance for each gene [2]. The exception to this is
in pseudotime analyses, where we are assuming each cell represents a unique time point, and
therefore the mean µng and variance σ2

ng are effectively measured only once. Consequently
we must consider a strong mean-variance relationship since assuming a constant variance
per gene is akin to under-fitting while it would be impossible to fit a variance for each cell
and each gene (since there is only one measurement).

As a solution to this we examine the mean-variance relationship for the genes across all
cells and assume the same relationship approximately holds for cells as they progress along
pseudotime trajectories. The relationship in 1 applies to the original untransformed data
(e.g. TPM or scaled counts) while we wish to model the log2(TPM + 1) transformed re-
lationship directly. Therefore we must examine the mean-variance relationship for the log2
data1, since in general the mean-variance relationship of the log-transormed data isn’t the
same as (the log of) the mean-variance relationship on the untransformed data.

We examined the mean-variance relationship of the logged data for the three datasets in
the main text, as seen in Supplementary Text Figure 1. The pseudotemporal marker genes
identified in the original text are shown in red. For both the Trapnell and Zhou datasets
these lie on the ‘leading edge’ of the relationship, in areas of moderate mean expression
but high variance. In comparison, the housekeeping genes (shown in blue) lie in the tails
in regions of high mean expression but low overall variance. This makes intuitive sense, as
we expect the marker genes to turn on across the trajectory, giving them a mean of around
half the maximal value but maximum variance. In contrast, we expect housekeeping genes
to have maximal expression across the trajectory but very low variance in keeping with the
constancy of their expression. Oddly we found such a relationship not to hold in the Shin et
al. dataset.

We therefore assumed that any genes we wish to model as pseudotemporal marker genes
follow the same linear mean-variance relationship. To quantify this for generating synthetic
data we fit a simple linear model with a forced zero intercept to the pseudotemporal marker
genes in the Trapnell et al. dataset that gave a gradient of 3.502. Therefore, in all our
synthetic data we model σ2 = 3.5µ.

4.2 Dropout rate

It has been noted in several papers (see e.g. [3]) that the dropout rate for a given gene is
inversely proportional to the mean expression of that gene. This is typically assumed to be
due to the failure of reverse transcription of lowly expressed transcripts. To account for this
we assume that the probability of a dropout is logistic on the latent gene expression mean
in a similar approach to Kharchenko et al 2014. The difference to previous approaches is

1Note for x� 0 log2(x + 1) ≈ log2(x).
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Supplementary Text Figure 1: The mean-variance relationship in log2(TPM+ 1) single-cell data
for three of the datasets studied in the main text. Red denotes the marker genes identified in the main
text while blue corresponds to three house-keeping genes (LDHA, NONO, PGK1) or their mouse
equivalents. Both the Trapnell et. al. (2014) and Zhou et. al. (2016) datasets show consistent
evidence that pseudotemporal marker genes exist on the ‘leading edge’ of the data with medium
mean expression but high variance. This suggests a linear relationship between mean and variance
in log2 space. In contrast, the housekeeping genes all sit in the ‘tails’ with high mean expression but
very low variance.

Supplementary Text Figure 2: The probability of a dropout against the mean log2 expression in
the Trapnell et. al. (2014) dataset. The red solid line shows the logistic regression fit.
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that (1) we are working in log2(TPM + 1) space and (2) we assume a unique mean µng for
every gene in every cell, giving a per-gene per-cell dropout probability p(µng) of

log
[

p(µng)
1− p(µng)

]
= β0 + β1µng. (2)

During statistical inference β0 and β1 are assumed to be constant across all cells as the
(assumed) small number of marker genes used would make per-gene inference unstable.
To generate synthetic data we fit a logistic regression curve to the probability of dropout
against mean log2 expression for the Trapnell et al dataset (Supplementary Text Figure 2).
This gave coefficients of β0 = 1.763 and β1 = −1.156.

5 Further model description

Suppose we model the gene expression y of some dynamically unfolding process at time t.
y is fundamentally a random variable so we model its expected expression E[y(t)] = f(t),
where f is a function that dictates the mean gene behaviour over time. The difficulty with
pseudotime analysis is that t is unknown and the object of inference, so if we are to infer t
we must make assumptions about f for t to be identifiable.

The question of pseudotime modelling then comes down to deciding a form of f . One
possibility is a linear function f(t) = at + b for parameters a and b. However, this is
fundamentally unrealistic - it can model negative expression, which doesn’t make physical
sense, and also unbounded expression, i.e. as the dynamical process time t increases the
expression goes to infinity. On the other hand we could not fix a functional form of f and
model it nonparametrically, such as using a Gaussian process (GP, see e.g. [4]). However,
using a GP does not lead to any interpretable understanding of gene behaviour without
post-hoc processing and is typically nonidentifiable, requiring capture time priors such as
in [5].

In Ouija, we choose a form of f that models realistic gene behaviours over time allowing for
flexible modelling of transcription dynamics without the overflexibility of nonparametric
functions. Specifically, f can be sigmoidally regulated with parameters k and t(0) corre-
sponding to switch strengths and switch times, or transiently regulated with parameters p
and b corresponding to the peak times and length of upregulation respectively.

Suppose we have n ∈ 1, . . . , N cells and g ∈ 1, . . . , G genes for which we have an expres-
sion measurement yng and for each cell we wish to associate a pseudotime tn. For each gene
we have a set of gene specific parameters Θg, which will either be switch times/strengths or
peak times/lengths depending on whether we model gene g as switch or transient. Given a
student-t distribution Tν and a per-sample variance σ2

ng (as detailed in the main text) then
the likelihood for a single observation is given by

p(yng|f(tn,Θg), σ2
ng) = Tν(yng|f(tn,Θg), σ2

ng). (3)
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The observations are conditionally independent given the gene parameters and pseudotimes,
so the joint probability of the data Y , gene specific parameters, and pseudotimes is given
by

p(Y ,Θ, t) = π(Θ)π(t)
G∏
g=1

N∏
n=1

Tν(yng|f(tn,Θg), σ2
ng) (4)

where π(Θ) and π(t) are the prior distributions of the gene specific parameters and pseu-
dotimes respectively. Using Bayes’ rule this joint probability can be transformed into a
posterior distribution of the pseudotimes and gene specific parameters given the data, but
integration of the normalizing constant is intractable so we resort to approximate inference
methods like MCMC and variational Bayes, as detailed in the main text. As such, this
model is a form of Bayesian nonlinear factor analysis where the nonlinearities are induced
by the functions f , the latent variables are the pseudotimes t, and the equivalent of the factor
loadings are the interpretable gene-specific parameters.

6 Leave-k-out validation of marker pseudotime fits

Even though Ouija fits pseudotimes to small panels of marker genes whose a priori expec-
tations of behaviour is typically taken to validate whole transcriptome pseudotime fits, it
is still possible to use these genes to validate the pseudotimes using leave-k-out validation.
We demonstrated this on the Trapnell et al. dataset by reinferring the pseudotimes (a) 5
times leaving 1 gene out and fitting the pseudotimes to the remaining 4 marker genes, and
(b) 10 times leaving 2 genes out and fitting the pseudotimes to the remaining 3 genes. The
behaviour of the held-out genes was then examined to ensure that it was consistent with the
all-marker pseudotime fit and the a priori expectations of the researcher.

The results for the leave-one-out and leave-two-out analyses can be seen in Supplementary
Text Figure 3 A & B respectively. In every case the behaviour of the held-out genes follows
the a priori expectations exactly and matches with the behaviour inferred using the all-
marker-fit. We interpret this as evidence that Ouija is robust to the exact selection of marker
genes and that leave-k-out validation is an appropriate method to critique the pseudotime
fits of Ouija, if desired.

7 Marker-gene pseudotime inferene does not precludewhole-
transcriptome analysis

While Ouija fits pseudotimes to small sets of marker genes this in no way precludes whole-
transcriptome analysis of the remaining genes. Ouija pseudotimes were fitted to the Trapnell
et al. dataset, with 1500 post-burn-in MCMC iterations retained. 100 of iterations were
randomly sampled giving an empirical estimate of the posterior pseudotime distribution
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Supplementary Text Figure 3: .
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Supplementary Text Figure 4: .
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Supplementary Text Figure 5: For the Trapnell et al. dataset, sigmoidal regulation patterns were
fitted to the transcriptome-wide gene-set after marker-gene pseudotime inference. Genes displayed
are those significant across all posterior pseudotime traces, ordered by switch strength (A) and by
switch time (B).
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p(t|marker genes). For each of these 100 iterations we fitted switchde differential expres-
sion models to 11,257 genes passing the filtering threshold. This provided an estimate of
the distribution of the switch strength (k) and time (t(0)) parameters for all remaining genes
in the transcriptome.

For illustrative purposes, we filtered down to the 875 genes that were significantly differen-
tially expressed (5% FDR) in all MCMC traces and sampled 100 of these to visualize the
posterior distributions of the switch strength and switch time parameters (Supplementary
Text Figure 5). This demonstrates that despite only fitting pseudotimes usingmarker genes it
is possible to infer interpretable gene parameters for the entire transcriptome. Furthermore,
this procedure is more statistically correct as it only uses the data once - a small set of genes
to fit the pseudotimes with the remaining genes used for differential expression. This is in
contrast to the majority of pseudotime procedures that use the data twice - once for pseu-
dotime inference, and once again for differential expression, which will break asymptotic
guarantees of the statistical tests.

8 Description of whole-transcriptome algorithms

Monocle 2 Monocle 2 [6] begins with an initial dimensionality reduction using methods
such as PCA and constructs a spanning tree in the reduced space, linking the centroids of
clusters found using k-means clustering. Cells are then shifted towards the nearest tree
vertex, with the spanning tree subsequently updated. The map is then projected back into
high dimensional gene expression space, and the process repeated over until the tree and
cell positions converge. A “root” cell is then selected by the user, and the distance from the
root to any cell along the tree gives the pseudotime.

Diffusion Pseudotime (DPT) DPT [7] computes a transition matrix that approximates
the probability that one cell would transition into another under a diffusion model, with
cells closer together in expression space more likely to transition and conversely for cells
further apart. The dominant eigenvectors of this transition matrix then act as a low-noise
embedding of the cells, and scale-free random walks across this embedding are taken as the
pseudotimes of the cells from a suitably defined root cell.

TSCAN TSCAN [8] begins by averaging genes into clusters to mitigate the effects of
dropout. TSCAN then performs PCA on this reduced data matrix and retains the top k com-
ponents by fitting a breakpoint model to the variance explained per principal component.
Cells are then clustered using Gaussan Mixture modelling where the number of clusters
is chosen such that the BIC is maximized. TSCAN then constructs a minimum spanning
tree on these clusters and cells projected onto this tree, with the distance from the root cell
defining the pseudotime similarly to DPT.
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9 Simulating data

Our method for generating synthetic pseudotemporally regulated single-cell RNA-seq data
representing log2(TPM + 1) given the above considerations can be found in algorithm
1.

Algorithm 1 Generate pseudotemporally regulated scRNA-seq data
1: Data: G genes, N cells, φ = 3.5, β0 = 1.76, β1 = −1.16
2: Result: A N ×G matrix of gene expression Y, where [Y]ng = yng
3: for g ∈ 1 . . . G do
4: Draw kg ∼ Unif(5, 10)
5: Draw ηg ∼ Unif(2, 5)
6: Draw t(0)

g ∼ Unif(0, 1)
7: Set kg ← −kg with probability 1

2
8: for n ∈ 1 . . . N do
9: Draw tn ∼ Unif(0, 1)
10: µng ← ηgf(tn, kg, t(0)

g )
11: σ2

ng ← φµng
12: Draw xng ∼ N (µng, σ2

ng)
13: if xng < 0 then
14: xng ← 0
15: end if
16: θng ← logit−1(β0 + β1µng)
17: Set xng ← 0 with probability θng
18: end for
19: end for

10 Incorporating prior information can improve pseudo-
time inference

A particular advantage of using Bayesian models with interpretable parameters is that we
may express any prior knowledge about the gene behaviour as informative priors. For ex-
ample, for each gene we model as switch-like there is the switch strength parameter k that
models how quickly a gene is upregulated if k is positive or how quickly it is downregulated
if it is negative. A researcher may have a firm prior belief that a gene will be up or downregu-
lated along the trajectory and thus can place a prior p(k) on the particular parameters. Using
Bayes’ rule, the posterior distribution of both the pseudotimes and gene-specific parameters
is then calculated by combining this informative prior with the data likelihood. The crucial
observation here is that the posterior distribution of the pseudotimes is affected by priors
on the gene behaviour parameters, meaning incorporating prior information about gene be-
haviours may improve pseudotime inference. Such informative priors may be placed on
any of the parameters that govern interpretable gene behaviour. For example, if a researcher
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Supplementary Text Figure 6: Incorporating prior information can improve pseudotime in-
ference. We sought to identify the benefits of incorporating prior information about the behaviour of
genes to the accuracy of pseudotime inference. We simulated data according to four different mean
functions (sigmoidal, complementary log-log, probit, and threshold) under identical noise model
and reinferred using DPT, TSCAN, Ouija with noninformative priors, and Ouija with informative
priors. The results show a marginal though significant gain in inference when incorporating prior
knowledge.
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expects a particular transient gene to peak early in the trajectory then they may encode this
using a prior distribution on the peak time.

We sought to test the extent to which incorporating knowledge of gene behaviours through
informative Bayesian priors aids pseudotime inference. To do so we performed extensive
simulations of single-cell pseudotime under monotonic changes in expression and reinferred
using Ouija with both noninformative and informative priors, as well as DPT and TSCAN.
In order to emulate the fact that the data will not truly come from a sigmoidal link func-
tion, we simulated data from various link functions used in logistic regression including
probit and complementary log-log (Supplementary Text Figure 6) along with a “threshold”
model where the expression is on or off with a particular probability that changes along the
trajectory (see supplementary text for full details).

The results can be seen in Supplementary Text Figure 6, with similar characteristics across
the four mean functions considered. In all cases Ouija performs substatially better than
DPT and TSCAN, but we note that this is likely due to the data generating model more
closely matching the likelihood model of Ouija though could also be explained by the fact
that DPT and TSCAN are not designed for small panels of genes. In each case the gain from
incorporating prior information is statistically significant (Supplementary Table 3), but we
note that the effect sizes are in practice quite small. Since to infer a consistent pseudotime,
sufficient correlations must exist in the data, prior knowledge may only make a relatively
minor contribution. However, researchers dealing with data with low biological signal to
noise ratio may find it advantageous to incorporate such constraints to improve the quality
of their inferences.

11 Benchmarking

11.1 Mean functions

We sought to simulated switch-like behaviour from four link functions commonly used
in generalized linear regression, along with a modified version that leads to further mis-
specification.

11.1.1 Sigmoidal

The sigmoidal mean function corresponds to that used by Ouija. Given the pseudotime tn
the mean is calculated via

µng = 2ηg
1 + exp(−kg(tn − t(0)

g ))
(5)

for which we draw ηg ∼ Unif(3, 4), t(0)
g ∼ Unif(0.1, 0.9) and kg ∼ Unif(5, 20) and negated

with probability 1
2 . Given an assumed scale of log2 (TPM + 1) this selection of parame-
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ters, combined with the noise model, provides a reasonable range of observed expression
values.

11.1.2 Complementary log-log

The complementary log-log (cloglog) acts as a link function in logistic regression, mod-
elling the probability of success π in terms of regressorsx and coefficientsβ via log(− log(1−
πn)) = xTnβ. Therefore, we use it to generate a mean via

µng = 2ηg
(

1− exp(−ekg(tn−t(0)
g ))

)
(6)

for which we draw the parameters identically to the sigmoidal case.

11.1.3 Probit

The probit link models the probability of success as πn = Φ(xTnβ), where Φ is the cumula-
tive distribution function of the standard normal distribution. Thus we use

µng = 2ηgΦ
(
kg(tn − t(0)

g )
)
. (7)

η and t(0)
g are drawn as before, while kg ∼ Unif(10, 50) to take into account the differing cur-

vature compared to sigmoid and cloglog (and negated with probability 1
2 as before).

11.1.4 Threshold

We sought to create a further switch-like mean function that would be maximally mis-
specified with respect to Ouija. This follows a two part process and requires a sign variable
|kg| that describes whether the gene is up or down regulated along pseudotime. Firstly, a
probit variable is generated by drawing mg ∼ |kg| × Unif(1, 2) and cg = −mgt

(0)
g . Then

draw µ∗
ng ∼ N (mgtn + cg, 0.1). The mean function is given by

µng =

2ηg if µ∗
ng > 0

0 otherwise
(8)

In this situation we draw ηg and t(0)
g as before and |kg| is positive or negative with equal

probability.

25



11.2 Pseudotime inference

For each mean function we re-inferred the pseudotimes with PCA (first principal compo-
nent), diffusion pseudotime, and Ouija in two configurations - noninformative and informa-
tive. For the noninformative case, default settings are used which consists of k ∼ N (0, 1)
and t(0) ∼ N (0.5, 1). For the informative case, the prior mean on t(0)

g was set to its true
value and the prior standard deviation 0.1.

For the informative case the prior on k varied slightly depending on the simulation condition,
but in each case the standard deviation was reduced to 0.1. For the sigmoidal and cloglog
mean function regimes, the prior means were set to the true values of the generated data.
For the probit and threshold datasets, the prior was set to 50 multiplied by the sign of the
true k. In otherwords, we declare the direction of regulation, and that strong switch-like
behaviour is exhibited, but nothing more.

We included a further two settings for Ouija on the sigmoidal dataset only. In the “switch
midpoint” setting, the prior mean on t(0) is set to 0.5, while in “switch uncertainty” the prior
mean on t(0) is set to the true value plus aN (0, 0.1) random variable. In both cases, all other
parameters are the same as the Ouija informative setting.

This data was simulated for G = 6, 9, 12, 15 “marker” genes with 500 replications per gene
set and mean function.

12 Markers used

See supplementary table 4.

Dataset Markers
Trapnell et al. CDK1, ID1, MYOG, MEF2C, MYH3
Zhou et al. Nrp1, Hey1, Efnb2, Ephb4, Nrp2, Nr2f2
Shin et al. Sox11, Eomes, Stmn1, Apoe, Aldoc, Gfap
Chu et al. POU5F1, NANOG, SOX2, EOMES, CER1, GATA4, DKK4, MYCT1,

PRDM1, CDX1, MSX2
Dulken et al. Id3, Clu, Rpl32, Egfr, Cdk4, Cdk1, Dlx2, Dcx
Li et al. Mef2c, Foxa2, Col10a1, Comp, Dlx3, Id3, Pik3r2, Spry2, Sox9, Insig1,

Scd1, Scd2

Supplementary Table 4: Markers used in the 6 datasets studies.
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