Supporting Material

Problem formulation
Thermodynamics Flux Analysis (TFA) adds constraints on top of a classic Flux Balance Analysis (FBA) problem to couple reaction directionalities to thermodynamics constraints. In particular, the formulation in (Soh and Hatzimanikatis, 2014) adds metabolite concentrations and Gibbs energy of reactions, and couples the sign of the Gibbs energy of a reaction to its directionality.
These constraints aim to reduce the feasible flux solution space of the problem and increasing the predictive power of the model. This methodology is used to perform Thermodynamics-based Variability Analysis (TVA), a series of TFA maximization and minimization of the variables in the model, such as reaction fluxes, to determine their allowable ranges and directionalities. 
Given a model with specified reaction directionalities, it is possible to characterize the thermodynamic states of the underlying physiology by sampling equilibrium displacements and concentrations. We show here the formulation as proposed in (Soh and Hatzimanikatis, 2014):
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The TFA problem in the table incorporates thermodynamics-based constraints in the original FBA problem in the two first equations. 
For biochemical reactions, the transformed Gibbs free energy of the reaction , , is a function of the transformed Gibbs energy of the chemical potentials  of the reactants . If the reaction is a transport of the compounds from one compartment to another, the Gibbs free energy of transport   is also considered, according to the formulation  in Jol et al. (Jol, et al., 2010). is calculated in the third equation.
The chemical potential of the reactants is a function of the standard transformed Gibbs free energy of formation of the compounds  and the metabolite’s activity, as shown in the fourth equation. Activities of the compounds can be expressed directly as concentrations, as we perform Debye-Huckel correction (Debye and Hückel, 1923).  is the estimated error in the energy of formation.
 is a large (Big-M, ) value, and  is a binary variable. The two last equations enforce the constraint .  should be chosen so that it is bigger by one or two orders of magnitude than the maximal .
This formulation requires net fluxes to be non-negative. To do so, each reaction is separated in two: a net forward and a net backward, and their net fluxes are associated in the following manner:

In that form, the net forward and the net backward reactions are constrained to have non-negative values. Additional constraints are applied to ensure that at most one of these two is active at a time.
Usage and Example: sampling thermodynamic displacements
We provide a reduced E. coli model made with the software presented in (Ataman, et al., 2017), as well as the model it was generated from, iJO1366 (Orth, et al., 2011).
We can sample the natural logarithms of thermodynamic displacement  for each reaction in the genome-scale model. 
In a reaction with one product P and one substrate S, the thermodynamic displacement can be defined as such:

[bookmark: _GoBack]are the concentration at equilibrium of the substrate and product according to the notations in (Heinrich and Schuster, 2012).  is the associated equilibrium constant. In that context, we can also write the Gibbs energy of the reaction:



Since :

Hence,

Then: 

and hence the directionality of a reaction is opposite to the sign of .
It is possible to directly sample admissible thermodynamics displacements and calculated  the average thermodynamic displacement for each reaction. The thermodynamic displacements are constrained because of their link to , which is defined by metabolite concentrations. Thus, admissible displacements depend directly on the concentration ranges.
It is also useful to sample directly admissible concentrations. As an example, here is a sampling performed for cytosolic ATP using the methods provided with the package:

Figure S 1:  Example distribution of the sampling of admissible ATP concentrations
Further Analysis
Given an MILP model with thermodynamics constrains, it is possible to perform several kinds of additional studies. 
Thermodynamics-based Variability Analysis (TVA)
TVA can be performed on any variable of the model. These include metabolite concentrations, reaction fluxes, Gibbs free energy of reactions, displacement from equilibrium.
Integration of metabolomics
Integration of metabolomics data is possible because the logarithmic concentration of metabolites is a variable within the model. In particular, it is possible to perform Thermodynamics-based Metabolite Sensitivity Analysis (TMSA) (Kiparissides and Hatzimanikatis, 2017), which allows to define a priority list of metabolites to measure in order to constrain further the model.
Characterization of physiologies
By enumerating bidirectional reactions, and looking at the different solutions spanned by their directionalities, it is possible to characterize the relationship between different flux and physiologies. Additionally, it is possible to observe which reactions are operating close to or far from equilibrium.
Sampling
The resulting constraint-based model is amenable to sampling of any of its variables, such as metabolite concentrations or thermodynamic displacements. pyTFA and matTFA can indeed call COBRA’s sampling methods, Artificially-Centered Hit and Run (Schellenberger and Palsson, 2009) and OptGpSampler (Megchelenbrink, et al., 2014). Given a physiology, this allows preparing data for kinetic modeling methods, such as Metabolic Control Analysis-based ORACLE (Miskovic, et al., 2017; Miskovic and Hatzimanikatis, 2010). 

Data
Gibbs free energies of formation 
Gibbs free energies of formation can be obtained from various data sources, among them:
· LitteratureLiterature, e.g. (Jankowski, et al., 2008)
· eQuilibrator (Flamholz, et al., 2012)
· Databases (eg NIST)
· LCSB also provides support on obtaining these data upon request.
· 
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