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1 Hyperparameter Selection

We used an independent validation dataset to determine the values of hyperparame-
ters, including the dimension d ∈ {256, 512, 1024} of node embedding, the dimension
k ∈ {256, 512, 1024} of the edge-type specific projection matrices, the repetition time
p ∈ {0, 1, 2, 3} for alternately repeating Steps (1) and (2), the gradient clipping norm
from {1, 5} and the number of steps for performing gradient descent. In particular, af-
ter splitting the data into training and test datasets in the cross-validation procedure, we
randomly separated 0.5% of the training set as an independent validation dataset. We
tuned the above hyperparameters based on this separate validation set and evaluated the
performance of NeoDTI on the test dataset. In addition, we used the Adam optimizer [1]
with the default learning rate 0.001 to perform gradient descent.

2 Baseline Methods

We compared the performance of NeoDTI with that of several network-based DTI predic-
tion methods, including DT-Hybrid [2], BLMNII [3], HNM [4], MSCMF [5], NetLapRLS
[6] and DTINet [7]. DT-Hybrid [2], BLMNII [3] and LPMIHN [8] have been reported as the
state-of-the-art network-based prediction methods [9]. LPMIHN was not included in our
comparisons because we encountered technical difficulty in implementing this method.
Among the baseline methods used in our comparison tests, DTINet, MSCMF and HNM
can integrate multiple heterogeneous information to predict new DTIs, while the other
methods are not particularly designed to exploit multiple drug or protein network data
for DTI prediction. To make a fair comparison, we followed the same strategy as in [7]
to integrate multiple networks into a single network for DT-Hybrid, BLMNII and Net-
LapRLS in our comparison tests. In particular, for all interaction or association networks,
i.e., drug-drug interaction, drug-disease association, drug-side-effect association, protein-
protein interaction and protein-disease association networks, we constructed the corre-
sponding drug-drug or protein-protein similarity networks based on the Jaccard similar-
ities. Then, the final similarity score between drugs i and j after integrating all similarity
networks was obtained by 1 − ∏k(1 − dk

ij), where dk
ij ∈ [0, 1] stands for the similarity

between drugs i and j based on the network k. Here, k can stand for a drug-drug inter-
action, drug-disease association, drug-side-effect association or drug-structure-similarity
network. Similarly, the final similarity score between proteins i and j after integrating all
similarity networks was obtained by 1−∏k(1− pk

ij), where pk
ij ∈ [0, 1] stands for the sim-

ilarity between proteins i and j based on the network k. Here, k can stand for a protein-
protein interaction, protein-disease association or protein-sequence-similarity network.
Note that the edge weights in the protein-sequence-similarity network are ranged from
[0, 100]. Here, we normalized the weights to [0, 1]. We used the above final similarity score
as edge weights to construct the drug-drug and protein-protein similarity networks, and
used them in the baseline methods DT-Hybrid, BLMNII and NetLapRLS.

For the hyperparameters used in all baseline methods, we tuned them using the same
strategy as in NeoDTI. In particular, we used the following hyperparameter space for each
baseline method. For DT-Hybrid, the combination parameters λ and α were both chosen
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from {0.0, 0.1, · · · , 1.0}. In BLMNII, The max function g was used to integrate the interac-
tion scores pd and pt, and the combination weight α was selected from {0.0, 0.1, · · · , 1.0}.
For HNM, the value of the decay factor α was chosen from {0.0, 0.1, · · · , 1.0}. For MSCMF,
the feature dimensionality K was selected from {50, 100} and four weight parameters, λl,
λd, λt and λw were chosen from {2−2, 2−1, · · · , 21}, {2−3, 2−4, · · · , 25}, {2−3, 2−2, · · · , 25},
and {21, 22, · · · , 210}, respectively. For NetLapRLS, the ratios λd2/λd1 and λp2/λp1 were
chosen from {10−5, 10−4, · · · , 10} and the parameters βd and βp were selected from {3 ·
10−4, 3 · 10−3, · · · , 3 · 100}. In DTINet, we chose ft from {400, 500, · · · , 800} and fd, fk
from {100, 200, · · · , 500} .

3 The effects of using different drug/protein-disease edge
types on the prediction performance

The drug/protein-disease association edges used for constructing our heterogeneous net-
work were derived from the Comparative Toxicogenomics Database (CTD) [10]. These
edges can be further distinguished as marker, therapeutic and inferred types. To investi-
gate the effects of using different drug/protein-disease edge types on the prediction per-
formance, we further conducted the following additional tests: (1) We used only binary
drug/protein-disease associations classified as markers in the CTD to construct the het-
erogeneous network and make prediction. (2) We used only binary drug/protein-disease
associations classified as the therapeutic type in the CTD to construct the heterogeneous
network and make prediction. (3) We used the drug/protein-disease associations classi-
fied as the inferred type in the CTD to construct the heterogeneous network and make
prediction. Here, instead of using the binary edge weights, we used the inferred scores
as edge weights. (4) We did not distinguish the edge types and used all edge types (i.e.,
marker, therapeutic and inferred) to create the binary drug/protein-disease associations
to construct the heterogeneous network and make prediction (which corresponded to our
original setting). All computational experiments were conducted using a ten-fold cross-
validation procedure in which the ratios of positive versus negative samples were set to
1 : 10. The results are shown in Figure S4. Although we found that using all edge types
without distinguishing them yielded the best prediction performance, it is interesting to
notice that using only the therapeutic edges can already produce the comparable predic-
tion performance.

4 The effect of using the edge weight normalization on the
prediction performance

To investigate the effect of using the edge weight normalization, we conducted an addi-
tion ten-fold cross-validation test in which we removed the edge weight normalization
term Mv,r in Eq. 1 from Definition 2. The results are shown in Figure S5b-c. Compared to
the original results using the edge weight normalization (i.e., our original design choice),
we witnessed signification performance decreases in terms of both AUROC and AUPR
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when dropping the edge weight normalization term. Therefore, we kept this normaliza-
tion term in our model.

5 The effect of choice of the first dimension of W1

When setting the repetition time of neighborhood information aggregation to one, the
first dimension of the weight matrix W1 in Eq. 2 from Definition 3 may have arbitrary
dimension h ∈ R instead of being fixed as d. We performed additional tests to investigate
the effect of the choice of h. Specifically, the original h value used in our framework was
set to 1024. In our new tests, we changed h to 512 and 2048, and conducted an additional
ten-fold cross-validation procedure in which the ratios of positive versus negative sam-
ples were set to 1 : 10. The results are shown in Figure S5a. When k = 512, 1024 and
2048, the corresponding AUROC scores were 0.946, 0.946 and 0.948, respectively, while
the corresponding AUPR scores were 0.833, 0.853 and 0.859, respectively. Therefore, the
change of h did not significantly affect the prediction performance. We kept h = d in our
framework mainly because this design choice will also be convenient for performing the
multiple neighborhood integration steps when necessary.

6 Supplementary Figures

4



DT-H
yb

rid

BLM
NII

HNM

MSCMF

NetL
ap

RLS

DTIN
et

Neo
DTI

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(f) AUPR
 No. positive : No. negative = 1:10,
DTIs with drugs or proteins sharing

similar diseases were removed

DT-H
yb

rid

BLM
NII

HNM

MSCMF

NetL
ap

RLS

DTIN
et

Neo
DTI

0.5

0.6

0.7

0.8

0.9

1.0

(a) AUROC
No. positive : No. negative = 1:10

DT-H
yb

rid

BLM
NII

HNM

MSCMF

NetL
ap

RLS

DTIN
et

Neo
DTI

0.5

0.6

0.7

0.8

0.9

1.0

(b) AUROC
All unknown pairs were

 treated as negative examples

DT-H
yb

rid

BLM
NII

HNM

MSCMF

NetL
ap

RLS

DTIN
et

Neo
DTI

0.5

0.6

0.7

0.8

0.9

1.0

(c) AUROC
No. positive : No. negative = 1:10,

DTIs with similar drugs or
proteins were removed

DT-H
yb

rid

BLM
NII

HNM

MSCMF

NetL
ap

RLS

DTIN
et

Neo
DTI

0.5

0.6

0.7

0.8

0.9

1.0

(d) AUROC
No. positive : No. negative = 1:10,

DTIs with drugs sharing similar
drug interactions were removed

DT-H
yb

rid

BLM
NII

HNM

MSCMF

NetL
ap

RLS

DTIN
et

Neo
DTI

0.5

0.6

0.7

0.8

0.9

1.0

(e) AUROC
No. positive : No. negative = 1:10,

DTIs with drugs sharing
similar side-effects were removed

DT-H
yb

rid

BLM
NII

HNM

MSCMF

NetL
ap

RLS

DTIN
et

Neo
DTI

0.5

0.6

0.7

0.8

0.9

1.0

(g) AUROC
No. positive : No. negative = 1:10,
DTIs with drugs or proteins sharing

similar diseases were removed

DT-H
yb

rid

BLM
NII

HNM

MSCMF

NetL
ap

RLS

DTIN
et

Neo
DTI

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

(h) AUROC
Trained on non-unique interactions,

tested on unique interactions

Figure S1. Supplementary results on the performance evaluation of NeoDTI on several
challenging scenarios in terms of the AUPR and AUROC scores. (a) A ten-fold cross-
validation test in which the ratio between positive and negative samples was set to 1 : 10.
(b) A ten-fold cross-validation test in which all unknown drug-target interacting pairs
were considered. (c-g) Ten-fold cross-validation with positive : negative ratios = 1 : 10 on
several scenarios of removing redundancy in data: (c) DTIs with similar drugs and pro-
teins were removed. (d) DTIs with drugs sharing similar drug interactions were removed.
(e) DTIs with drugs sharing similar side-effects were removed. (f,g) DTIs with drugs and
proteins sharing similar diseases were removed. (h) NeoDTI was trained on non-unique
drug-target interacting pairs and tested on unique drug-target interacting pairs. More
details on the baseline methods can be found in this Supplementary Materials. All results
were summarized over 10 trials and expressed as mean ± standard deviation.
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Figure S2. Supplementary results on the effects of incorporating heterogeneous informa-
tion in NeoDTI. (a) Incorporating the drug-drug interaction network. (b) Incorporating
the drug-disease association network. (c) Incorporating the drug-side-effect association
network. (d) Incorporating the protein-protein interaction network. (e) Incorporating the
protein-disease association network. (f) Performance under different edge reconstruction
strategies. All results were summarized over 10 trials and expressed as mean ± standard
deviation.
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Figure S3. The robustness of NeoDTI over different choices of hyperparameters. (a) Per-
formance of NeoDTI under different choices of the embedding dimension d. (b) Perfor-
mance of NeoDTI under different choices of the dimension k of the projection matrices.
(c) Performance of NeoDTI under different choices of repetition time p for performing
neighborhood information integration. All results were summarized over 10 trials and
expressed as mean ± standard deviation.
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Figure S4. The effects of using different drug/protein-disease edge types derived from the
Comparative Toxicogenomics Database (CTD) on the prediction performance in terms of
AUPR (a) and AUROC (b).
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Figure S5. (a) The effect of the choice of h (i.e., the first dimension of W1 in Definition 3)
on the performance. (b,c) The effects of whether using the edge weight normalization on
the AUPR and AUROC scores, respectively.
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7 Supplementary Tables

Node Count
Drug 708

Protein 1,512
Disease 5,603

Side-effect 4,192
Total 12,015

(a)

Edge Count
Drug-Protein 1,923
Drug-Drug 10,036

Drug-Disease 199,214
Drug-Side-effect 80,164
Protein-Protein 7,363
Protein-Disease 1,596,745

Total 1,895,445

(b)

Table S1. (a) The node statistics and (b) the edge statistics of the datasets used in our
computational experiments. The datasets were curated in our previous study [7].

Drug name Protein name Supporting references
Sorafenib FLT1 [11]

Mifepristone NR3C2 [12, 13]
Tazarotene RXRG [14]
Felbamate GRIN2D [15]

Acetazolamide CA6 [16, 17]
Rivastigmine CES1 [18]
Pioglitazone PPARA [19]

Sorafenib CSF1R [20]

Table S2. Eight novel drug-target interactions among the list of top 20 significant predic-
tions derived by NeoDTI that can be supported by previous studies in the literature.
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