
WAVES

Web Application for Versatile Enhanced
Bioinformatic Services

Marc Chakiachvili 1,2, Sylvain Milanesi 1, Anne-Muriel Arigon Chifolleau 1, Vincent
Lefort 1 *

1 LIRMM, Université de Montpellier, CNRS, Montpellier, France
2 European Molecular Biology Laboratory, European Bioinformatics Institute,

Wellcome Genome Campus, Hinxton, Cambridge, CB101SD, United Kingdom

* Corresponding author: lefort@lirmm.fr

Supplementary Material

__

 Definitions pp. 2

 WAVES architecture pp. 3

 WAVES main module: WAVES-core
o General description pp. 4-5
o Functionalities pp. 6
o Users interfaces pp. 7-9

 Other WAVES module: WAVES-Galaxy pp. 9

 Licensing pp. 10

 Usefull links pp. 10

__

1

mailto:lefort@lirmm.fr

DEFINITIONS

Computing infrastructure

Comprized of computationally dedicated hardware and the software components required to
operate it, including calculation management programs (distributed resource management
systems, Galaxy, other APIs for computation resources...).

Adapter

A component allowing WAVES to communicate with a computing infrastructure.

Service

A bioinformatic tool available online via the http protocol. A service can be accessed from a web
form or through REST API calls.

Usage

A list of expected inputs and outputs for a service.

Submission

The combination of a usage and a computing infrastructure. A service can thus rely on different
submissions.

Job

Represents a submission run with user-defined values for inputs (files and parameters). A job
results in the execution of a command with parameters. It is run on the computing infrastructure
defined by the submission. A job generates outputs: exit code, standard output and standard error,
and potentially result files.

User

A client accessing services. A client can be a physical person using a web browser, or software
using the REST API.

Administrator

A user with access rights to the WAVES back-office. The administrator manages services,
submissions, adapters, and jobs.

2

WAVES architecture

The main goal of WAVES is to facilitate bioinformatic tool integration through web interfaces in
order to provide the scientific community with online bioinformatic services. The main WAVES
component is called WAVES-core. This component enables administrators to create services that
are made available automatically for users. WAVES-core creates web interfaces to provide access
to services: web pages and web forms, and REST API entry points (Sup. Fig. 1).

WAVES-core integrates predefined adapters for two types of computing infrastructures: one for
command line execution and the other for running jobs on DRMAA-compliant resource
management systems. These adapters are designed to be extended to other computing
infrastructures. We also provide an extension for Galaxy that is implemented within the WAVES-
Galaxy adapter (see dedicated section below).

Sup. Fig. 1. WAVES architecture overview. WAVES is built around WAVES-core, which provides
the main WAVES functionalities: user interfaces (“WEB PAGES”, “WEB FORMS” and “REST API”),
services and user management (“BACK-OFFICE” and “USER MANAGEMENT”) for administrator
use only, and WAVES-core adapters for running jobs on local or remote computing infrastructures.
WAVES also includes the WAVES-Galaxy adapter, and can be extended easily to other computing
infrastructures by creating dedicated adapters.

3

WAVES main module: WAVES-core

General description

Most of the time, a bioinformatic tool is defined within a single service that relies on a single
submission (Sup. Fig. 2, service B). Each user call to a service creates a job that is submitted to
the computing infrastructure with specified inputs. WAVES-core then monitors job status during
processing on the computing infrastructure. Once the job is terminated, WAVES-core retrieves the
results, stores them, and makes them available online via web pages and API entries.

However, some bioinformatic tools provide several distinct usages. For example, a program can be
run using a command-line interface or by providing a configuration file. Thus, the same service can
provide several usages for the same tool and can be run on several different computing
infrastructures. This is done by configuring a submission for each required combination (Sup. Fig.
2, service A).

A standard use case is to define two submissions for the same tool:

● A default submission with a selection of the most relevant tool parameters with predefined
values. This submission is intended to be implemented for inexperienced users.

● An expert submission, which allows fine-tuning of each tool parameter, for advanced users.

Sup. Fig. 2. Service submission model within WAVES.

4

Service creation

Once installed on a computing infrastructure, a tool is integrated into WAVES by creating and
configuring a dedicated service. This is achieved by filling out the ‘Online Service’ form (Sup. Fig.
3) in the WAVES administration interface to define the tool settings. Services can also be imported
into WAVES from Galaxy instances and thus automatically configured (see WAVES-Galaxy section
below).

Sup. Fig. 3. ‘Online Service’ configuration form from WAVES back-office administration interface.

Service use

There are three different ways to interact with WAVES services: web pages, web forms, and a
RESTful API. Example code showing how to interact with a WAVES service web form and API are
available from the Developper Guide online documentation.

5

Service access rules

For each service, the WAVES administrator can setup different access levels (Sup. Table 2).

Service status Access

Draft Restricted to service creator

Staff Access is granted to other WAVES back-office users

Registered Access is granted to registered users

Restricted Access is restricted to a selection of registered users

Public Access is granted to anyone

Sup. Table 1. WAVES services status and corresponding user access rights.

Functionalities

Adapters

By default, WAVES-core comes with predefined adapters to interact with a variety of computing
infrastructures (Sup. Table 1). Each adapter parameter is configured by the administrator through
the WAVES-core back-office.

Adapter Name Description

LocalShellAdapter Execute job with standard shell on Linux-based platform

SshShellAdapter Connect through SSH protocol with standard credentials user / password on
remote server and execute shell command

SshKeyShellAdapter Connect through SSH protocol using ssh key pairing credentials on remote
server and execute shell command

LocalClusterAdapter Run job on locally installed DRMAA1 compatible cluster (currently SGE,
SLURM, TORQUE, PBS, LSF, CONDOR)

SshClusterAdapter Connect through SSH protocol with standard user / password credentials on
remote DRMAA compatible cluster and run job

SSHKeyClusterAdapter Connect through SSH protocol using ssh key pairing credentials on remote
DRMAA compatible cluster and run job

Sup. Table 2. Predefined WAVES-core adapters for computing infrastructures.

1 http://www.drmaa.org/

6

http://www.drmaa.org/

Job spool

Once submitted, jobs enter a FIFO (First In First Out) queue to be treated and relayed to the
relevant adapter at regular time intervals.

After completion, jobs can be deleted either by administrators or by authorized users. WAVES-core
is not intended to be a genuine job queue manager. It relies on an external computation scheduler
for performing jobs prioritization and authorization configuration.

Each job may be cancelled by its owner, and WAVES-core then attempts to cancel job execution
on the associated computing infrastructure.

User management

Users are managed with the Django standard authentication / authorization mechanism2, which
may be extended to fit any specific requirements for integration. User management allows fine
tuning for user access rights.

Users interfaces

Web pages

WAVES-core provides already made front-end web pages, designed with the bootstrap 33 CSS
framework and using Django standard templating engine4. By default, WAVES-core defines the
following URIs for accessing its services (Sup. Table 3).

URI Description

/waves/services/ List all available services

/waves/services/{service_app_name}/ Display service details

/waves/services/{service_app_name}/new Create a job through submission form(s)

/waves/jobs/{unique_id}/ View job details

/waves/jobs/inputs/{unique_id}/[?export=1] View input file online / Download file

/waves/jobs/outputs/{unique_id}/[?export=1] View output file online / Download file

Sup. Table 3. Web page URIs to access WAVES services.

2 https://docs.djangoproject.com/en/1.11/topics/auth/

3 https://getbootstrap.com/

4 https://docs.djangoproject.com/en/1.11/topics/templates/

7

https://docs.djangoproject.com/en/1.11/topics/templates/
https://getbootstrap.com/
https://docs.djangoproject.com/en/1.11/topics/auth/

RESTful API

WAVES-core services are available through RESTful API endpoints. The API lists the available
services, and returns service details and associated usages defined within submissions (Sup.
Table 4).

METHOD URI Description

GET /waves/api/services List all available services

GET /waves/api/services/{service_app_name} Retrieve service details

GET /waves/api/services/{service_app_name}/form Retrieve service forms (for all
submissions)

GET /waves/api/services/{service_app_name}/jobs Retrieve service jobs (only for logged-
in users)

GET /waves/api/services/{service_app_name}/submissions List all available submissions for this
service

GET /waves/api/services/{service_app_name}/submissions/
{submission_app_name}

Get detailed service submission
information (inputs, parameters,
expected outputs)

GET /waves/api/services/{service_app_name}/submissions/
{submission_app_name}/jobs

List all user jobs for this submission

POST /waves/api/services/{service_app_name}/submissions/
{submission_app_name}/jobs

Create a new job from submitted
inputs

GET /waves/api/services/{service_app_name}/submissions/
{submission_app_name}/form

Get HTML submission form that
submits data to the above “POST” URI

Sup. Table 4. WAVES-core services REST API endpoints. The "POST" method is only accessible
through authenticated requests, while "GET" method can be accessed anonymously.

8

WAVES-core provides REST API endpoints to follow the job execution life cycle and retrieve
results once terminated (Sup. Table 5).

METHOD URI Description

GET /waves/api/jobs List all available user job summaries, with
related detailed URI

GET /waves/api/jobs/{unique_id} Detailed job information, allows direct link to
submitted inputs, results outputs, status
history, related submission and service

GET /waves/api/jobs/{unique_id}/status Retrieve job status

GET /waves/api/jobs/{unique_id}/inputs List job inputs

GET /waves/api/jobs/{unique_id}/inputs/{api_name} Retrieve input content (for file)

GET /waves/api/jobs/{unique_id}/outputs List job outputs

GET /waves/api/jobs/{unique_id}/outputs/{api_name} Retrieve output file content

POST /waves/api/jobs/{unique_id}/cancel Cancel job and tag it as cancelled

DELETE /waves/api/jobs/{unique_id} Delete job

Sup. Table 5. WAVES-core REST API endpoints for job management. All methods require an
authenticated request.

The WAVES-core API is compatible with Core API5 specifications. Thanks to Django REST
framework6, WAVES implements the Core JSON schema which can be browsed from WAVES-
demo7.

Other WAVES module: WAVES-Galaxy

Using the BioBlend8 python library, this adapter enables Galaxy services import into WAVES-core.
WAVES-Galaxy9 automatically recognizes the tools available in a Galaxy instance. The WAVES
administrator can select the tools to integrate within the back-office. WAVES-Galaxy then creates a
new service for each selected Galaxy tool automatically. When called from WAVES, each
submission of this service is run on the Galaxy instance from which it was imported.

5 http://www.coreapi.org/

6 http://www.django-rest-framework.org/api-guide/schemas/

7 http://waves.demo.atgc-montpellier.fr/waves/api/schema

8 http://bioblend.readthedocs.io/

9 http://waves-galaxy-adaptors.readthedocs.io/

9

http://waves-galaxy-adaptors.readthedocs.io/
http://bioblend.readthedocs.io/

Licensing

Django and its components are open-source software, developed by a large community (more than
10,000 people) and benefiting from a wide range of reusable packages.

WAVES has been made available on GNU Public License version 310, meaning that anyone may
use, reuse, and modify the code. We invited people to help us make WAVES even better, so don’t
hesitate to participate in the project on GitHub.

Useful links

WAVES-core

➔ GitHub repository: https://github.com/lirmm/waves-core
➔ Documentation: http://waves-core.readthedocs.io

WAVES-demo

➔ GitHub repository: https://github.com/lirmm/waves-demo
➔ Documentation: http://waves-demo.readthedocs.io
➔ Example: http://waves.demo.atgc-montpellier.fr/

WAVES-galaxy adapter

➔ GitHub repository: https://github.com/lirmm/waves-galaxy
➔ Documentation: http://waves-galaxy-adaptors.readthedocs.io

SAGA python framework

➔ GitHub repository: https://github.com/radical-cybertools/saga-python
➔ Documentation: http://saga-python.readthedocs.io
➔ Project home: https://radical-cybertools.github.io

10 https://www.gnu.org/licenses/gpl.html

10

https://radical-cybertools.github.io/
http://saga-python.readthedocs.io/
https://github.com/radical-cybertools/saga-python
http://waves-galaxy-adaptors.readthedocs.io/
https://github.com/lirmm/waves-galaxy
http://waves.demo.atgc-montpellier.fr/
http://waves-demo.readthedocs.io/
https://github.com/lirmm/waves-demo
http://waves-core.readthedocs.io/
https://github.com/lirmm/waves-core

