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Supplement 59

S5 Assessing The Relationship Between Actual
and Measured Expression

61

One of the main components of dtangle’s approach is a linear model ¢,
relating actual gene expression to measured gene expression. To explore
. o . . L .6
its plausibility, we consider this linear model’s application to Affymetrix

DNA microarray data and Illumina RNA-seq data. o
65

S5.1 Microarray Data o
To explore the relationship between the amount of transcripts and the e
measured expression from microarray technology we consider the Latin ¢
Square data set from Affymetrix (Irizarry et al., 2003). This data set was 79
created by hybridizing a solution of complex human background mRNA 7,
with 42 transcripts spiked in at concentrations ranging from 0.125pM 7,
to 512pM. The spike-ins were done with 3 technical replicates of 14 73
hybridization experiments in a Latin square design. This data set lets us 74
explore the relationship between measured expression and abundance of 75
the transcripts because for each of the spiked-in transcripts we know both 76
the expression measured by the array and the amount in which the transcript 77
was spiked in. 78
The expression as measured by the microarray is best explained by a 79
logistic fit in the spike-in amount (Supplementary Figure S27a). However gy
the linear fit that dtangle assumes does quite well. The logistic fit has a g,
slightly smaller R?2 than the linear fit however there are several reasons we g»
choose to model the relationship between spike-in amount and measured g3
expression as linear. Firstly, the linear model is much simpler than the g,
logistic model and has almost as good of a fit. For the linear model R2 =
0.957 while for the logistic least squares fit we have R2 = 0.992. Thus ¢
we gain relatively little for using the more complex model. Furthermore, g;
the simplicity of the linear fit can also be thought of as a regularization gg
of the logistic model. The non-linearity of the logistic curve means it is a
very unstable model for measured expressions on both the high and low g9
ends. That is, its inverse is undefined at or beyond these points. If the o
logistic model is used to estimate the true gene transcriptional abundance o,
from measured expression data then small changes in measured expression ¢,
might correspond to large changes in predicted amount. Indeed, the logistic o3
curve will fail completely for measured expressions above its maximum o4
or below its minimum. The linear model can be thought of as a regularized o5
model between these two quantities. It ensures that a linear change in
measured expression will only ever effect a linear change in amount. While
there is probably a true non-linear relationship between the expression o
measured by microarrays and the amounts of transcripts in the samples,
a linear fit does quite well at approximating this relationship and is a z;

regularized model for the truth.
9%

S5.2 RNA-seq
100

Another reason we favor linear modeling of the relationship between
amount and measured expression is because it is not only reasonable for'"
microarray technology but a reasonable model for RNA-seq. To explore]o2
how our model interacts with RNA-seq technology we consider data from 1
the Sequencing Quality Control project (SEQC Consortium, 2015). These .
data are available on GEO with accession GSE47774. Here we look at'”
RNA-seq analysis run on Ambion ERCC Spike-In Control Mix 1 using]o6
Illumina HiSeq technology. The ERCC spike-in control mix contains 92]07
transcripts spiked-in at known concentrations. Hence this data set allows
us to look at the relationship between measured expression and amount'
because both are known. 1
For this data the measured expression values (log, of the read'"’
count plus one) are well approximated by a linear relationship to the
spike-in concentration amount (Supplementary Figure S27b). Unlike the

previously discussed microarray data the RNA-seq data does not seem
well approximated by a logistic fit. For a simple linear regression we find
R? = 0.955 and s0 a linear fit seems reasonable.

S5.3 Estimating The Slope

We have thus seen that both microarray and RNA-seq measured gene
expressions are well modeled as linear (on the log-scale) in the actual
expressions. For the RNA-seq data we find that the slope of the linear
relationship is approximately one. However for microarray data the
relationship is better modeled as linear with a slope slightly smaller than
one. Doing so will help account for the true logistic relationship that is
affected by saturation and attenuation of the measured expressions at the
low and high ends.

‘We denote the slope of this relationship as «y in our model and replace it
with its estimate 5 when estimating the cell type proportions using dtangle.
The value of 7 in dtangle’s algorithm may be set by the user if desired.
However a pre-set value of 5 will be used by default if none is supplied. If
is not specified by the user, one need only specify the type of technology as
either probe-level microarray, gene-level microarray, or RNA-seq. From
here a default value of 7 is chosen. These default values are estimated
from spike-in experiments like those just discussed. For both RNA-seq and
microarray spike-in data we fit regression models of measured expression
on spike-in amount. These are the linear models seen in in the previous
sections. We then take the median value of all the estimates of the slopes
from each gene’s regression model. These form the estimate of 5. This
is done for the RNA-seq data (on the log, of the counts plus one) and
microarray data (at the RMA-summarized gene level and raw log, probe-
level). These estimates set the default values for 7 at .452 for probe-level
microarrays, .699 for gene-level microarrays, and .943 for RNA-seq data.
For other applications or situations lacking intuition for v we recommend
setting -y to one.

$5.3.1 Slope Sensitivity

In order to evaluate the sensitivity of dtangle to changes in 5 we conduct
a meta-analysis of dtangle over many values for 5 (Supplementary
Figure S10, S11, S12). dtangle seems to perform poorly if 7 is less than
0.5. However for 7 above about 0.5 dtangle is not particularly sensitive to
the parameter. In any case dtangle seems robust to changes in 7 with best
performance when 7 is between 0.5 and 1.

S6 Investigations Using Simulated Mixtures

To further investigate the role of robust scales, marker genes, cell type
co-linearity, and the accuracy of dtangle we investigated the performance
of deconvolution methods on a wide range of simulated data.

S6.1 Methods and Data

Broadly, the data simulation approach we take is to generate a matrix
U € REXN of K reference cell type profiles across N genes, and a
matrix M € RS> of K cell type mixing proportions across S samples
and take their product (with some noise) to form a mixture gene expression
matrix X € RS*N_ We simulate data using both Gaussian and Poisson
error at the log and linear scales, respectively, so that

I. in the Gaussian case X < exp(log(MU) + E) where

Emn N(0, fo), o = sd(log(1l + vec(U)), and f is a
multiplicative error factor controlling the level of noise
2. and in the Poisson case we let Yyun ud Pois((MU)mn).
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The Gaussian error model will simulate data with character similaris2
microarray data while the Poisson model will simulate data that moreie3

closely resembles RNA-seq. 164
We generate M with the following structure 165

166

M= (Ik | Ir | R)/ 167

168
where the S — 2K columns of R are uniformly drawn from the (X — 1)-

dimensional probability simplex. This structure of M means that the ﬁrstlm
2K rows of X are just the references U with some error. These first rows .
of X are thus used as the reference data for deconvolution. 1

To generate U we follow two broad schemes. We will call the first the173
“artificial cell type” scheme and the second the “real cell type” scheme.
S6.1.1 Artificial Cell Type Mixtures "
The artificial cell type references were simulated as follows. First we::
generated a baseline profile B € RV by taking the un-normalized read178
counts from the Parsons data set and gene-wise taking the median across s
the 39 samples for each of the N = 23459 genes. This baseline proﬁle180
was then perturbed to create reference profiles for KX = 3 artificial cell
types as follows.

Let p € (0, 1) be the percentage of N genes that are markers of some ™"
cell type. Then let G, C {1,...,N} be a set of [ Np/K | randomly!s2
selected type k marker genes. These genes are randomly selected among 183
those genes in the top quartile of expression in B so that the G, are!s4
mutually disjoint. We then form U through the following two steps: 185

1. make each reference profile a copy of B, :::
U1k ®B -
189

2. for each cell type k set the expression level of marker genes G/, to'”

some small value 4 € R for all reference profiles other than the type'”'

k reference, 192
193

Utn = pforalln € Gi,t #kandk=1,... K. 194

195

This scheme ensures that each cell type k£ has some set of marker genes os
Gy, that are highly expressed in the type k reference (they are among the o7
top 25% of overall expression) but lowly expressed in all other cell typeog
references (at a low expression level p). 199
200

S6.1.2 Real Cell Type Mixtures 201
Our scheme to generate “real” cell type references is much simpler. We,
let U be the reference of an existing data set. We use references from the,os
Parsons or Linsley data in our simulations. Given the data set (Parsons or,o4
Linsley), we let the kt" row of U be the median of the reference profiles s
for the k" cell type in the data set. For both the Parsons and Linsley datay
K = 3, while N = 23459 for the Parsons data and N = 21421 for the,y;
Linsley. 208

The artificial cell type simulations are useful because they allow uszzjz
control over many simulation parameters. In addition to controlling thezn
noise level f in the Gaussian case, we can control the percentage of actualm2
marker genes p, and the expression level of marker genes in other cellﬂ3
types p. On the other hand the real cell type simulations are interesting
because they are more realistic than the artificially created cell types but
also because they allow us to investigate realistic situations where the ceHz]6
types are very different (Parsons) and very similar (Linsley). i

In all cases after X has been generated the data is TPM normalizedm
and analyzed using precisely the same procedure as described in the mainm9
body of this paper treating the first 2K rows of X as reference samples220
of the K cell types. Notably we do not reveal the true marker genes to the

221
deconvolution methods in the case of the artificial cell type simulations.

We evaluated the performance of dtangle, the four other partial
deconvolution algorithms (CIBERSORT, EPIC, LS Fit, and Q Prog) and a
simple linear regression approach, on this simulated data. For all methods
other than dtangle we evaluated the algorithms using both the linear scale
data as generated, and logarithmically transforming the data using a base-
2 logarithm of one plus the expression. Importantly, the other partial
deconvolution methods do not fit using log scale data. For example,
CIBERSORT’s code explicitly forces data to be on a linear scale and
EPIC uses linear-scale TPM-transformed read counts. Nonetheless, it will
be instructive to look at these methods using both linear and log-scale
expressions. We do not do this similar comparison for dtangle because its
approach does not fall nicely into either category, it combines both scales.
Hence such a comparison does not make sense for dtangle. Instead we put
dtangle in its own hybrid category.

The simple regression approach, mentioned above, simply estimates
M by regressing the mixture samples’ expressions onto the reference
expressions. This is done using both linear and log-scale expressions.
We included this regression approach because it serves as an easily
understandable baseline against which we may compare other methods.

S6.2 Scale and Robustness

In Supplementary Figure S28 we plot boxplots of error and correlation
along with scatter plots of estimates against true mixing proportions
showing the performance of dtangle, the four partial deconvolution
methods, and the linear regression approach, on artificial cell type
simulated data with a low level of Gaussian error. We display these plots
of the methods using both linear and log-scale expressions. The data
was simulated so that 15% of the genes were markers (p = .15), the
marker genes were only expressed by the cell type they mark (1 = 0),
and the added Gaussian error is 2.5% of the typical variance among
expressions (f = .025). We plot similar figures using the Poisson error
structure and the same values of p and p in Supplementary Figure S33.
Similarly we plots these figures for the real cell type mixtures using
the Parsons data (Gaussian error: Supplementary Figure S37, Poisson
error: Supplementary Figure S40) and the Linsley data (Gaussian error:
Supplementary Figure S42, Poisson error: Supplementary Figure S45).
The same value of f is used for the real cell type simulations with Gaussian
errTor.

We can see from all of these figures that broadly dtangle out-performs
other methods but also that the other partial deconvolution methods tend
to perform better deconvolving linear scale expressions than the log-scale
expressions. This makes sense because our data has been simulated as a
linear mixture of linear scale expressions and since the simulation error
in these figures is small (f = .025 in for the Gaussian simulations). The
simulated data follows exactly the model presumed by these methods.

We argue that while a linear mixing of linear expressions is a plausible
model, it is not robust. To show that this is true we adjust our simulations in
two ways. First, we look at the same Gaussian simulations but change the
error factor f from2.5% to 75% (i.e. f = .75). The same plots with a high
level of Gaussian error are Supplementary Figure S29, S38, S43. While
dtangle still out-performs other methods, we see now that the other partial
deconvolution algorithms perform better using log-scale expressions than
linear scale expressions. Notably the data has still been generated using
a linear mixing model of linear expressions, we have only increased the
Gaussian error. Yet the log-scale expressions give a better fit even though
the model is mis-specified fitting with log-scale expressions. The reason
the log-scale expressions give a better fit in the high-error situation is
because the logarithmic transformation attenuates the effects of the highly
skewed data and the undue influence of points in the tail of the data.

A similar situation occurs if we leave the error low (f = .025 for
Gaussian simulations) but add outliers to the data. For both the Gaussian
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and Poisson error structure we simulate data as previously describedasi
but then add five random outliers to each of the reference profiles in2s2
X. The value of these outlying points is set (on the log-scale) as 1.25283
times the largest observation before adding any outliers. We plot similar2s4
figures for each of the simulations after adding outliers (see Supplementary28s
Figure S30, S34, S39, S41, S44, S46). Largely the results are the2ss
same as the high-error Gaussian case. We see that the other partialzs
deconvolution algorithms perform better after a logarithmic transformation2ss
since this ameliorates the effects of the outliers. Notably dtangle is2so
relatively unperturbed by the outliers. This is because dtangle robustly29
combines expressions on a log-scale before averaging. Furthermore2o:
dtangle’s averaging approach is not highly influenced by a single outlying292
point. In contrast, the outlying point becomes a high-leverage point for293
the other regression-like partial deconvolution approaches and thus is2o4
highly-influential on the estimates. 295
296
S6.3 Marker Genes 297
$6.3.1 Marker Gene Expression s
A central feature of dtangle’s approach its use of marker genes. Broadly,299
we define a marker gene as one which is expressed predominantly in onlym
one cell type. All deconvolution methods seem to benefit from marker”"
genes. Typically, they are used to sub-set the data on which the model is™”
fit. dtangle has a unique use of marker genes and rigorously defines marker ™
genes as only being expressed in one cell type. Nonetheless, we realize™™
that this assumption is a mathematical approximation to the truth and so it
is worth investigating what happens to dtangle when it is violated. 306
To investigate this we simulate data according to our artificial cell type
simulation scheme with p = .15 so that 15% of the genes are marker o™’
some cell type and using both a Gaussian error structure (f = .025) and3os
a Poisson error structure. We then vary the expression of marker genessoo
in other cell types . In Supplementary Figure S32 and Supplementary3io
Figure S36 we plot (A) the absolute error and (B) correlation of dtangle’ssi
estimates from the truth varying the value of p from the minimum of thesi2
data to letting  be the maximum of the data. We plot the error or correlation
on the y-axis and set 1. to be the g*" quantile of the data varrying q alongs:3
the z-axis. 314
In either case we see that as we increase the value of p, and as it getssis
further from our mathematical assumption that x = 0, the error of dtanglesis
increases. However this increase is very slow. Indeed, the marker genessi?
do not need to have a true expression of 1 = 0 in all other cell types. So31s
long as the expression of marker genes in other cell types is in, say, thesio
bottom 25% of all gene expression dtangle does very well. Thus dtangles2o
seems quite robust to this marker gene assumption. 31
322
$6.3.2 Number of Marker Genes and Co-linearity 323
For all deconvolution algorithms, including dtangle, it is important to find324
a good set of marker genes. In real data, the primary reason it can be
difficult to find marker genes is some combination of (1) that there are
many cell types we wish to deconvolve and (2) the cell types we wish tos,s
deconvolve are closely related. This follows because our definition of a
marker gene is a gene that is highly expressed in only one cell type. Thus327
the more cell types we have, the harder it is to find a gene is that expressed328
highly in only one of the cell types. Similarly, if the cell types we wish329
to deconvolve a closely related and their expression profiles are highly3
co-linear then finding genes highly expressed in one cell type but not thew
others is difficult. .
To explore the performance of dtangle in situations where marker genes
are hard to identify we simulate according to our artificial cell type scheme
and vary the percentage of genes that are markers of some cell type (p).
For a Gaussian error structure we plot in Supplementary Figure S31 the

334

335

(A) error or (B) correlation of dtangle’s estimates against the true rnixing336

proportions, on the y-axis, against the percentage of marker genes in the
data (p), on the z-axis. We vary p from 0.01 to 0.2. We plot a similar plot
in Supplementary Figure S35 using the Poisson error structure. What we
can see from these two figures is that dtangle’s performance only suffers
drastically when less than about 2-3% of the genes are good markers of a
cell type. So long as at least 3-5% of the genes in the data are markers of
some type dtangle does quite well.

To explore this issue further we also revisit the results from the real
cell type mixture simulations, Supplementary Figure S37-S46. In these
simulations we simulated mixtures of using the references from the Parsons
and Linsley data sets. The Parsons data set is a mixture of three very
distinct cell types: Brain, Liver and Muscle. On the other hand the Linsley
data set is a mixture of three closely related white blood cell classes:
Lymphocytes, Monocytes, and Neutrophils. It should be relatively easy to
find marker genes for the Parsons data set, because the cell types are very
distinct, and relatively more difficult to find marker genes for the simulated
mixture of closely-related white blood cells using the Linsley reference
data. While we do see that dtangle has relatively more trouble deconvolving
the Linsley-derived simulations than the Parsons-derived simulations, e.g.
compare Supplementary Figure S37 to Supplementary Figure S42, dtangle
still does well over-all. Indeed dtangle still out-performs the other partial
deconvolution methods.

Over all we see that dtangle, like other deconvolution algorithms, will
suffer if there are almost no marker genes of the cell types. However dtangle
is quite robust and works well with as few as a couple of percent of the
genes being marker of some cell type.

S6.4 Other Remarks

S6.4.1 Accuracy as a Function of the Truth

‘We see from all of these simulations that the accuracy of dtangle’s estimates
do not seem to depend strongly on the true mixing proportion. That is,
dtangle estimates accurately when the true mixing proportion is close to
zero and when the true mixing proportion is close to one.

S$6.4.2 Gamma

The simulations we have explored in this section follow a linear mixing
model of linear expressions. This is a simplification of the model that
dtangle posits. It is simplified because dtangle’s model also includes an
adjustment term -y. Hence simulations strictly according to dtangle’s model
would posit a linear mixing of slightly transformed linear expressions. We
chose to simulate linear mixing on a linear scale because this is the model
assumed by other deconvolution algorithms. Thus our simulations should
be a fair analysis of these other deconvolution algorithms because it follows
their model, not dtangle’s. Effectively, we have simulated data assuming
v = 1. This shows that dtangle works quite well even when + is not
required in the model.

S7 The Mathematics of dtangle

Assume we have a mixture sample of K cell types. Let Y € RY be the
(base-2) log-scale expression measurements of this mixture sample and
P1, ..., Pk bethe mixing proportions of the cell types. Fork = 1,..., K
assume that there are vy, reference samples of cell type k and let Z,,. € RV
be the log-scale expressions of the r*" type k reference. Furthermore, let
G C {1,...,N} be the set of type k marker genes. We require that
these marker gene sets are mutually disjoint.

Let g = |G| and define Y, = i >nea, Yn and Zg, =
ﬁ >on N Sk | Zkrn to be the average of all type k marker genes
across the mixture and reference samples, respectively. Finally, denote our
“adjustment term” as y ~ 1.
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Let 7y, be the actual linear-scale expression of the nth gene in assi
sample of type k cells and 7, be the actual linear-scale expression in thess2
mixture, then dtangle assumes these actual expressions mix linearly,

K
Mn = Zpkﬂkn- (])353
k=1

Furthermore dtangle assumes that the measured log-scale expressions are
linear in the actual log-scale expressions,
354

Yo = pu+0n +ylogy (nn) +én @
Zirn = o+ 0n + v1ogy (Mkn) + Ekrn-
355
and that marker genes are (approximately) expressed by only one cell type

so that if n is a marker gene for cell type k (n € Gy) then

356

Nen, = 0 forall £ # k. 3)

357

Combining Equation (1), Equation (2) and Equation (3) we then have358

359
that for n € G,
360

Yo = pp+ 0n + vlogy (Pr7kn) + €n !

362

= :u‘+‘9" +710g2 (pk) +’710g2 (nkn) +én (4)363
Zrn = a + 0n + 710g2 (nkn) + €krn- 364
365
So for n € G, we have 366
367
Yo, = p+0c, +7vlogs (pr) +ogs (ng, ) + &6, (5)368
- 369
Za, = a+0g, +7logy (ng,) +EaG,- 370
371
where o 1 372
0, = g: Z On 373
ned 374
— 1
10g2 (T]Gk) = Z IOgQ(nkn) i
9k neGy, 376
1 377
EGL = Z En 378
gk neGy 379
1 7% 380
EGr = — Z Zskrn- 381
9KV neGE r=1 382
This means 383
384
YGk -Yg, = v logy (Pk/pt) 385
—_— —_— 386
+06, —ba, + 71082 (na;) — vlogz (n6,) w0
+&a, — G, (6358
_ JE— PR 389
Zgy — Za, = 0c, — 0a, +og, (ng,,) —log, (nG,) 0
+éc, —€a, 391
392
and so " 393
Dy = — ((YGk - YGt) — (ZGk - ZGt)) 394
7 ()05
= logy (Pk/pt) + 6 396

397

) e
where § = = (5, — Fa,, —FG, +2aG,)-

398

399

401

Now as g, — oo for all k then § — 0 and so for a reasonably large
number of marker genes

Dyt =~ logg (Pk/pt)

and so since Dy, = (D1, ..., Dk ) then

Dy, = (logy (Pr/p1), ... ,10gy (Pk/pK))
and s0 if Ly (z) = 1/(143, 4, 27t ) then
Ly (Dy) = pr

and so the dtangle estimator Ly (Dy,) approximates py.
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Deconvolution Methods

Name Citation
dtangle (This publication)
CIBERSORT (Newman et al., 2015)
EPIC (Racle et al., 2017) Partial
LS Fit (Abbas et al., 2009)
Q. Prog (Gong et al., 2011)
deconf (Repsilber et al., 2010)
DSA (Zhong et al., 2013)
Full
ssFrobenius  (Gaujoux and Seoighe, 2012)
ssKL (Gaujoux and Seoighe, 2012)
Table S1. Nine deconvolution algorithms we compare.
Name Citation Accession | Tech. | Truth | Genes | Samples | Reference Cell Types Species
(num., source) | (num., source)
Shi MAQC (2006) GSES5350 ma mix | 54,676 60 60, internal 2, universal, brain human
Gong Gong et al. (2011) GSE29832 | ma mix | 54,676 9 6, internal 2, blood, breast human
Shen-Orr Shen-Orr et al. (2010) GSE19830 | ma mix | 31,100 33 9, internal 3, liver, brain, rat
lung
Abbas Abbas et al. (2009) GSE11058 ma mix | 54,676 12 12, internal 4, leukocytes human
Becht Becht et al. (2016) GSE64385 ma mix | 54,676 10 766, external | 6, colorectal human
carcinoma,
leukocytes
Kuhn Kuhn et al. (2011) GSE19380 | ma mix | 31,100 10 16, internal 4, brain rat
Newman FL Newman et al. (2015) GSE65136 | ma | cyto. | 11,189 14 113, external | 12, leukocytes human
Newman PBMC Newman et al. (2015) GSE65133 | ma | cyto. | 11,049 20 113, external | 22, leukocytes human
Parsons Parsons et al. (2015) PRJEB8231 | seq | mix | 23,459 30 9, internal 3, brain, liver, human
muscle
Liu Liu et al. (2015) GSE64098 | seq mix | 23,056 24 16, internal 2, adenocarcinoma human
Linsley Linsley et al. (2014) GSE60424 | seq | cyto. | 21421 5 3, external 3, lymphocytes, human
monocytes, neutrophils

Table S2. Benchmark data sets on which we compare deconvolution algorithms. The accession key is for GEO (or in the case of Parsons, ENA). The technology
producing the data is either “ma” for microarray or “seq” for RNA-seq. The column “Truth” distinguishes between mixture experiments “mix” or data where the

truth is known from flow cytometry “ctyo.” The number of gene expression measurements made by the technology is the column “Genes” and the number of
unknown heterogeneous samples deconvolved is the column “Samples.” The column “Reference” lists the number of samples in the reference data along with the
designation of “internal” if the pure reference samples were created part and parcel with the mixture experiment or “‘external” if the reference samples were collected
from external data sources (typically GEO). The column “Cell Types” lists the number of cell types in the mixture samples and provides a description of the cell

types along with the species from which the cell types come (in the column “Species”).
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: GEP technology ,
Scale || Actual Expression (Unobserved) Scale | Measured Expression (Observed)
Linear || mRNA amount Linear | gene expression measurement
Log || log, (mRNA amount) Log | log, (gene expression measurement)

Fig. S1: Measured expressions (log or linear) arise from a measurement process on the actual expressions (log or linear).

Meta Boxplots: All
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Fig. S2: Boxplots of all deconvolution methods across all data-sets. Top 10% of the 25% of most variable genes are used as marker genes used for
deconvolution. Marker genes determined by median differences across reference samples. Slope () for dtangle determined automatically by data-type.
(A) For each cell type the correlation of the true mixing proportions against the estimated mixing proportions is calculated. If the s.d. of the estimates is
zero, we say the correlation is zero. If the s.d. of the true proportions is zero we do not calculate the correlation. Each point is the median of the correlations
across cell types. We calculate this median correlation for each data-set and each deconvolution method. (B) Similar to (A) except using R? instead of
correlation. (C) is similar to (A) but using grand means instead of correlation. For each cell type the absolute value of the error of the estimated mixing
proportions from the true mixing proportions is calculated. Each point is the mean of the errors across cell types. We calculate this mean for each data-set
and each deconvolution method.

Meta Boxplots: logarithmic
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Fig. S3: Similar to Figure S2 but applying methods to log transformed data.
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Meta Boxplots: Microarray
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Fig. S4: Similar to Figure S2 but only comparing microarray data-sets.
Meta Boxplots: RNA-seq
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Fig. S5: Similar to Figure S2 but only comparing RNA-seq data-sets.
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Meta by Quantile

>

p.value Ratio

Grand Mean of Errors

o o o of® o o o

p.value Ratio

Q Q Q Q
of o o ¥ oS o o ¥

C p.value Ratio

Grand Mean of R2
)
o o=

o
~

D p.value Ratio
1.00 -
o
o4 nEwY - T
S
o075
8
g
= 0.50
o
c
o
& 0.25
o o o o¥®
E p.value Ratio
1.0
3
S
c
©
Q
=
o
c
©
o

p.value
10

of Coy

508

edial

2o6

d

504

o
o®

Grat

o o o
of® o o of of® o o%®
Quantile Cutoff for Markers

Deconv.Method ® dtangle « CIBERSORT A EPIC # LS Fit&Q Prog

Fig. S6: Partial deconvolution methods performance (y-axis) by number of marker genes (quantile, x-axis). Slope () for dtangle determined automatically
by data-type. Top g% of top 25% of most variable genes used for deconvolution where g varies over the x-axis from 1% to 15% (in increments of 1%).
Marker genes determined by p-value (Left) and ratio of the linear expression of each type to the expression in all other types (Right). The y-axis is the
grand (A) mean or (B) median (over data-sets and cell types) of the absolute error of the true proportions from the estimated proportions, or the grand
(C) mean or (D) median of the R? or correlations (E, F) of the estimated proportions against the true proportions. The correlation is zero if the s.d. of the
estimates is zero and the correlation is not computed if the s.d. of the true proportions is zero. One line is plotted for each partial deconvolution method.
Error ribbons displaying 95% confidence intervals.
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Fig. S7: Similar to Figure S6 except only comparing microarray datasets.
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Efficiency by Quantile
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Fig. S9: Mean of log of time (in minutes) each algorithm took to deconvolve all data sets. Maximum and minimum value envelope is included.
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Dataset: Abbas
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Fig. S13: Deconvolution methods performance on Abbas data-set. Slope () for dtangle determined automatically by data-type. Top 10% of marker
genes among the 25% most variable genes are used for deconvolution. Marker genes determined by median differences across reference samples. (A)
Boxplots of error for each algorithm. y-axis is the absolute value of the error of the estimates from the true mixing proportions. Black line is the median
absolute error, grey line is the mean absolute error. (B) Boxplots of correlation. For each cell type the correlation of the true mixing proportions against
the estimated mixing proportions is calculated. If the s.d. of the estimates is zero, we say the correlation is zero. If the s.d. of the true proportions is zero
we do not calculate the correlation. (C) Simlar to (B) but using R? instead of correlation. (D) Scatter plots of estimated mixing proportions again true
mixing proportions for dtangle, CIBERSORT and EPIC. Orange line is a 45° line through zero.
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Dataset: Becht
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Fig. S14: Similar to Figure S13 but for the Becht data-set.
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Dataset: Gong
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Fig. S15: Similar to Figure S13 but for the Gong data-set.
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Dataset: Kuhn
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Fig. S16: Similar to Figure S13 but for the Kuhn data-set.
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Dataset: Linsley
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Fig. S17: Similar to Figure S13 but for the Linsley data-set.
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Dataset: Liu
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Fig. S18: Similar to Figure S13 but for the Liu data-set.
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Dataset: Newman PBMC
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Fig. S19: Similar to Figure S13 but for the Newman PBMC data-set.
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Dataset: Newman FL
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Fig. S20: Similar to Figure S13 but for the Newman FL data-set.
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Dataset: Parsons
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Fig. S21: Similar to Figure S13 but for the Parsons data-set.
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Dataset: Shen-Orr
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Fig. S22: Similar to Figure S13 but for the Shen-Orr data-set.
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Dataset: Shi
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Fig. S23: Similar to Figure S13 but for the Shi data-set.
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Newman PBMC

Dataset: Newman PBMC
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Fig. S24: Same as Figure S19 but using references, mixtures samples, and marker genes directly from Newman paper supplement.



“supp” — 2018/10/19 — 11:51 — page — #28

Dataset: Newman FL
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Fig. S25: Same as Figure S20 but using references and marker genes directly from Newman paper supplement.
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Measured Expression of Transcript vs. Amount of Transcript
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(a) log, measured expression versus log, concentration of a probe for gene TNFRSF1B. The relationship is approximated well by a linear model. While we
have plotted amount against measured expression for one particular gene the results are generalizable to all genes. Points are plotted for the 13 experiments where
the gene is spiked-in at a amount above zero and for each of the three technical replicates of each experiment. Along with the data points are plotted a linear and
logistic least squares fit. The linear fit is a simple linear regression of measured expression on amount and the logistic fit is the least squares fit of a generalized
logistic function of the form B¢ + 81/ (1 + exp (B2x + B3)).
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Simulation: Artificial Cell Type with Low Gaussian Error
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Fig. S28: Partial deconvolution methods performance on simulated gaussian data with low error. Computation for methods other than dtangle was done
for data both on the log, scale and the linear un-transformed scale. Slope () for dtangle is set to one. Top 10% of 25% most variable genes used for
deconvolution. Marker genes determined by median differences across reference samples. (A) Boxplots of error for each algorithm. y-axis is the absolute
value of the error of the estimates from the true mixing proportions. Black line is the median absolute error, grey line is the mean absolute error. (B)
Boxplots of correlation. For each cell type the correlation of the true mixing proportions against the estimated mixing proportions is calculated. If the s.d.
of the estimates is zero, we say the correlation is zero. If the s.d. of the true proportions is zero we do not calculate the correlation. (C) Scatter plots of
estimated mixing proportions again true mixing proportions for dtangle, CIBERSORT and EPIC. Orange line is a 45° line through zero.
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Simulation: Artificial Cell Type with High Gaussian Error
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Fig. S29: Similar to Figure S28 but with a high error variance used in simulation.
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Simulation: Artificial Cell Type with Low Gaussian Error and Outliers
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Fig. S30: Similar to Figure S28 but with outliers added to the simulated data.
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Simulation: Artificial Cell Type with Gaussian Error by Number of Marker Genes
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Fig. S31: Accuracy of dtangle by the number of marker genes present in gaussian simulated data with low error variance. y-axis is accuracy measured by
(A) grand mean of the absolute value of the error of the true proportions from the estiamted proportions and (B) mean correlation within each cell type.
The x-axis is the percentage of the data set that is comprised of marker genes as defined by dtangle.
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Simulation: Artificial Cell Type with Gaussian Error by Marker Gene Expression
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Fig. S32: Accuracy of dtangle by expression level of marker genes in gaussian simulated data with low error variance. y-axis is accuracy measured by
(A) grand mean of the absolute value of the error of the true proportions from the estiamted proportions and (B) mean correlation within each cell type.

The x-axis is the quantile of the over-all data at which marker genes are expressed in all other cell types.
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Simulation: Artificial Cell Type with Poisson Error
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Fig. S33: Similar to Figure S28 but using a poisson error.
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Simulation: Artificial Cell Type with Poisson Error and Outliers
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Fig. S34: Similar to Figure S33 but with outliers added to the simulated data.
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Simulation: Simple Poisson Error by Number of Marker Genes
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Fig. S35: Similar to Figure S31 but using a poisson error.
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Fig. S36: Similar to Figure S32 but using a poisson error.
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Simulation: Parsons with Low Gaussian Error
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Fig. S37: Similar to Figure S28 but simulation was done by in-silico mixtures of reference cell type profiles from the Parsons data set.
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Simulation: Parsons with High Gaussian Error
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Fig. S38: Similar to Figure S37 but with a high error variance used in simulation.
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Simulation: Parsons with Low Gaussian Error and Outliers
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Fig. S39: Similar to Figure S37 but with outliers added to the simulated data.
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Simulation: Parsons with Poisson Error
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Fig. S40: Similar to Figure S37 but using poisson error.
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Simulation: Parsons with Poisson Error and Outliers
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Fig. S41: Similar to Figure S40 but with outliers added to the simulated data.
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Simulation: Linsley with Low Gaussian Error
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Fig. S42: Similar to Figure S28 but simulation was done by in-silico mixtures of reference cell type profiles from the Linsley data set.
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Simulation: Linsley with High Gaussian Error
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Fig. S43: Similar to Figure S42 but with a high error variance used in simulation.
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Simulation: Linsley with Low Gaussian Error and Outliers
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Fig. S44: Similar to Figure S42 but with outliers added to the simulated data.
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Simulation: Linsley with Poisson Error
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Fig. S45: Similar to Figure S42 but using poisson error.
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Simulation: Linsley with Poisson Error and Outliers
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Fig. S46: Similar to Figure S45 but with outliers added to the simulated data.
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