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Supplement1

S5 Assessing The Relationship Between Actual2

and Measured Expression3

One of the main components of dtangle’s approach is a linear model4

relating actual gene expression to measured gene expression. To explore5

its plausibility, we consider this linear model’s application to Affymetrix6

DNA microarray data and Illumina RNA-seq data.7

S5.1 Microarray Data8

To explore the relationship between the amount of transcripts and the9

measured expression from microarray technology we consider the Latin10

Square data set from Affymetrix (Irizarry et al., 2003). This data set was11

created by hybridizing a solution of complex human background mRNA12

with 42 transcripts spiked in at concentrations ranging from 0.125pM13

to 512pM. The spike-ins were done with 3 technical replicates of 1414

hybridization experiments in a Latin square design. This data set lets us15

explore the relationship between measured expression and abundance of16

the transcripts because for each of the spiked-in transcripts we know both17

the expression measured by the array and the amount in which the transcript18

was spiked in.19

The expression as measured by the microarray is best explained by a20

logistic fit in the spike-in amount (Supplementary Figure S27a). However21

the linear fit that dtangle assumes does quite well. The logistic fit has a22

slightly smallerR2 than the linear fit however there are several reasons we23

choose to model the relationship between spike-in amount and measured24

expression as linear. Firstly, the linear model is much simpler than the25

logistic model and has almost as good of a fit. For the linear model R2 =26

0.957 while for the logistic least squares fit we have R2 = 0.992. Thus27

we gain relatively little for using the more complex model. Furthermore,28

the simplicity of the linear fit can also be thought of as a regularization29

of the logistic model. The non-linearity of the logistic curve means it is a30

very unstable model for measured expressions on both the high and low31

ends. That is, its inverse is undefined at or beyond these points. If the32

logistic model is used to estimate the true gene transcriptional abundance33

from measured expression data then small changes in measured expression34

might correspond to large changes in predicted amount. Indeed, the logistic35

curve will fail completely for measured expressions above its maximum36

or below its minimum. The linear model can be thought of as a regularized37

model between these two quantities. It ensures that a linear change in38

measured expression will only ever effect a linear change in amount. While39

there is probably a true non-linear relationship between the expression40

measured by microarrays and the amounts of transcripts in the samples,41

a linear fit does quite well at approximating this relationship and is a42

regularized model for the truth.43

S5.2 RNA-seq44

Another reason we favor linear modeling of the relationship between45

amount and measured expression is because it is not only reasonable for46

microarray technology but a reasonable model for RNA-seq. To explore47

how our model interacts with RNA-seq technology we consider data from48

the Sequencing Quality Control project (SEQC Consortium, 2015). These49

data are available on GEO with accession GSE47774. Here we look at50

RNA-seq analysis run on Ambion ERCC Spike-In Control Mix 1 using51

Illumina HiSeq technology. The ERCC spike-in control mix contains 9252

transcripts spiked-in at known concentrations. Hence this data set allows53

us to look at the relationship between measured expression and amount54

because both are known.55

For this data the measured expression values (log2 of the read56

count plus one) are well approximated by a linear relationship to the57

spike-in concentration amount (Supplementary Figure S27b). Unlike the58

previously discussed microarray data the RNA-seq data does not seem59

well approximated by a logistic fit. For a simple linear regression we find60

R2 = 0.955 and so a linear fit seems reasonable.61

S5.3 Estimating The Slope62

We have thus seen that both microarray and RNA-seq measured gene63

expressions are well modeled as linear (on the log-scale) in the actual64

expressions. For the RNA-seq data we find that the slope of the linear65

relationship is approximately one. However for microarray data the66

relationship is better modeled as linear with a slope slightly smaller than67

one. Doing so will help account for the true logistic relationship that is68

affected by saturation and attenuation of the measured expressions at the69

low and high ends.70

We denote the slope of this relationship as γ in our model and replace it71

with its estimate γ̂ when estimating the cell type proportions using dtangle.72

The value of γ̂ in dtangle’s algorithm may be set by the user if desired.73

However a pre-set value of γ̂ will be used by default if none is supplied. If γ̂74

is not specified by the user, one need only specify the type of technology as75

either probe-level microarray, gene-level microarray, or RNA-seq. From76

here a default value of γ̂ is chosen. These default values are estimated77

from spike-in experiments like those just discussed. For both RNA-seq and78

microarray spike-in data we fit regression models of measured expression79

on spike-in amount. These are the linear models seen in in the previous80

sections. We then take the median value of all the estimates of the slopes81

from each gene’s regression model. These form the estimate of γ̂. This82

is done for the RNA-seq data (on the log2 of the counts plus one) and83

microarray data (at the RMA-summarized gene level and raw log2 probe-84

level). These estimates set the default values for γ̂ at .452 for probe-level85

microarrays, .699 for gene-level microarrays, and .943 for RNA-seq data.86

For other applications or situations lacking intuition for γ we recommend87

setting γ to one.88

S5.3.1 Slope Sensitivity89

In order to evaluate the sensitivity of dtangle to changes in γ̂ we conduct90

a meta-analysis of dtangle over many values for γ̂ (Supplementary91

Figure S10, S11, S12). dtangle seems to perform poorly if γ̂ is less than92

0.5. However for γ̂ above about 0.5 dtangle is not particularly sensitive to93

the parameter. In any case dtangle seems robust to changes in γ̂ with best94

performance when γ̂ is between 0.5 and 1.95

S6 Investigations Using Simulated Mixtures96

To further investigate the role of robust scales, marker genes, cell type97

co-linearity, and the accuracy of dtangle we investigated the performance98

of deconvolution methods on a wide range of simulated data.99

S6.1 Methods and Data100

Broadly, the data simulation approach we take is to generate a matrix101

U ∈ RK×N of K reference cell type profiles across N genes, and a102

matrix M ∈ RS×K of K cell type mixing proportions across S samples103

and take their product (with some noise) to form a mixture gene expression104

matrix X ∈ RS×N . We simulate data using both Gaussian and Poisson105

error at the log and linear scales, respectively, so that106

1. in the Gaussian case X
def
= exp(log(MU) + E) where107

Emn
iid∼ N(0, fσ), σ = sd(log(1 + vec(U)), and f is a108

multiplicative error factor controlling the level of noise109

2. and in the Poisson case we let Ymn
iid∼ Pois((MU)mn).110
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The Gaussian error model will simulate data with character similar111

microarray data while the Poisson model will simulate data that more112

closely resembles RNA-seq.113

We generate M with the following structure114

M = (IK | IK | R)′

where the S− 2K columns ofR are uniformly drawn from the (K − 1)-115

dimensional probability simplex. This structure of M means that the first116

2K rows of X are just the references U with some error. These first rows117

of X are thus used as the reference data for deconvolution.118

To generate U we follow two broad schemes. We will call the first the119

“artificial cell type” scheme and the second the “real cell type” scheme.120

S6.1.1 Artificial Cell Type Mixtures121

The artificial cell type references were simulated as follows. First we122

generated a baseline profile B ∈ RN by taking the un-normalized read123

counts from the Parsons data set and gene-wise taking the median across124

the 39 samples for each of the N = 23459 genes. This baseline profile125

was then perturbed to create reference profiles for K = 3 artificial cell126

types as follows.127

Let ρ ∈ (0, 1) be the percentage ofN genes that are markers of some128

cell type. Then let Gk ⊂ {1, . . . , N} be a set of bNρ/Kc randomly129

selected type k marker genes. These genes are randomly selected among130

those genes in the top quartile of expression in B so that the Gk are131

mutually disjoint. We then form U through the following two steps:132

1. make each reference profile a copy of B,133

U ← 1K ⊗B

2. for each cell type k set the expression level of marker genes Gk to134

some small value µ ∈ R for all reference profiles other than the type135

k reference,136

Utn = µ for all n ∈ Gk, t 6= k and k = 1, . . . ,K.

This scheme ensures that each cell type k has some set of marker genes137

Gk that are highly expressed in the type k reference (they are among the138

top 25% of overall expression) but lowly expressed in all other cell type139

references (at a low expression level µ).140

S6.1.2 Real Cell Type Mixtures141

Our scheme to generate “real” cell type references is much simpler. We142

let U be the reference of an existing data set. We use references from the143

Parsons or Linsley data in our simulations. Given the data set (Parsons or144

Linsley), we let the kth row of U be the median of the reference profiles145

for the kth cell type in the data set. For both the Parsons and Linsley data146

K = 3, while N = 23459 for the Parsons data and N = 21421 for the147

Linsley.148

The artificial cell type simulations are useful because they allow us149

control over many simulation parameters. In addition to controlling the150

noise level f in the Gaussian case, we can control the percentage of actual151

marker genes ρ, and the expression level of marker genes in other cell152

types µ. On the other hand the real cell type simulations are interesting153

because they are more realistic than the artificially created cell types but154

also because they allow us to investigate realistic situations where the cell155

types are very different (Parsons) and very similar (Linsley).156

In all cases after X has been generated the data is TPM normalized157

and analyzed using precisely the same procedure as described in the main158

body of this paper treating the first 2K rows of X as reference samples159

of theK cell types. Notably we do not reveal the true marker genes to the160

deconvolution methods in the case of the artificial cell type simulations.161

We evaluated the performance of dtangle, the four other partial162

deconvolution algorithms (CIBERSORT, EPIC, LS Fit, and Q Prog) and a163

simple linear regression approach, on this simulated data. For all methods164

other than dtangle we evaluated the algorithms using both the linear scale165

data as generated, and logarithmically transforming the data using a base-166

2 logarithm of one plus the expression. Importantly, the other partial167

deconvolution methods do not fit using log scale data. For example,168

CIBERSORT’s code explicitly forces data to be on a linear scale and169

EPIC uses linear-scale TPM-transformed read counts. Nonetheless, it will170

be instructive to look at these methods using both linear and log-scale171

expressions. We do not do this similar comparison for dtangle because its172

approach does not fall nicely into either category, it combines both scales.173

Hence such a comparison does not make sense for dtangle. Instead we put174

dtangle in its own hybrid category.175

The simple regression approach, mentioned above, simply estimates176

M by regressing the mixture samples’ expressions onto the reference177

expressions. This is done using both linear and log-scale expressions.178

We included this regression approach because it serves as an easily179

understandable baseline against which we may compare other methods.180

S6.2 Scale and Robustness181

In Supplementary Figure S28 we plot boxplots of error and correlation182

along with scatter plots of estimates against true mixing proportions183

showing the performance of dtangle, the four partial deconvolution184

methods, and the linear regression approach, on artificial cell type185

simulated data with a low level of Gaussian error. We display these plots186

of the methods using both linear and log-scale expressions. The data187

was simulated so that 15% of the genes were markers (ρ = .15), the188

marker genes were only expressed by the cell type they mark (µ = 0),189

and the added Gaussian error is 2.5% of the typical variance among190

expressions (f = .025). We plot similar figures using the Poisson error191

structure and the same values of ρ and µ in Supplementary Figure S33.192

Similarly we plots these figures for the real cell type mixtures using193

the Parsons data (Gaussian error: Supplementary Figure S37, Poisson194

error: Supplementary Figure S40) and the Linsley data (Gaussian error:195

Supplementary Figure S42, Poisson error: Supplementary Figure S45).196

The same value of f is used for the real cell type simulations with Gaussian197

error.198

We can see from all of these figures that broadly dtangle out-performs199

other methods but also that the other partial deconvolution methods tend200

to perform better deconvolving linear scale expressions than the log-scale201

expressions. This makes sense because our data has been simulated as a202

linear mixture of linear scale expressions and since the simulation error203

in these figures is small (f = .025 in for the Gaussian simulations). The204

simulated data follows exactly the model presumed by these methods.205

We argue that while a linear mixing of linear expressions is a plausible206

model, it is not robust. To show that this is true we adjust our simulations in207

two ways. First, we look at the same Gaussian simulations but change the208

error factor f from 2.5% to 75% (i.e. f = .75). The same plots with a high209

level of Gaussian error are Supplementary Figure S29, S38, S43. While210

dtangle still out-performs other methods, we see now that the other partial211

deconvolution algorithms perform better using log-scale expressions than212

linear scale expressions. Notably the data has still been generated using213

a linear mixing model of linear expressions, we have only increased the214

Gaussian error. Yet the log-scale expressions give a better fit even though215

the model is mis-specified fitting with log-scale expressions. The reason216

the log-scale expressions give a better fit in the high-error situation is217

because the logarithmic transformation attenuates the effects of the highly218

skewed data and the undue influence of points in the tail of the data.219

A similar situation occurs if we leave the error low (f = .025 for220

Gaussian simulations) but add outliers to the data. For both the Gaussian221
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and Poisson error structure we simulate data as previously described222

but then add five random outliers to each of the reference profiles in223

X . The value of these outlying points is set (on the log-scale) as 1.25224

times the largest observation before adding any outliers. We plot similar225

figures for each of the simulations after adding outliers (see Supplementary226

Figure S30, S34, S39, S41, S44, S46). Largely the results are the227

same as the high-error Gaussian case. We see that the other partial228

deconvolution algorithms perform better after a logarithmic transformation229

since this ameliorates the effects of the outliers. Notably dtangle is230

relatively unperturbed by the outliers. This is because dtangle robustly231

combines expressions on a log-scale before averaging. Furthermore232

dtangle’s averaging approach is not highly influenced by a single outlying233

point. In contrast, the outlying point becomes a high-leverage point for234

the other regression-like partial deconvolution approaches and thus is235

highly-influential on the estimates.236

S6.3 Marker Genes237

S6.3.1 Marker Gene Expression238

A central feature of dtangle’s approach its use of marker genes. Broadly,239

we define a marker gene as one which is expressed predominantly in only240

one cell type. All deconvolution methods seem to benefit from marker241

genes. Typically, they are used to sub-set the data on which the model is242

fit. dtangle has a unique use of marker genes and rigorously defines marker243

genes as only being expressed in one cell type. Nonetheless, we realize244

that this assumption is a mathematical approximation to the truth and so it245

is worth investigating what happens to dtangle when it is violated.246

To investigate this we simulate data according to our artificial cell type247

simulation scheme with ρ = .15 so that 15% of the genes are marker of248

some cell type and using both a Gaussian error structure (f = .025) and249

a Poisson error structure. We then vary the expression of marker genes250

in other cell types µ. In Supplementary Figure S32 and Supplementary251

Figure S36 we plot (A) the absolute error and (B) correlation of dtangle’s252

estimates from the truth varying the value of µ from the minimum of the253

data to lettingµbe the maximum of the data. We plot the error or correlation254

on the y-axis and set µ to be the qth quantile of the data varrying q along255

the x-axis.256

In either case we see that as we increase the value of µ, and as it gets257

further from our mathematical assumption that µ = 0, the error of dtangle258

increases. However this increase is very slow. Indeed, the marker genes259

do not need to have a true expression of µ = 0 in all other cell types. So260

long as the expression of marker genes in other cell types is in, say, the261

bottom 25% of all gene expression dtangle does very well. Thus dtangle262

seems quite robust to this marker gene assumption.263

S6.3.2 Number of Marker Genes and Co-linearity264

For all deconvolution algorithms, including dtangle, it is important to find265

a good set of marker genes. In real data, the primary reason it can be266

difficult to find marker genes is some combination of (1) that there are267

many cell types we wish to deconvolve and (2) the cell types we wish to268

deconvolve are closely related. This follows because our definition of a269

marker gene is a gene that is highly expressed in only one cell type. Thus270

the more cell types we have, the harder it is to find a gene is that expressed271

highly in only one of the cell types. Similarly, if the cell types we wish272

to deconvolve a closely related and their expression profiles are highly273

co-linear then finding genes highly expressed in one cell type but not the274

others is difficult.275

To explore the performance of dtangle in situations where marker genes276

are hard to identify we simulate according to our artificial cell type scheme277

and vary the percentage of genes that are markers of some cell type (ρ).278

For a Gaussian error structure we plot in Supplementary Figure S31 the279

(A) error or (B) correlation of dtangle’s estimates against the true mixing280

proportions, on the y-axis, against the percentage of marker genes in the281

data (ρ), on the x-axis. We vary ρ from 0.01 to 0.2. We plot a similar plot282

in Supplementary Figure S35 using the Poisson error structure. What we283

can see from these two figures is that dtangle’s performance only suffers284

drastically when less than about 2-3% of the genes are good markers of a285

cell type. So long as at least 3-5% of the genes in the data are markers of286

some type dtangle does quite well.287

To explore this issue further we also revisit the results from the real288

cell type mixture simulations, Supplementary Figure S37-S46. In these289

simulations we simulated mixtures of using the references from the Parsons290

and Linsley data sets. The Parsons data set is a mixture of three very291

distinct cell types: Brain, Liver and Muscle. On the other hand the Linsley292

data set is a mixture of three closely related white blood cell classes:293

Lymphocytes, Monocytes, and Neutrophils. It should be relatively easy to294

find marker genes for the Parsons data set, because the cell types are very295

distinct, and relatively more difficult to find marker genes for the simulated296

mixture of closely-related white blood cells using the Linsley reference297

data. While we do see that dtangle has relatively more trouble deconvolving298

the Linsley-derived simulations than the Parsons-derived simulations, e.g.299

compare Supplementary Figure S37 to Supplementary Figure S42, dtangle300

still does well over-all. Indeed dtangle still out-performs the other partial301

deconvolution methods.302

Over all we see that dtangle, like other deconvolution algorithms, will303

suffer if there are almost no marker genes of the cell types. However dtangle304

is quite robust and works well with as few as a couple of percent of the305

genes being marker of some cell type.306

S6.4 Other Remarks307

S6.4.1 Accuracy as a Function of the Truth308

We see from all of these simulations that the accuracy of dtangle’s estimates309

do not seem to depend strongly on the true mixing proportion. That is,310

dtangle estimates accurately when the true mixing proportion is close to311

zero and when the true mixing proportion is close to one.312

S6.4.2 Gamma313

The simulations we have explored in this section follow a linear mixing314

model of linear expressions. This is a simplification of the model that315

dtangle posits. It is simplified because dtangle’s model also includes an316

adjustment termγ. Hence simulations strictly according to dtangle’s model317

would posit a linear mixing of slightly transformed linear expressions. We318

chose to simulate linear mixing on a linear scale because this is the model319

assumed by other deconvolution algorithms. Thus our simulations should320

be a fair analysis of these other deconvolution algorithms because it follows321

their model, not dtangle’s. Effectively, we have simulated data assuming322

γ = 1. This shows that dtangle works quite well even when γ is not323

required in the model.324

S7 The Mathematics of dtangle325

Assume we have a mixture sample of K cell types. Let Y ∈ RN be the326

(base-2) log-scale expression measurements of this mixture sample and327

p1, . . . , pK be the mixing proportions of the cell types. For k = 1, . . . ,K328

assume that there areνk reference samples of cell typek and letZkr ∈ RN329

be the log-scale expressions of the rth type k reference. Furthermore, let330

Gk ⊂ {1, . . . , N} be the set of type k marker genes. We require that331

these marker gene sets are mutually disjoint.332

Let gk = |Gk| and define YGk
= 1

gk

∑
n∈Gk

Yn and ZGk
=333

1
gkνk

∑
n∈Gk

∑νk
r=1 Zkrn to be the average of all type k marker genes334

across the mixture and reference samples, respectively. Finally, denote our335

“adjustment term” as γ ≈ 1.336
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Let ηkn be the actual linear-scale expression of the nth gene in a337

sample of type k cells and ηn be the actual linear-scale expression in the338

mixture, then dtangle assumes these actual expressions mix linearly,339

ηn =

K∑
k=1

pkηkn. (1)

Furthermore dtangle assumes that the measured log-scale expressions are340

linear in the actual log-scale expressions,341

Yn = µ+ θn + γ log2 (ηn) + εn

Zkrn = α+ θn + γ log2 (ηkn) + εkrn.
(2)

and that marker genes are (approximately) expressed by only one cell type342

so that if n is a marker gene for cell type k (n ∈ Gk) then343

η`n = 0 for all ` 6= k. (3)

Combining Equation (1), Equation (2) and Equation (3) we then have344

that for n ∈ Gk ,345

Yn = µ+ θn + γ log2 (pkηkn) + εn

= µ+ θn + γ log2 (pk) + γ log2 (ηkn) + εn

Zkrn = α+ θn + γ log2 (ηkn) + εkrn.

(4)

So for n ∈ Gk we have346

YGk
= µ+ θGk

+ γ log2 (pk) + γlog2
(
ηGk

)
+ εGk

ZGk
= α+ θGk

+ γlog2
(
ηGk

)
+ εGk

.
(5)

where347

θGk
=

1

gk

∑
n∈Gk

θn

log2
(
ηGk

)
=

1

gk

∑
n∈Gk

log2(ηkn)

εGk
=

1

gk

∑
n∈Gk

εn

εGk
=

1

gkνk

∑
n∈Gk

νk∑
r=1

εkrn.

This means348

YGk
− YGt = γ log2 (pk/pt)

+ θGk
− θGt + γlog2

(
ηGk

)
− γlog2 (ηGt )

+ εGk
− εGt

ZGk
− ZGt = θGk

− θGt + γlog2
(
ηGk

)
− γlog2 (ηGt )

+ εGk
− εGt

(6)

and so349

Dkt =
1

γ

((
YGk

− YGt

)
−
(
ZGk

− ZGt

))
= log2 (pk/pt) + δ

(7)

where δ = 1
γ

(
εGk
− εGk

− εGt + εGt

)
.350

Now as gk → ∞ for all k then δ → 0 and so for a reasonably large351

number of marker genes352

Dkt ≈ log2 (pk/pt)

and so since Dk = (Dk1, . . . , DkK) then353

Dk ≈ (log2 (pk/p1) , . . . , log2 (pk/pK))

and so if Lk(x) = 1/
(
1+
∑

t 6=k 2−xt
)

then354

Lk(Dk) ≈ pk

and so the dtangle estimator Lk(Dk) approximates pk .355
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Deconvolution Methods

Name Citation

dtangle (This publication)


Partial

CIBERSORT (Newman et al., 2015)

EPIC (Racle et al., 2017)

LS Fit (Abbas et al., 2009)

Q. Prog (Gong et al., 2011)

deconf (Repsilber et al., 2010)


Full
DSA (Zhong et al., 2013)

ssFrobenius (Gaujoux and Seoighe, 2012)

ssKL (Gaujoux and Seoighe, 2012)

Table S1. Nine deconvolution algorithms we compare.

Name Citation Accession Tech. Truth Genes Samples Reference Cell Types Species

(num., source) (num., source)

Shi MAQC (2006) GSE5350 ma mix 54,676 60 60, internal 2, universal, brain human

Gong Gong et al. (2011) GSE29832 ma mix 54,676 9 6, internal 2, blood, breast human

Shen-Orr Shen-Orr et al. (2010) GSE19830 ma mix 31,100 33 9, internal 3, liver, brain,
lung

rat

Abbas Abbas et al. (2009) GSE11058 ma mix 54,676 12 12, internal 4, leukocytes human

Becht Becht et al. (2016) GSE64385 ma mix 54,676 10 766, external 6, colorectal
carcinoma,
leukocytes

human

Kuhn Kuhn et al. (2011) GSE19380 ma mix 31,100 10 16, internal 4, brain rat

Newman FL Newman et al. (2015) GSE65136 ma cyto. 11,189 14 113, external 12, leukocytes human

Newman PBMC Newman et al. (2015) GSE65133 ma cyto. 11,049 20 113, external 22, leukocytes human

Parsons Parsons et al. (2015) PRJEB8231 seq mix 23,459 30 9, internal 3, brain, liver,
muscle

human

Liu Liu et al. (2015) GSE64098 seq mix 23,056 24 16, internal 2, adenocarcinoma human

Linsley Linsley et al. (2014) GSE60424 seq cyto. 21421 5 3, external 3, lymphocytes,
monocytes, neutrophils

human

Table S2. Benchmark data sets on which we compare deconvolution algorithms. The accession key is for GEO (or in the case of Parsons, ENA). The technology
producing the data is either “ma” for microarray or “seq” for RNA-seq. The column “Truth” distinguishes between mixture experiments “mix” or data where the
truth is known from flow cytometry “ctyo.” The number of gene expression measurements made by the technology is the column “Genes” and the number of
unknown heterogeneous samples deconvolved is the column “Samples.” The column “Reference” lists the number of samples in the reference data along with the
designation of “internal” if the pure reference samples were created part and parcel with the mixture experiment or “external” if the reference samples were collected
from external data sources (typically GEO). The column “Cell Types” lists the number of cell types in the mixture samples and provides a description of the cell
types along with the species from which the cell types come (in the column “Species”).
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Scale Actual Expression (Unobserved)

Linear mRNA amount

Log log2(mRNA amount)

GEP technology

	
Scale Measured Expression (Observed)

Linear gene expression measurement

Log log2(gene expression measurement)

Fig. S1: Measured expressions (log or linear) arise from a measurement process on the actual expressions (log or linear).
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Fig. S2: Boxplots of all deconvolution methods across all data-sets. Top 10% of the 25% of most variable genes are used as marker genes used for
deconvolution. Marker genes determined by median differences across reference samples. Slope (γ) for dtangle determined automatically by data-type.
(A) For each cell type the correlation of the true mixing proportions against the estimated mixing proportions is calculated. If the s.d. of the estimates is
zero, we say the correlation is zero. If the s.d. of the true proportions is zero we do not calculate the correlation. Each point is the median of the correlations
across cell types. We calculate this median correlation for each data-set and each deconvolution method. (B) Similar to (A) except using R2 instead of
correlation. (C) is similar to (A) but using grand means instead of correlation. For each cell type the absolute value of the error of the estimated mixing
proportions from the true mixing proportions is calculated. Each point is the mean of the errors across cell types. We calculate this mean for each data-set
and each deconvolution method.

Meta Boxplots: logarithmic
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Fig. S3: Similar to Figure S2 but applying methods to log transformed data.
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Meta Boxplots: Microarray
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Fig. S4: Similar to Figure S2 but only comparing microarray data-sets.

Meta Boxplots: RNA-seq
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Fig. S5: Similar to Figure S2 but only comparing RNA-seq data-sets.
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Meta by Quantile
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Fig. S6: Partial deconvolution methods performance (y-axis) by number of marker genes (quantile, x-axis). Slope (γ) for dtangle determined automatically
by data-type. Top q% of top 25% of most variable genes used for deconvolution where q varies over the x-axis from 1% to 15% (in increments of 1%).
Marker genes determined by p-value (Left) and ratio of the linear expression of each type to the expression in all other types (Right). The y-axis is the
grand (A) mean or (B) median (over data-sets and cell types) of the absolute error of the true proportions from the estimated proportions, or the grand
(C) mean or (D) median of theR2 or correlations (E, F) of the estimated proportions against the true proportions. The correlation is zero if the s.d. of the
estimates is zero and the correlation is not computed if the s.d. of the true proportions is zero. One line is plotted for each partial deconvolution method.
Error ribbons displaying 95% confidence intervals.
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Meta by Quantile: Microarray
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Fig. S7: Similar to Figure S6 except only comparing microarray datasets.
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Meta by Quantile: Seq
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Fig. S8: Similar to Figure S6 except only comparing RNA-seq datasets.
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Fig. S10: dtangle performance (y-axis) by slope (γ) varrying over x-axis from 0.25 to 2 (in increments of 0.05). Marker genes determined by p-value (Left)
and ratio of the linear expression of each type to the expression in all other types (Right). The y-axis is the grand (A) mean or (B) median (over data-sets
and cell types) of the absolute error of the true proportions from the estimated proportions, or the grand (C) mean or (D) median of the correlations of
the estimated proportions against the true proportions. The correlation is zero if the s.d. of the estimates is zero and the correlation is not computed if the
s.d. of the true proportions is zero. One line is plotted for four choices of number of markers using only the top 1%, 5%, 10% or 15% of top 25% most
variables genes as markers. Error ribbons displaying 95% confidence intervals.
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Meta by Slope: Microarray
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Fig. S11: Similar to Figure S10 but only comparing microarray data-sets.



i
i

“supp” — 2018/10/19 — 11:51 — page — #15 i
i

i
i

i
i

Meta by Slope: RNA-seq
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Fig. S12: Similar to Figure S10 but only comparing RNA-seq data-sets.
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Dataset: Abbas
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Fig. S13: Deconvolution methods performance on Abbas data-set. Slope (γ) for dtangle determined automatically by data-type. Top 10% of marker
genes among the 25% most variable genes are used for deconvolution. Marker genes determined by median differences across reference samples. (A)
Boxplots of error for each algorithm. y-axis is the absolute value of the error of the estimates from the true mixing proportions. Black line is the median
absolute error, grey line is the mean absolute error. (B) Boxplots of correlation. For each cell type the correlation of the true mixing proportions against
the estimated mixing proportions is calculated. If the s.d. of the estimates is zero, we say the correlation is zero. If the s.d. of the true proportions is zero
we do not calculate the correlation. (C) Simlar to (B) but using R2 instead of correlation. (D) Scatter plots of estimated mixing proportions again true
mixing proportions for dtangle, CIBERSORT and EPIC. Orange line is a 45◦ line through zero.
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Dataset: Becht
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Fig. S14: Similar to Figure S13 but for the Becht data-set.
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Dataset: Gong
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Fig. S15: Similar to Figure S13 but for the Gong data-set.
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Dataset: Kuhn
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Fig. S16: Similar to Figure S13 but for the Kuhn data-set.
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Dataset: Linsley
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Fig. S17: Similar to Figure S13 but for the Linsley data-set.
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Dataset: Liu
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Fig. S18: Similar to Figure S13 but for the Liu data-set.
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Dataset: Newman PBMC

●

●●
●

●
●●

●
●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●
●

●●

●

●

●
●

●

●

●

●

●

●
●

●●

●
●
●

●●

●

●

●

●
●
●
●

●●

●
●●

●

●

●
●●

●●
●

●●

●

●

●

●
●

●
●

●●
●

●

●

●
●●

●●
●

●●

●

●

●

●
●

●
●

●●
●

●

●

●

●

●
●

●●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
● ●●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●
●

●●

●

●●

●●

●

●

●

●

●

●

●

●

0.00

0.25

0.50

0.75

1.00

dtangle

CIBERSORT
EPIC

LS Fit
Q Prog

DSA
ssKL

ssFrobenius
deconf

Deconv.Method

E
rr

or

●B CD4 CD8 Gamma Monocytes NK

Newman PBMCA

●

●

●

●●

●●
●

●

−1.0

−0.5

0.0

0.5

1.0

dtangle

CIBERSORT
EPIC

LS Fit
Q Prog

DSA
ssKL

ssFrobenius
deconf

Deconvolution Method

C
or

re
la

tio
n

Cell.Type ●B CD4 CD8 Gamma Monocytes NK

Newman PBMCB

●

●

●

●●

●●

●

●

0.00

0.25

0.50

0.75

1.00

dtangle

CIBERSORT
EPIC

LS Fit
Q Prog

DSA
ssKL

ssFrobenius
deconf

Deconvolution Method

R
−s

qu
ar

ed

Cell.Type ●B CD4 CD8 Gamma Monocytes NK

Newman PBMCC

0.00

0.25

0.50

0.75

1.00

0.00
0.25

0.50
0.75

1.00

Truth

E
st

im
at

e

Deconv
Method

dtangle CIBERSORT EPIC

Cell
Type

B CD4 CD8 Gamma Monocytes NK

Newman PBMCD

Fig. S19: Similar to Figure S13 but for the Newman PBMC data-set.



i
i

“supp” — 2018/10/19 — 11:51 — page — #23 i
i

i
i

i
i

Dataset: Newman FL
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Fig. S20: Similar to Figure S13 but for the Newman FL data-set.
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Dataset: Parsons
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Fig. S21: Similar to Figure S13 but for the Parsons data-set.
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Dataset: Shen-Orr
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Fig. S22: Similar to Figure S13 but for the Shen-Orr data-set.
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Dataset: Shi
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Fig. S23: Similar to Figure S13 but for the Shi data-set.
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Dataset: Newman PBMC
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Fig. S24: Same as Figure S19 but using references, mixtures samples, and marker genes directly from Newman paper supplement.
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Dataset: Newman FL
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Fig. S25: Same as Figure S20 but using references and marker genes directly from Newman paper supplement.
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Lyme Disease Example
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Fig. S26: Estimated cell type proportions over time.
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Measured Expression of Transcript vs. Amount of Transcript

(a) log2 measured expression versus log2 concentration of a probe for gene TNFRSF1B. The relationship is approximated well by a linear model. While we
have plotted amount against measured expression for one particular gene the results are generalizable to all genes. Points are plotted for the 13 experiments where
the gene is spiked-in at a amount above zero and for each of the three technical replicates of each experiment. Along with the data points are plotted a linear and
logistic least squares fit. The linear fit is a simple linear regression of measured expression on amount and the logistic fit is the least squares fit of a generalized
logistic function of the form β0 + β1/ (1 + exp (β2x+ β3)).
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Measured Expression of Transcript vs. Amount of Transcript

(b) log2 measured expression versus log2 concentration of ERCC spike-in controls in RNA-seq data. This relationship is highly linear. A linear least squares
regression fit is plotted as a line.

Fig. S27
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Simulation: Artificial Cell Type with Low Gaussian Error
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Fig. S28: Partial deconvolution methods performance on simulated gaussian data with low error. Computation for methods other than dtangle was done
for data both on the log2 scale and the linear un-transformed scale. Slope (γ) for dtangle is set to one. Top 10% of 25% most variable genes used for
deconvolution. Marker genes determined by median differences across reference samples. (A) Boxplots of error for each algorithm. y-axis is the absolute
value of the error of the estimates from the true mixing proportions. Black line is the median absolute error, grey line is the mean absolute error. (B)
Boxplots of correlation. For each cell type the correlation of the true mixing proportions against the estimated mixing proportions is calculated. If the s.d.
of the estimates is zero, we say the correlation is zero. If the s.d. of the true proportions is zero we do not calculate the correlation. (C) Scatter plots of
estimated mixing proportions again true mixing proportions for dtangle, CIBERSORT and EPIC. Orange line is a 45◦ line through zero.
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Simulation: Artificial Cell Type with High Gaussian Error
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Fig. S29: Similar to Figure S28 but with a high error variance used in simulation.
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Simulation: Artificial Cell Type with Low Gaussian Error and Outliers
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Fig. S30: Similar to Figure S28 but with outliers added to the simulated data.
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Simulation: Artificial Cell Type with Gaussian Error by Number of Marker Genes
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Fig. S31: Accuracy of dtangle by the number of marker genes present in gaussian simulated data with low error variance. y-axis is accuracy measured by
(A) grand mean of the absolute value of the error of the true proportions from the estiamted proportions and (B) mean correlation within each cell type.
The x-axis is the percentage of the data set that is comprised of marker genes as defined by dtangle.
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Simulation: Artificial Cell Type with Gaussian Error by Marker Gene Expression
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Fig. S32: Accuracy of dtangle by expression level of marker genes in gaussian simulated data with low error variance. y-axis is accuracy measured by
(A) grand mean of the absolute value of the error of the true proportions from the estiamted proportions and (B) mean correlation within each cell type.
The x-axis is the quantile of the over-all data at which marker genes are expressed in all other cell types.
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Simulation: Artificial Cell Type with Poisson Error
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Fig. S33: Similar to Figure S28 but using a poisson error.
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Simulation: Artificial Cell Type with Poisson Error and Outliers
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Fig. S34: Similar to Figure S33 but with outliers added to the simulated data.
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Simulation: Simple Poisson Error by Number of Marker Genes
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Fig. S35: Similar to Figure S31 but using a poisson error.
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Simulation: Simple Poisson Error by Marker Gene Expression
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Fig. S36: Similar to Figure S32 but using a poisson error.
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Simulation: Parsons with Low Gaussian Error
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Fig. S37: Similar to Figure S28 but simulation was done by in-silico mixtures of reference cell type profiles from the Parsons data set.
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Simulation: Parsons with High Gaussian Error
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Fig. S38: Similar to Figure S37 but with a high error variance used in simulation.
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Simulation: Parsons with Low Gaussian Error and Outliers
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Fig. S39: Similar to Figure S37 but with outliers added to the simulated data.
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Simulation: Parsons with Poisson Error
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Fig. S40: Similar to Figure S37 but using poisson error.
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Simulation: Parsons with Poisson Error and Outliers
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Fig. S41: Similar to Figure S40 but with outliers added to the simulated data.
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Simulation: Linsley with Low Gaussian Error
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Fig. S42: Similar to Figure S28 but simulation was done by in-silico mixtures of reference cell type profiles from the Linsley data set.
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Simulation: Linsley with High Gaussian Error
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Fig. S43: Similar to Figure S42 but with a high error variance used in simulation.
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Simulation: Linsley with Low Gaussian Error and Outliers
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Fig. S44: Similar to Figure S42 but with outliers added to the simulated data.
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Simulation: Linsley with Poisson Error
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Fig. S45: Similar to Figure S42 but using poisson error.
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Simulation: Linsley with Poisson Error and Outliers
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Fig. S46: Similar to Figure S45 but with outliers added to the simulated data.
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