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1 Comparison of the atSNP Search with existing
resources

Several motif-based web resources are currently available to quantify the
regulatory impacts of human SNPs, among which the atSNP Search is one
of the most comprehensive and up-to-date tools (Supplementary Table 1).
In generation of the atSNP Search contents, we matched all 132,946,852
SNPs in dbSNP 144 on hg 38 to 2,270 motifs in total. The initial SNP
set of SNP2TFBS is a SNP catalogue from 1000 Genomes project, which
contains approximately 64% of the initial SNP set of the atSNP Search.
The final database of SNP2TFBS itself contains a much smaller subset
of variant-motif pairs that survive at p-value cutoff of 3 × 10−6. While
the atSNP Search, SNP2TFBS, and Raven harbor pre-computed results
on web servers and return immediate search results, OncoCis implements
motif searches on the fly using the Possum tool (Haverty et al., 2004).

2 Additional database contents
The atSNP (Zuo et al., 2015) testing framework estimates a background
distribution to use as the null distribution for evaluating motif matches.
We paid special attention to the GC content in these evaluations because
GC content has been found to diversify mutation rates, as evidenced by
their explanatory power in human genome variability (Hellmann et al.,
2005). Specifically, we computed the GC content for all the 201-base-long
windows centered at the SNP positions on reference alleles and classified
each variant location into one of the two GC classes depicted with a mixture
of two normal distributions (Supplementary Figure 1). Then the first order
Markov models were fitted separately to the two sub-populations in order
to impose adjacent base dependencies. Next, for every SNP-motif pair, we
identified the best motif matches in the 61-base DNA sequence, centered at
the variant location with both the reference and SNP alleles and quantified
both the significance of the motif matches and the change in the motif
matches using a likelihood-based approach.

atSNP Search utilizes the p-value of the log rank statistic evaluated
at the best motif matches with both reference and SNP alleles, which
is named p-value SNP impact, as the key sequence-based measure of

Table 1. Comparison of motif-based regulatory SNP discovery tools

Tools JASPAR
ENCODE hg

version # initial

SNPs Pre-computed

data

atSNP Search X X hg38 133M X

SNP2TFBS X hg19 85M X

Raven X hg17 30K X

OncoCis X hg19 NA

Tools
Statistic

al

significance User-defined

thresholds Genome-wide

search given a motif

Graphics

atSNP Search X X X X

SNP2TFBS X X

Raven X

OncoCis

Annotation

atSNP Search UCSC Genome Browser hyperlink

SNP2TFBS RefSeq gene

Raven phastCons score

OncoCis Gene expression, phastCons score, Histon ChIP/DNase-seq peak
UCSC Genome Browser/DGIdb hyperlink

FANTOM5 enhancer/promoter TSS prediction

SNP2TFBS (Kumar et al., 2016), Raven (Andersen et al., 2008), OncoCis (Perera et al., 2014)

detecting regulatory variants. Statistical evidence for the regulatory roles
of variants is further assessed with three additional statistical hypothesis
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tests on the match alteration: (1) log likelihood ratio evaluated at the
best matches of both alleles, (2) log likelihood ratio evaluated at the
matches of both alleles at the best match position of the reference
allele, (3) log likelihood ratio evaluated at the matches of both alleles
at the best match position of the SNP allele. The p-values from these
calculations are named p-value Difference, p-value Condition Ref, and p-
value Condition SNP, respectively. The scores and p-values are reported
in the detail page. Users can quickly retrieve each detail page using
the intuitive URL, which is a combination of the motif ID, RSID,
and variant nucleotide, e.g., http://atsnp.biostat.wisc.edu/detail/motifID_
RSID_ N. This feature enables programmatic access to atSNP Search
results. For studying human variants other than SNPs or non-human
genetic variations, we suggest the R package atSNP, which is publicly
available at https://github.com/keleslab/atSNP.

3 Heterogeneity of GC content around genomic
locations of variants

Fig. 1. Grouping of SNPs based on their local neighborhood GC content with a mixture
modeling framework. The black curve denotes the observed GC content, whereas the red
curve is the fitted probability density function of the mixture of two normal distributions.
The curves labeled as Cluster 1 and 2 denote the two identified components.

Table 2. Estimated stationary distributions and transition
matrices of the two SNP groups based on their GC contents.

Cluster 1 Cluster 2
A C G T A C G T
0.34 0.16 0.16 0.34 0.26 0.24 0.24 0.26

A C G T A C G T
A 0.37 0.15 0.18 0.30 0.28 0.20 0.30 0.22
C 0.41 0.19 0.03 0.37 0.32 0.29 0.08 0.31
G 0.34 0.17 0.19 0.30 0.26 0.24 0.29 0.21
T 0.27 0.16 0.20 0.37 0.17 0.24 0.30 0.28

Supplementary Figure 1 displays the distribution of GC content in
the local neighbourhood of SNPs, i.e., a 201-base-long windows centered
at the SNPs, and the two mixture components that are identified. The

two groups have significantly different transition patterns, and in the
stationary state, the second cluster has higher GC content than the first
cluster (Supplementary Table 2).

4 The atSNP Search infrastructure

Fig. 2. The atSNP Search design.

atSNP Search is written with Django, a high-level Python Web
framework that encourages rapid development and pragmatic design
(Forcier et al., 2008). atSNP Search contents were first generated in
RData format using UW Madison HTCondor, an open-source high-
throughput computing software framework for coarse-grained distributed
parallelization of computationally intensive tasks (Thain et al., 2005).
“Years of compute hours” on the entire task are roughly 13 years (113,500
HTC hours) on a single core CPU machine with at least 7GB of disk
space and 10GB of memory. Records on variant-motif pairs with marginal
significance in motif matches or alteration were provided as input to the
atSNP Search server in JSON format. Custom Python scripts for ETL
(Extract, Transform and Load) were utilized for data loading (Harrison
et al., 2018). Elasticsearch, a NoSQL database, runs on the atSNP
Search server, utilizing a distributed scale-out system architecture for
large workloads (Gormley and Tong, 2015). It accomplishes the task
of search and retrieval by distributing requests for searches among the
scaled computing resources. As requirements for storage and performance
increase with user demand, we can scale out by adding more machines. A
restAPI (Masse, 2011) handles communication between the search page
and the Elasticsearch data store. The complete atSNP Search infrastructure
is illustrated in Supplementary Figure 2. Composite sequence logos are
generated on the fly using D3.js, which is a JavaScript library for dynamic
and interactive data visualizations on web (Bostock et al, 2011).
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5 atSNP query response time

Table 3. Response time for SNPid List and SNPid Window Searches (in seconds).

SNPid List SNPid Window
# of p-value Window p-value

SNP IDs 0.05 0.01 size 0.05 0.01
15 13.7-19.6 14.7-32.1 100 2.7-9.6 2.7-3.3
50 9.2-40.1 3.5-27.0 1K 2.7-9.6 2.7-3.3

100 29.7-32.5 13.6-14.4 10K 40.5-53.4 12.3-24.1
500 API timeout API timeout 100K API timeout API timeout

Table 4. Response time for Genomic Location and Gene Searches (in seconds).

Genomic Location Gene
Loscation p-value Window p-value

size 0.05 0.01 size 0.05 0.01
1K 3.9-12.5 3.1-5.2 100 4.9-11.5 2.2-2.7

10K 22.8-51.1 7.9-32.3 1K 9.5-29.3 2.6-7.3
50K 39.4-55.9 36.1-37.4 5K 46.7-61.2 24.5-33.2

100K API timeout API timeout 10K API timeout API timeout

Table 5. Response time for Transcription Factor
Search (in seconds).

Library Transcription p-value
Factor 0.05 0.0005

JASPAR ZNF263 2.3-4.7 2.5-2.6
CTCF 3.8-5.1 2.6-3.9

ENCODE AFP 2.7-3.3 1.7-5.4
GATA 40.3-47.7 27.9-43.6

Supplementary Tables 3-5 report response time for the five search types
under various combinations of query parameters and significance levels.
We performed two experimental runs under one combination of each
search type at a time and recorded both response times. Our empirical
studies suggest that, overall, both query type and size of query results
determine the response time albeit some exceptions exist. The four types
in Supplementary Tables 3-4 search through all variant-pairs which meet
the user-defined criteria within a collection of SNPs or a specified genomic
range. Transcription factor search, which needs no access to genomic
coordinates, returns thousands to hundreds of millions of variant-motif
pairs within a minute.

6 Enrichment analysis of acute myeloid leukemia
SNPs

UK Biobank genotyped 820,967 SNPs using the Affymetrix Axiom arrays,
a subset of which are annotated with disease genes in Online Mendelian
Inheritance in Man (OMIM) database (Hamosh et al., 2005). We used
atSNP Search to assess whether the 1,475 acute myeloid leukemia (AML)
SNPs in the UK Biobank are enriched for impact on a set of transcription
factors. To assess enrichment, we utilized the 21,529 non-AML cancer
SNPs in the biobank as the background set of SNPs. Binding enhancement
or disruption of a transcription factor by a SNP are assumed to occur when

Fig. 3. Proportions of SNPs impacting binding of the 23 transcription factors among non-
AML and AML SNP sets. For each transcription factor, the proportion of SNPs with
significant P-value SNP Impact (Bonferroni correction at level 0.05) for the AML SNPs
was compared to that for the background set of SNPs from non-AML cancers.

the SNP significantly impacts matches of at least one motif corresponding
to the transcription factor at the significance level of 0.05 after Bonferroni
multiple testing correction. Using atSNP Search queries to conduct this
analysis results in 13,578 non-AML cancer SNPs and 906 AML SNPs as
impacting at least one of the 102 transcription factors that have motifs with
high information content (median IC ≥ 1.1). For each transcription factor,
we evaluated whether the proportion of SNPs with significant impact
differed between the two SNP sets after constructing a contingency table.
Supplementary Figure 3 summarizes the results on 23 transcription factors,
the contingency tables of which have all expected cell frequencies larger
than or equal to 5. We found the proportion of SNPs impacting binding
of LEF1 and GATA2 significantly differ between the two groups at a false
discovery rate of 0.1.

Fig. 4. Differential expression level distribution of the 31 TCGA cancer types for the five
transcription factors from GEPIA. Red rhombi indicate differential expression levels in
AML tumor samples.
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We next asked whether expression of these transcription factors across
cancer types are supportive of this finding. Specifically, we computed
differences in their median expression levels in TPM (Transcripts Per
Million) between AML tumor samples and matched normal tissues with
the GEPIA web server (Tang et al., 2017). GATA2 is repressed in AML
compared to matched controls by 82.04 TPM, and LEF1 is repressed by
15.23 TPM (Supplementary Figure 4). Both differential repression levels
in AML are identified as outliers with respect to their distributions in all 31
TCGA cancer types, thus both transcription factors are considered having
AML-specific expressional differences. Furthermore, recent research on
GATA2 (Hsu et al., 2013; Johnson et al., 2012) showed that mutations
of a GATA2 intronic binding site cause a primary immunodeficiency
(MonoMAC) associated with myelodysplastic syndrome that progresses
to AML. PRRX2 and HOXA5, which are affected by a larger proportion
of AML SNPs compared to GATA2, exhibit less specificity to AML
compared to the rest of cancer types. OTX1 is more repressed in AML
tumor; however, overall differential OTX1 expression levels are marginal,
thus its AML-specificity may not be appreciable.
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