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Supplemental Methods
To review from the main text, Fu’s Fs, can be calculated from a multiple sequence alignment. One requires the number of alleles (denoted ) and the mean number of pairwise nucleotide differences (denoted ). The statistic  is then defined as:
(A1)				
where  and  is the coefficient of  in  (Fu, 1997). The coefficients  are also denoted in other literature as , where they are referred to as Stirling numbers of the first kind (Temme, 1993); hereafter I refer to these simply as Stirling numbers. Fu’s Fs is then defined as:
(A2)				
Fu’s Fs is related to another statistic, Strobeck’s S (Fu, 1996; Strobeck, 1987), which is also frequently defined in terms of Stirling numbers. The  from Fu’s Fs is the probability of having  or more alleles in the sample; Strobeck’s S is the probability of having  or fewer alleles (Fu, 1997), so that one useful property is:
(A3)				
I use the Stirling number estimator developed by (Temme, 1993) (Eequation 3.5 therein; see equations A6-A10 below), which has the advantage of being amenable to calculation as a logarithm and which is uniformly applicable for all values of . I then calculate Fu’s Fs directly using Equation (A1). Note that while the numerator and denominator can both become large, the ratio is typically within range for normal floating point mathematics; therefore, the numerator and denominator are estimated as logarithms and the sum may be calculated normally after taking the antilog of the difference.
The following software programs were used to calculate Fu’s Fs and Strobeck’s S or to deduce algorithmic approaches:  DnaSP (versions 5.10.1 and 6.12.01) (Librado and Rozas, 2009; Rozas, et al., 2017), Arlequin (version 3.5.2.2) (Excoffier and Lischer, 2010), PopGenome (version 2.6.1) (Pfeifer, et al., 2014), and PGEToolbox (Cai, 2008). DnaSP and Arlequin were both run in Windows 7. PopGenome and all R code I developed was were run on Ubuntu 16.04.5 with R (version 3.4.4) (http://www.R-project.org/). PGEToolbox was downloaded from the git repository (https://github.com/jamesjcai/PGEToolbox) and run in Matlab R2016a. Calculation methods were inferred from examining source code, where available. DnaSP uses a recursive algorithm for calculating Fu’s Fs that avoids the need for calculating Stirling numbers; this algorithm directly calculates Strobeck’s S and uses the identity in Equation (A3) to calculate Fu’s Fs as:
(A4)				
Where
(A5)				
The Stirling number estimator I used is Equation 3.5 from (Temme, 1993), modified here to match the notation used in (Fu, 1997):
(A6)				
Where
(A7)				
(A8)				
(A9)				
(A10)				
And  is the unique positive solution to the equation . Here the prime (‘) notation indicates the derivative. As noted in (Temme, 1993), these equations are readily converted to use logarithms for calculation using the gamma function and its derivatives.
I ported the methods used in PGEToolbox and DnaSP to R for comparison and benchmarking. The memoise package (Wickham, et al., 2017) was used to cache results from procedures for the ported DnaSP code. An arbitrary precision implementation of the PGEToolbox algorithm was coded in Perl (v5.22.1) using the bignum package (version 0.39).
Sample sequence alignments were extracted from assembled E. coli genomes with a completion level of “Complete”, “Chromosome”, or “Scaffold” available from Genbank as of March 6, 2016 (listed at https://www.ncbi.nlm.nih.gov/genome/genomes/167?). The annotated fimH gene from UTI89 (NC_007946.1) (Chen, et al., 2006) was used to search each genome assembly using TBLASTN (version 2.2.28+) (Camacho, et al., 2009); only the top hit for each genome was kept. All TBLASTN hits that passed a cutoff of ≥ 90% identity over ≥ 90% of the length of the UTI89 gene allele were considered full length genes. The full length genes were translated in silico, and the resulting predicted protein sequences were aligned with ClustalW (version 2.1) (Larkin, et al., 2007); the protein alignment was then imposed on the DNA sequences. Gaps and polyallelic sites in the alignment were removed, then alleles were successively added in random order to create the alignments tested in Table 1.
Simulations for underflow were done for all combinations of , , and , where all three parameters were restricted to integers. Simulations for benchmarking and testing code (Figure 1A) were done by creating 100 parameter sets with , , and , where all values were randomly drawn from a uniform distribution, and  was not restricted to integers. The benchmark for 100 parameter sets was run 50 times, each in a separate R session.
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