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1 Extended methods

1.1 FASTQ files

The FASTQ format Cock et al. (2010) is used to represent data obtained from a sequencing experiment.
This data is not aligned to a reference genome and consists of reads, quality values and read identifiers.
Every read and the corresponding metadata is represented by a block of four lines. The first line is the read
identifier, the second line is the read itself and the fourth line is the quality value for each base in the read.
The third line contains the symbol ‘+’ to separate the read and the quality values. This line can contain
some metadata or comments, but they are rarely used and hence most compressors (including SPRING)
discard them (Numanagić et al., 2016). The read is a string of DNA symbols (typically A, C, G, T and N,
where N represents no call). The quality value represents the confidence in each base call, encoded in ASCII
using the Phred scale (Illumina, a). The read identifiers store various fields related to the sequencing process,
such as lane number, instrument name, etc. For paired-end sequencing, two FASTQ files are produced, with
the ith read in the first file being the pair of the ith read in the second file. As an example, the first two
reads for the two files in the ERP001775 dataset are shown in Figure 1 (note that the read identifiers for the
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paired reads differ only in the last character).

File 1:

@ERR174324.1 HSQ1009_86:1:1101:1192:2116/1

ATTCNGTCACTTCTCACCAGGCCCCTCATTCAACACTGGGAATTAAAATTCGACATGAGATACCATGTCAATATATGGTATAAAATCTAAGATGTTGCCAC

+

CCCF#2ADHHHHHJJJIJJJJIJJJJJJJJGIJJJJJJJJIJJJIJJJJJGIJJJJJJJIJJJJJHHHHGHHFFFBEFFEEEEEEEEDDDDDDDEDDCCD>

@ERR174324.2 HSQ1009_86:1:1101:1079:2130/1

CAGANAGAGACTCTGTCTCAAAAAAACAAACAAACAAACAAACAAAAAGTCTTAGTCCCAGCACTTTGGGAGGCCGAGGCAGGCGGATCACAAGGTCAGGA

+

CCCF#2ADHFHHHJIJJJJJJJJJJJJJJJJJJIJJJJHIIJJJJJJJJIIIJJHHHHHHFFFFFDEEEDDDDDD?BDDDDDDDDDBDDDDDDDB>CCDD3

File 2:

@ERR174324.1 HSQ1009_86:1:1101:1192:2116/2

CTTTGATCACCATTACCTATAATGTCTCGCTTCCACTGACTTCTCAGTCTCTTCTGTGTCTCATCTTCTCAAGCAATTTTTTTCCAGCCCTACATCAATGT

+

CCCFFFFFHHHHHJJJJJIJJIDIJIJJJJJJJJJIJJJJJJGHGHIIIIHIIJJJIJIIJJJJJJIIJJIIIJI;DGIJIFD@CDDCDDDDDDDDDDDDC

@ERR174324.2 HSQ1009_86:1:1101:1079:2130/2

NAAAGACTTTTTTTTTTTGAGACGGAGTCTCACTCTGTTGCCCAGGCTGGAGTGCAGTGGTGCGATCTTGGCTGACTGCAACCTCCGCCTCCCGGGTTCAA

+

#1=DFFFFHHHHHJJJJJICEGGHIBHHIIIJJJGEHHHHEHFFFEDCCDDDAACDDACC:?CB=BDDDCC?C?<A@CCACCB?CDDBDBDDDD>D#####

Figure 1: Paired-end FASTQ files in ERP001775 dataset.
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Figure 2: Compression flow for SPRING.

Figure 2 shows the overall compression flow for SPRING. Before describing the steps in more detail, we
define some terms and discuss certain components:

• BSC - BSC (https://github.com/IlyaGrebnov/libbsc/) is a general-purpose compressor based
on the Burrows-Wheeler Transform (BWT) built for achieving high compression ratios while being
computationally efficient. We use BSC in a number of places in SPRING, with block length of 64 MB
and -p (no preprocessing) flag activated.

• Read compression - There are two modes for read compression:

– Order preserving compression - Compression preserving the order of reads in the FASTQ file.
This is the default mode for SPRING.

– Order non-preserving (pairing only) compression - In this mode, the order of reads in the FASTQ
file is not preserved but the pairing information is preserved. Single end FASTQ files are arbitrarily
reordered in this mode. Paired end FASTQ files are reordered such that the reads in file 1 remain
in file 1, reads in file 2 remain in file 2, and the paired reads still remain paired. This mode is
activated by the -r flag.
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• Quality value compression - SPRING uses BSC for quality value compression and allows several options
for quantization:

– Lossless - default mode.

– QVZ - QVZ (Malysa et al., 2015) models quality values as a first-order Markov process with
position-dependent transition probabilities. This allows QVZ to capture both the degradation of
quality values at the end of the read and the correlation between the quality values within a read.
QVZ first computes statistics for this model and generates quantization codebooks using a variant
of Lloyd-Max algorithm. Note that we use QVZ only for quantization of quality values, which are
then compressed using BSC. SPRING supports QVZ with mean square error distortion, where
the user needs to specify the desired rate in bits/quality value. It was shown in Ochoa et al.
(2017) that an average rate of 1 bit per quality value retains the performance of variant calling.
This mode is activated by the -q qvz qvz rate flag.

– Illumina binning - SPRING supports Illumina’s standardized 8-level binning scheme (Illumina,
b) for lossy compression of quality values. The Illumina binning scheme maps the 40-level quality
values to 8 levels by clustering together similar values. This mode is activated by the -q ill bin

flag.

– Binary thresholding - SPRING supports binary quantization of quality values which was shown
in Roguski et al. (2018) to significantly reduce the compressed size of quality values without
sacrificing variant call accuracy (for high coverage datasets). The user needs to provide three
parameters: thr, high and low. Quality values less than thr are quantized to low and quality
values greater than or equal to thr are quantized to high. This mode is activated by the -q

binary thr high low flag.

• Read Identifier Compression - As the read identifiers consist of heterogeneous but structured data,
SPRING uses a token-based approach for their compression. The read identifiers are split into tokens
and each token is encoded separately. For the numeric tokens, SPRING uses delta encoding if the
difference from the previous value is small, otherwise it stores the token value as it is. For string type
tokens, SPRING uses a special symbol to denote a perfect match with the previous value, otherwise
the full string is stored. Finally these streams are compressed using an adaptive arithmetic encoder.
The read identifier compression in SPRING is based on Samcomp (Bonfield and Mahoney, 2013) and
GeneComp (Long et al., 2017).

For paired-end datasets, typically the corresponding identifiers in the two files differ only in a single
character. During the preprocessing stage, we check if the identifiers have this structure. In that case,
identifiers for only one of the files are compressed and those for the other file are reconstructed during
the decompression.

• Short read mode - This mode supports short reads with read lengths up to 511. The short read
compression in SPRING is based on HARC (Chandak et al., 2018), with added support for paired
end reads and several other improvements (discussed later in more detail). This mode is optimized for
relatively accurate short reads containing substitution errors and is the default mode for SPRING.

• Long read mode - This mode supports long reads with read lengths up to 4.2 billion. Here we use BSC
for read compression. This mode is activated by the -l flag and is always order preserving. Since the
short read mode is designed for low error rates with most errors being subsitutions, the long read mode
is also recommended for short read datasets with large number of indel errors.

Preprocess

In the long read mode, the reads, quality values and read identifiers are separated and compressed in blocks
(reads and quality values using BSC, identifiers using specialized identifier compressor described above). By
default, the block length for long reads is set to 10,000 reads. The read lengths are also stored as 32-bit
integers in a separate stream which is compressed using BSC. Preprocessing is directly followed by the Tar
stage for long reads.
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In the order preserving mode, the quality values and read identifiers are compressed in blocks (quality
values using BSC, identifiers using specialized identifier compressor). QVZ quantization is applied before
quality compression if the corresponding flag is specified. By default the block length for short reads is
set to 256,000 reads (see Section 3.8 for impact of block length on compression). The reads are written to
temporary files after separating out the reads containing the character ‘N’. The reads containing ‘N’ are
considered directly in the “Encode reads” stage.

In the order non-preserving mode, the quality values and read identifiers are written to temporary files.
The reads are handled exactly as in the order preserving mode.

If the Illumina binning or binary thresholding flag is activated, the qualities are binned before compres-
sion/writing to temporary file.

Reorder reads

This step in read compression is based on HARC (Chandak et al., 2018), with several extensions and
improvements. Here, we will provide a brief overview of the step, more details and parameters can be found
in Chandak et al. (2018). In this step, SPRING reorders the reads so that they are approximately ordered
according to their position in the genome. The reordering is done in an iterative manner: given the current
read, SPRING tries to find a read which matches the prefix or the suffix of the current read with a small
Hamming distance. To do this efficiently, a hash table is used which indexes the reads according to certain
substrings of the read. SPRING makes the following improvements to this stage:

• While HARC searched for matching reads in only one direction (matching the suffix of the current
read), SPRING looks for matches in both directions. This boosts read compression by 5-10% on most
datasets (see Section 3.10).

• While HARC only supported fixed length reads of maximum length 255, SPRING adds support to
variable length short reads of maximum length 511. For this, SPRING stores an array containing the
read lengths, which is used to ensure that the Hamming distance between reads of different lengths is
computed correctly.

• We observed that most of the time in the reordering stage is spent on a small fraction of remaining
reads and the attempts to find matches to these reads usually fails. To save time in this step, SPRING
introduces early stopping to this stage. Each thread maintains the fraction of unmatched reads in the
last 1 million reads and stops looking for matches once this fraction crosses a certain threshold (50%
by default). Since this stage is the most time-consuming step in SPRING compression, early stopping
can reduce compression times by as much as 20% without affecting the compression ratio (see Section
3.10).

Encode reads

In this step, the sequence of reordered reads is used to obtain a majority-based reference sequence. The
reference sequence is then used to encode the reordered reads. The final encoding includes the reference
sequence, the positions of the reads in the reference sequence, and the mismatches of reads with respect to
the reference sequence. An index mapping the reordered reads to their position in the original FASTQ file
is also stored. This step is almost unchanged from HARC (Chandak et al., 2018) and more details can be
found there. The only major addition in SPRING is the support for variable-length reads of lengths up to
511.

This stage produces a majority-based reference sequence and encoded streams for reads aligned to the
reference. A small fraction of reads usually remains unaligned to the reference to the reference and are stored
separately. However, the encoded streams do not correspond to the original order of reads in the FASTQ
file. Furthermore, the reordering and encoding stages from HARC consider the paired end FASTQ files as
a single end FASTQ file obtained by concatenating the two files. Thus, for both the order preserving and
order non-preserving modes, we need to transform these streams using the information in the index mapping
the reordered reads to their position in the original file. This is done in the next two steps.
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Paired end order encoding

This step is used only in the order non-preserving mode. Here we generate a new ordering of the reads
which preserves the pairing information while achieving the optimal compression. This step generates an
index mapping the reordered reads to their position in the new ordering. The reads in file 1 are kept in the
same order as obtained after the previous stage (Encode reads), i.e., the reads in file 1 are sorted according
to their position in the majority-based reference. This allows us to store the positions of these reads in the
majority-based reference using delta-coding leading to improved compression. The ordering of the reads in
file 2 is automatically determined by the ordering of reads in file 1 (since pairing information is preserved).

For single end files (in the order non-preserving mode), the reads are kept in the same order as obtained
after the encoding stage (i.e., sorted according to their position in the majority-based reference).

Reorder and compress read streams

In this step, the final encoded streams are generated and compressed in blocks using BSC. For this, first the
streams generated by the encoding stage are loaded into the memory. These are then reordered according
to the mode. In the order preserving mode, the streams are ordered according to the original order of reads
in the FASTQ files. In the order non-preserving mode, the streams are ordered according to the new order
generated in the paired end order encoding step. The final streams are described below:

• seq - stores the majority-based reference sequence. This is packed into a 2 bits/base representation
before compression.

• flag - indicates whether the reads are aligned or not as well as the distance between them on the
reference.

– 0 - Both reads aligned and gap between alignment positions is < 32,767 (for single end datasets,
flag 0 means that the read is aligned).

– 1 - Both reads aligned and gap between alignment positions is ≥ 32,767.

– 2 - Both reads unaligned (for single end datasets, flag 2 means that the read is unaligned).

– 3 - read 1 of pair aligned, read 2 unaligned

– 4 - read 1 of pair unaligned, read 2 aligned

• pos - in the order preserving mode, stores the position of the first read of the pair (and possibly the
second read) on the reference using 8 bytes. If flag is 0 or 3, only the position of the first read is stored.
If flag is 1, positions of both the first and the second reads are stored. If flag is 2, nothing is stored.

In the order non-preserving mode, the position of the first read of the pair is stored as the difference
from the first read of the previous pair (except for the first pair in the block). Note that the difference is
always positive because of the way the new order is defined in the paired end order encoding step. This
difference is stored as a 2 byte unsigned integer as long as it is < 65,535. Otherwise we store 65,535 using
2 bytes followed by the actual difference using 8 bytes. Storing differences rather than the absolute
position allows SPRING to achieve significantly better compression in the order non-preserving mode.

• pos pair - for paired end datasets, store the gap between the paired reads on the reference using a 16
bit signed integer when the flag is 0. Since the paired reads are sequenced from nearby portions of the
genome (paired reads are typically separated by 50-250 bases), they are likely to appear close in the
reference. Using a separate stream for the gap between the paired reads allows us to exploit this fact.

• noise - store the noisy bases in the aligned reads with respect to the reference. The encoding depends
on both the base in the reference and in the read, allowing us to exploit the fact that certain errors
are more likely in Illumina sequencing. For example, the most probable transitions for each reference
symbol are encoded as 0, next most probable transitions as 1 and so on. This leads to more 0’s in the
encoded stream leading to better compression. A newline character separates the noise for consecutive
reads.
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• noisepos - stores the position of the noisy bases encoded in the noise stream. These are delta encoded
to exploit the fact that most sequencing errors occur towards the end of the read. The delta coded
noise positions are stored as 16 bit unsigned integers.

• RC - store the orientation (forward/reverse) of aligned reads with respect to the reference. If flag is 0,
this does not store the orientation of the second read in the pair (see RC pair stream).

• RC pair - for paired end datasets, store the relative orientation of the second read with respect to the
first read when the flag is 0. If the paired reads have opposite orientation, store 0, otherwise store 1.
Since the paired end reads have opposite orientation of the genome, we expect to get mostly 0’s in this
stream and hence this stream is highly compressible.

• unaligned - stores the unaligned reads without any encoding.

• length - store the read lengths as 16 bit unsigned integers.

Reorder and compress quality and ids

This step is used only in the order non-preserving mode. Here the quality and ids are reordered to match
the new ordering of the reads. After reordering, they are compressed in blocks (as done in preprocess stage
for the order preserving mode). To reduce the memory consumption during reordering, SPRING makes
multiple passes over the quality and ids. In each pass, a subset of quality and ids are loaded into memory
and these are compressed according to the new ordering. If QVZ is being used for quality value quantization,
it is applied before compression. Note that Illumina binning and binary thresholding of quality values are
already applied in the preprocessing step, so they are not required in this step. In case the qualities and/or
identifiers are not to be preserved, this step simply ignores them.

Tar

All the compressed streams are converted to a tar archive at the end.

Decompression

During decompression, first the seq stream is decompressed (not applicable for long read mode). Then,
multiple threads decompress the blocks in parallel which are then written to the output files by the master
thread. SPRING supports decompression of a subset of reads by specifying the --decompress-range flag.
In this case, the entire seq stream is decompressed and then only the blocks corresponding to the desired
range of reads are decompressed.

2 Extended main results

The proposed algorithm, SPRING, was tested on a variety of datasets and compared to various algorithms.
For lossless compression, we compare SPRING with pigz (https://zlib.net/pigz/), FaStore (Roguski
et al., 2018) and DSRC 2 (Roguski and Deorowicz, 2014). pigz (parallelized Gzip) was chosen as it is
currently the standard FASTQ compressor. FaStore does not preserve the order of the reads and hence
is not lossless in general. However, for these datasets, the original order can be recovered from the read
identifiers since they are sequentially ordered. For the recommended lossy mode, we compare SPRING with
FaStore. The compression script for FaStore was modified so that the information retained in this mode is
the same for SPRING and FaStore (details in Section 5). For both modes, we tested both the default and
fast mode of FaStore. While several tools such as SCALCE (Hach et al., 2012) and Fqzcomp (Bonfield and
Mahoney, 2013) provide much better compression than pigz, we decided to test only FaStore and DSRC 2
since they represent the state-of-the-art in terms of compression ratio and compression speed, respectively
(Roguski et al., 2018). Moreover, the fast mode of FaStore still achieves better compression than the other
tools, while achieving similar or faster compression speed.

All the experiments were run on a server with a 40-core Intel(R) Xeon(R) 2.20 GHz processor, 258 GB
of RAM, 7.3 TB disk space and Ubuntu 18.04. All tools were run with 8 threads. 1 MB denotes 106 bytes
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Dataset
Genome Read

#reads (M) Coverage PE/SE Technology Accession no.
length (Mb) length

E. coli 4.6 301 1.3 85 PE MiSeq SRR1770413
P. aeruginosa 6 100 3.3 50 PE GAIIx SRR554369
S. cerevisiae 12.1 63, 75 30 175 PE GAII SRR327342

T. cacao 350 74 69 15 SE GAIIx SRR870667 2
PhiX 0.0054 100 200 3.7 × 106 PE NovaSeq PhiX

Metagenomic - 100 72 - PE HiSeq 2000 ERR532393
H. sapiens 1 3137 100 48.9 1.6 PE GAII SRR062634
H. sapiens 2 3137 101 879 28 PE HiSeq 2000 ERP001775
H. sapiens 3 3137 147 540 25 PE NovaSeq NA12878 Rep 1, Lane 1
H. sapiens 4 3137 147 2173 100 PE NovaSeq NA12878 Rep 1 & 2

Table 1: Short read datasets used for evaluation. PE denotes paired-end, SE denotes single-end. For
SRR327342, the read length of the first read in each pair is 63, and that of the second read is 75. Instructions
for obtaining these datasets are provided in Section 4.

and 1 GB denotes 109 bytes throughout the paper. Instructions for installing and using SPRING and other
tools along with the commands used for the experiments are available in Section 5.

The datasets (listed in Table 1) include viral, bacterial, metagenomic, plant and human sequencing
data and cover a range of coverages, Illumina sequencing technologies, and read lengths. Some of these
datasets are part of a compilation by MPEG HTS compression working group for benchmarking purposes
(Numanagić et al., 2016). The human NovaSeq datasets were obtained from Illumina BaseSpace public data
and consisted of variable-length (≈ 150bp) paired-end reads along with 4-level quality values. These were
trimmed to 147bp as FaStore does not support variable-length reads. Results for SPRING for the original
variable-length datasets are in Section 3.5. All the datasets used in this work are publicly available and links
to these are provided in Section 4.

Dataset
Uncompressed

pigz DSRC 2
FaStore

FaStore SPRING
Improvement

size (fast) over FaStore
E. coli 827 253 189 - - 106 -

P. aeruginosa 768 279 198 142 145 115 1.26x
S. cerevisiae 5,986 2,062 1,507 - - 954 -

T. cacao 13,847 4,926 3,540 2,755 2,714 2,444 1.11x
Metagenomic 19,284 6,911 5,155 3,628 3,602 3,206 1.12x

PhiX 50,090 6,402 6,594 1,552 1,457 1,420 1.03x
H. sapiens 1 12,861 3,920 2,702 2,293 2,299 2,118 1.09x
H. sapiens 2 227,246 74,250 52,049 36,042 35,662 28,901 1.23x
H. sapiens 3 195,748 36,131 26,520 11,380 11,101 6,971 1.59x
H. sapiens 4 787,616 144,927 106,665 35,129 33,734 25,883 1.30x

Table 2: Sizes in MB for lossless compression. FaStore wasn’t run on S. cerevisiae since it does not support
variable length reads. On E. coli, FaStore exited with a segmentation fault. Best results are boldfaced.

Tables 2 and 3 show the compression results for the lossless and recommended lossy modes, respectively.
We see that SPRING consistently achieves the best compression ratios for both modes across the selected
datasets, except for lossy compression of the extremely high coverage (3.7 × 106x) PhiX dataset. For the
28x human dataset (H. sapiens 2 ) from the Platinum Genomes Project (ERP001775) (Eberle et al., 2017),
SPRING achieves 1.2-1.3x better compression than FaStore. The space required for the recommended lossy
mode is less than half of the lossless mode, primarily due to Illumina binning of quality values (see Section
3.1).

The improvement is even more significant for the NovaSeq datasets, with close to 1.75x improvement for
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Dataset
Uncompressed FaStore

FaStore SPRING
Improvement

size (fast) over FaStore
E. coli 827 - - 63 -

P. aeruginosa 768 83 88 62 1.41x
S. cerevisiae 5,986 - - 366 -

T. cacao 13,847 1,339 1,300 1,215 1.07x
Metagenomic 19,284 1,937 1,935 1,736 1.11x

PhiX 50,090 1,226 1,099 1,160 0.95x
H. sapiens 1 12,861 1,244 1,251 1,223 1.02x
H. sapiens 2 227,246 17,846 17,417 13,460 1.29x
H. sapiens 3 195,748 10,246 9,927 5,657 1.75x
H. sapiens 4 787,616 30,379 28,846 20,316 1.42x

Table 3: Sizes in MB for recommended lossy compression. FaStore wasn’t run on S. cerevisiae since it does
not support variable length reads. On E. coli, FaStore exited with a segmentation fault. Best results are
boldfaced.

the recommended lossy mode on the 25x-coverage dataset (H. sapiens 3 ). For the 100x NovaSeq dataset
(H. sapiens 4 ), SPRING can save around 8 GB (≈ 25%) storage space as compared to FaStore in both
modes. The improvement provided by SPRING is not as significant for extremely high (PhiX ) or low (H.
sapiens 1) coverages, but these cases are less common in practice. The difference between HiSeq 2000 and
NovaSeq datasets, and the contribution of reads, quality values and read identifiers to the compressed sizes
are discussed further in Section 3.1. Finally, we observe that FaStore and SPRING achieve close to 5x better
compression than pigz and 2-3x better compression than DSRC 2.

Dataset
Lossless Recommended lossy

pigz DSRC 2
FaStore

FaStore SPRING
FaStore

FaStore SPRING
(fast) (fast)

E. coli 10s 2s - - 41s - - 41s
P. aeruginosa 31s 4s 35s 2m2s 23s 28s 1m50s 27s
S. cerevisiae 1m17s 25s - - 3m3s - - 2m55s

T. cacao 3m 1m10s 5m12s 18m 9m 3m30s 15m 9m
Metagenomic 4m38s 1m27s 7m 17m 10m 5m 14m 10m

PhiX 6m 2m8s 13m 30m 14m 11m 25m 17m
H. sapiens 1 2m37s 36s 4m37s 25m 11m 3m54s 24m 11m
H. sapiens 2 49m 13m 1h19m 3h35m 2h30m 1h 3h9m 2h32m
H. sapiens 3 33m 9m 58m 2h36m 2h 53m 2h28m 2h13m
H. sapiens 4 2h17m 43m 4h10m 9h51m 6h39m 3h50m 8h52m 7h33m

Table 4: Compression times. All tools were run with 8 threads.

Tables 4 and 5 contain the compression times and RAM usage, respectively, for both modes. We observe
that pigz and DSRC 2 require significantly lesser computational resources at the cost of worse compression
ratios. FaStore (fast) is more than twice as fast as FaStore, while providing similar compression ratios.
SPRING is competitive in terms of compression time and memory, requiring less time and memory than
FaStore in most cases. SPRING is slower in the recommended lossy mode because of the additional step of
reordering qualities and identifiers according to the new order of the reads.

The high memory consumption of SPRING is primarily due to the read reordering step, where SPRING
loads all the reads and two hash tables into memory. The previous work on HARC (Chandak et al., 2018)
discusses a strategy for reducing the memory consumption by splitting the FASTQ file into multiple parts and
applying the compressor independently on each part. Since the memory consumption for SPRING/HARC
is linear in the number of reads, this strategy can reduce the memory consumption significantly at the cost
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Dataset
Lossless Recommended lossy

pigz DSRC 2
FaStore

FaStore SPRING
FaStore

FaStore SPRING
(fast) (fast)

E. coli 0.008 0.13 - - 1.4 - - 1.1
P. aeruginosa 0.008 0.13 2.3 2.3 1.5 2.1 2.1 0.84
S. cerevisiae 0.008 0.13 - - 2.3 - - 2.3

T. cacao 0.008 0.13 4.2 4.1 3.3 3.4 3.6 3.7
Metagenomic 0.008 0.13 11 11 3.6 9.3 9.2 5.0

PhiX 0.008 0.12 25 26 18 20 24 21
H. sapiens 1 0.008 0.18 17 18 4.9 13 14 5.3
H. sapiens 2 0.008 0.42 35 31 45 25 26 45
H. sapiens 3 0.008 0.13 40 41 32 38 32 31
H. sapiens 4 0.008 0.15 158 137 119 145 122 119

Table 5: Compression memory (RAM) in GB. All tools were run with 8 threads.

of worse read compression.
To achieve better read compression, SPRING also devotes more time to read compression stages (reorder

reads and encode reads). Together, these two stages take about 4 hours (out of total 6h39m) for the lossless
compression of 100x H. sapiens 4 dataset. We note here that SPRING introduces early stopping to the
reordering stage, which reduces the overall compression time by up to 20% (see Section 3.10). Further
improvements in compression time can be achieved by using more threads (see Section 3.7).

Dataset
Lossless Recommended lossy

pigz DSRC 2
FaStore

FaStore SPRING
FaStore

FaStore SPRING
(fast) (fast)

E. coli 3s 2s - - 17s - - 15s
P. aeruginosa 4s 2s 12s 18s 9s 7s 12s 7s
S. cerevisiae 27s 10s - - 1m - - 43s

T. cacao 1m13s 23s 2m5s 2m14s 2m20s 1m9s 1m11s 1m46s
Metagenomic 1m46s 37s 2m42s 3m 3m18s 1m21s 1m36s 2m29s

PhiX 2m23s 39s 3m3s 3m47s 5m32s 2m33s 2m11s 5m34s
H. sapiens 1 1m 18s 1m27s 1m39s 2m25s 58s 59s 2m
H. sapiens 2 20m 14m 24m 25m 38m 15m 16m 28m
H. sapiens 3 11m 9m 11m 12m 26m 9m 10m 22m
H. sapiens 4 1h21m 41m 40m 45m 1h47m 32m 36m 1h37m

Table 6: Decompression times. All tools were run with 8 threads.

Tables 6 and 7 contain the decompression times and RAM usage, respectively, for both modes. SPRING
achieves reasonably fast decompression, while using much less memory as compared to FaStore. By using
more threads, SPRING can achieve faster decompression at the cost of higher memory usage (see Section
3.7). SPRING also supports the ability to decompress a subset of reads without needing to decompress the
whole file (see Section 3.4).

3 Additional results

Unless otherwise specified, all tools were run with 8 threads.
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Dataset
Lossless Recommended lossy

pigz DSRC 2
FaStore

FaStore SPRING
FaStore

FaStore SPRING
(fast) (fast)

E. coli 0.003 0.23 - - 1.7 - - 1.7
P. aeruginosa 0.003 0.24 0.78 0.8 1.7 0.53 0.61 1.7
S. cerevisiae 0.003 0.43 - - 2.2 - - 1.9

T. cacao 0.003 0.29 1.7 2.3 2.1 1.2 1.5 1.7
Metagenomic 0.003 0.29 1.9 1.9 2.6 1.3 1.4 3.1

PhiX 0.003 0.33 19 16 2.3 15 13 2.3
H. sapiens 1 0.003 0.30 2 1.7 3.2 1.4 1.3 3.7
H. sapiens 2 0.003 0.42 26 19 5.5 21 15 5.5
H. sapiens 3 0.003 0.34 39 23 6.1 30 17 6.3
H. sapiens 4 0.003 0.36 141 85 6.6 110 81 6.7

Table 7: Decompression memory (RAM) in GB. All tools were run with 8 threads.

3.1 Field-wise compression results

Tables 8 and 9 provide the field-wise compression results for lossless and recommended lossy mode, respec-
tively. Since pigz does not provide field-wise compression results, it is not included in these tables. We also
exclude FaStore (fast) since it is very similar to FaStore in terms of compression results (the two modes
differ only in read compression). Note that the sizes for SPRING are before the Tar step which adds a small
overhead. Recall that H. sapiens 2 is 28x dataset sequenced on HiSeq 2000, while H. sapiens 3 and H.
sapiens 4 are sequenced on NovaSeq, with coverages 25x and 100x, respectively.

Dataset Tool Reads Quality Identifier

H. Sapiens 2
DSRC 2 22,188 27,810 2,051
FaStore 6,968 24,868 3,826
SPRING 4,253 23,774 858

H. Sapiens 3
DSRC 2 19,845 4,576 2,098
FaStore 6,152 3,789 1,160
SPRING 3,040 3,630 292

H. Sapiens 4
DSRC 2 79,850 18,346 8,468
FaStore 13,741 15,178 4,815
SPRING 10,125 14,553 1,165

Table 8: Sizes (in MB) of individual fields for lossless compression.

Dataset Tool Reads Quality Identifier

H. Sapiens 2
FaStore 6,917 10,500 0
SPRING 2,553 10,892 0

H. Sapiens 3
FaStore 6,138 3,789 0
SPRING 2,022 3,625 0

H. Sapiens 4
FaStore 13,668 15,178 0
SPRING 5,722 14,558 0

Table 9: Sizes (in MB) of individual fields for recommended lossy compression.

From Table 8, we see that FaStore and SPRING provide significant improvement in read compression
over DSRC 2, while the improvement in quality compression is smaller. Since FaStore reorders the reads
even in its lossless mode, the read order information is effectively preserved in the identifiers. Due to this,
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the identifiers take much larger size for FaStore as compared to SPRING. Note that SPRING takes less
space for read compression than FaStore even though it stores information about the read order in the read
field. SPRING achieves slightly better quality compression than FaStore due to the use of BSC instead of
QVZ. Comparing the HiSeq 2000 dataset (H. sapiens 2 ) to the other two NovaSeq datasets, we observe that
the quality takes up a much smaller fraction of the total size for NovaSeq datasets which have only 4 quality
levels. For the NovaSeq data, the size required for reads is quite comparable to that required for qualities.
Due to this, SPRING provides greater improvement for these datasets.

In Table 9, both FaStore and SPRING reorder the reads and only retain the pairing information. We
see that SPRING requires 2.5-3x less space for compressing the reads in this mode. Comparing with the
lossless mode (Table 8), we see that Illumina binning reduces the space needed to store the quality values by
more than 2x for H. sapiens 2. For SPRING, storing only the pairing information rather than the complete
order of reads boosts the read compression by a factor of 1.5-1.7, with more improvement for higher coverage
datasets.

3.2 Comparison with alignment + SAM compression

In applications such as sequencing of a new organism or metagenomics, a reference is typically not available
and hence reference-free compression of FASTQ files is important. Even if a reference is available, the
FASTQ file is typically retained (at least temporarily) and again FASTQ compression becomes necessary.
Since the reference and the FASTQ file are usually obtained from different individuals, using a reference-free
compressor like SPRING can be beneficial since it is more robust to variations between individuals. To
understand this better, we compared SPRING to reference-based alignment. We first used BWA-MEM (Li,
2013) to align the H. sapiens 3 dataset to the hg19 reference. Then we removed some irrelevant fields from
the SAM file (MAPQ, RNEXT, PNEXT, TLEN and optional fields), since these are not used to compress
data in the FASTQ file. Finally, we used CRAM v3 (from SAMtools) to compress the SAM file, both before
and after sorting according to the genome position. The commands used for these operations are listed in
Section 5.3. The parameters were chosen to achieve best compression.

The compressed sizes for the unsorted and sorted SAM files are 7,644 MB and 7,793 MB, respectively.
The compressed size for the sorted SAM file with the reference embedded in the CRAM file is 8,488 MB.
In comparison, SPRING achieves 6,971 MB without using any external reference. While the CRAM com-
pression step is quite fast (around 25m), the alignment took around 8 hours. SPRING needs 2 hours for
compressing this dataset. Thus, we see that directly compressing FASTQ files can be advantageous even
when a reference is available. For species with larger variation between individuals, SPRING can provide
even greater improvements over alignment + SAM compression.

3.3 Long read compression

Accession no. Species
Genome Maximum

#reads (M) Coverage Technology
length (Mb) read length

SRR1284073 E. coli 4.6 49424 0.65 140 PacBio
ERR637420 E. coli 4.6 47422 0.08 86 Oxford Nanopore MinION

Table 10: Long read datasets used for evaluation. Both datasets are single end.

Accession no. Uncompressed pigz SPRING
SRR1284073 1,304 546 420
ERR637420 264 120 94

Table 11: Sizes in MB for long read compression.
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We compared the long read compression (lossless) mode with pigz, since DSRC 2 and FaStore do not
support long reads. We evaluated the tools on two datasets (Table 10) from the most popular long read
platforms. The compression results are shown in Table 11. We observe that SPRING achieves better
compression than pigz on these datasets, but the improvement is not as pronounced as that for short read
datasets. This is because SPRING uses the general-purpose compressor BSC for long read compression
rather than the specialized compression method employed for short reads, and hence it is unable to exploit
much of the redundancy in the reads. Building a specialized read compressor for long reads is part of future
work.

3.4 Decompressing subset of reads

SPRING allows decompression of a subset of reads by specifying a range of reads to decompress. For
paired end files, the parameters refer to read pairs rather than reads. Table 12 shows the times needed to
decompress 1M, 10M and 100M read pairs from losslessly compressed H. sapiens 3, along with the time
needed to decompress all read pairs (≈ 270M). The results were obtained by using the --decompress-range

flag. We see that SPRING allows fast decompression of small subsets of reads, with a slight constant overhead
due to decompression of the seq stream.

Start pair End pair Number of pairs Decompression time
100M 101M 1M 1m13s
100M 110M 10M 1m48s
100M 200M 100M 9m4s

- - 270M 22m

Table 12: Time required to decompress subset of read pairs for H. sapiens 3. Last row represents decom-
pression of entire file.

3.5 Results for variable length short reads

Table 13 contains compression results for NovaSeq variable length reads. FaStore does not support variable
length reads, so only SPRING, pigz and DSRC 2 were tested. On these datasets, SPRING provides 3-5x
better compression than pigz and DSRC2.

Sample
NA12878 NA12878

Rep 1, Lane 1 Rep 1 & 2
(original) (original)

Organism H. sapiens H. sapiens
Technology NovaSeq NovaSeq
Coverage 26x 105x

Maximum Read length 151 151
Uncompressed Size 205,386 826,117

Lossless
pigz 38,007 152,243

DSRC 2 28,448 114,393
SPRING 7,565 29,020

Recommended lossy
SPRING 6,193 22,954

Table 13: Compression sizes in MB for the variable-length NovaSeq datasets. Only tools supporting variable
length reads were tested.
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3.6 Quality value lossy compression modes

Mode Parameters Compressed quality size
Lossless - 23,774

Illumina binning - 10,892
QVZ Rate = 1 bit/quality value 7,237

Binary thresholding thr=20, high=40, low=6 1,034

Table 14: Sizes in MB for different quality value compression modes for H. sapiens 2.

While the recommended lossy mode for SPRING uses Illumina 8-level binning for quality values, SPRING
supports two other schemes for lossy compression of quality values. Table 14 shows the compressed sizes for
these schemes for H. sapiens 2 (HiSeq 2000, 28x). In previous works (Roguski et al. (2018) and Ochoa et al.
(2017)), all these were shown to have no detrimental effect on variant calling (binary thresholding can hurt
variant calling for low coverage datasets). We see that binary thresholding can reduce the space needed by
qualities significantly. Since QVZ uses an optimized context-dependent quantizer dependent on the input
data, it is slightly slower, but provides more flexibility in terms of the desired rate and should provide lower
distortion at the same rate than other schemes.

3.7 Impact of number of threads

Number Compressed Compression Compression Decompression Decompression
of threads size (MB) time memory (GB) time memory (GB)

4 6,977 3h26m 31 42m 4.6
8 6,971 2h 32 26m 6.1
16 6,960 1h20m 32 18m 9.3
32 6,968 1h6m 32 13m 15

Table 15: Impact of number of threads on compressed size and time/memory consumption for lossless
compression of H. sapiens 3.

Table 15 shows the compressed sizes and computational requirements for lossless compression H. sapiens
3 dataset for three values of number of threads. The results were obtained by using the -t flag. We observe
that the compression and decompression times improve as the number of threads increase. For very high
number of threads, the disk I/O becomes the bottleneck leading to diminishing returns. The impact of
increasing the number of threads on the compressed size and compression memory usage is negligible. The
decompression memory increases with the number of threads because more blocks are now decompressed in
parallel.

3.8 Impact of block size

Block Compressed Compression Compression Decompression Decompression
size size (MB) time memory (GB) time memory (GB)

128,000 7,011 1h59m 31 26m 5.5
256,000 6,971 2h 32 26m 6.1
512,000 6,950 1h56m 32 24m 8.9

Table 16: Impact of block size on compressed size and time/memory consumption for lossless compression
of H. sapiens 3.
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SPRING compresses the streams in blocks to allow random access and efficient decompression. The
number of reads (read pairs for PE datasets) per block is set to 256,000 by default (for short reads). Table
16 shows the compressed sizes and computational requirements for lossless compression H. sapiens 3 dataset
for three values of block size. The results were obtained by modifying the parameter NUM READS PER BLOCK

in src/params.h. We observe that using higher block sizes yields slightly better compression but needs more
memory during decompression. The impact on compression and decompression times is negligible for this
range of block sizes.

3.9 Impact of read reordering on ID compression

While read identifiers are not used in most downstream applications, some applications like Picard MarkDu-
plicates (http://broadinstitute.github.io/picard/) might use it. In such cases, we recommend that
SPRING be used without the -r flag which allows read reordering (with pairing information preserved).
When the -r flag is specified, the read identifiers are reordered and then compressed. Due to this, the
consecutive read identifiers now contain large differences, leading to poor compression. Even though the size
needed for the reads reduces, the increase in the read identifier size slightly outweighs this reduction. Table
17 shows this for H. sapiens 3 dataset.

Flag Read Read identifier Read + Read identifier
-r used 2,020 1,371 3,391

-r not used 3,040 292 3,332

Table 17: Impact of using -r flag on read and read identifier compression for H. sapiens 3. Sizes are in MB.

3.10 Improvements in reordering stage

Here we discuss the impact of two improvements made in SPRING to the reordering stage of HARC.

Searching for matches in both directions

Mode
Compressed size Compression Compression
of reads (MB) time memory (GB)

Search in one direction 3,251 1h59m 32
Search in both directions 3,040 2h 32

Table 18: Impact of bidirectional search on compressed size and time/memory consumption for lossless
compression of H. sapiens 3.

While HARC searched for matching reads in only one direction (matching the suffix of the current read),
SPRING looks for matches in both directions. Table 18 shows the impact of this on read compression
for lossless compression of H. sapiens 3 dataset (note that the reported times include time for quality
and identifier compression). The results for the first row were obtained by replacing src/reorder.h in the
SPRING repository by src/old src/reorder 1d/reorder.h. We observe that bidirectional search improves
the read compression by around 6% without significantly affecting the compression time/memory.

Early stopping

SPRING maintains the fraction of unmatched reads in the last 1 million reads and stops looking for matches
once this fraction crosses a certain threshold (50% by default). The maximum impact of this step is on
the largest dataset H. sapiens 4. Table 19 shows results for lossless compression of H. sapiens 4 where the
reported times includes the time for quality and identifier compression. The results for the first row were
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Mode
Compressed size Compression Compression
of reads (MB) time memory (GB)

No early stopping 10,107 9h15m 119
Early stopping 10,125 6h39m 119

Table 19: Impact of early stopping on compressed size and time/memory consumption for lossless compres-
sion of H. sapiens 4.

obtained by setting STOP CRITERIA REORDER to 1.0 in src/params.h. We see that early stopping reduces
the compression time by more than 20% for this dataset while having negligible impact on compressed size
and memory usage.

4 Datasets

We list below the links for the datasets used for evaluation. After downloading, the files were unzipped using
gunzip command. In some cases FASTQ files were concatenated to get higher coverage datasets.

E. coli - SRR1770413

This was downloaded using the SRA toolkit (https://www.ncbi.nlm.nih.gov/sra/docs/toolkitsoft/)
by running the command
./fastq dump --split-files SRR1770413

P. aeruginosa - SRR554369

ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR554/SRR554369/SRR554369_1.fastq.gz

ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR554/SRR554369/SRR554369_2.fastq.gz

S. cerevisiae - SRR327342 1

ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR327/SRR327342/SRR327342_1.fastq.gz

ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR327/SRR327342/SRR327342_2.fastq.gz

Metagenomic - ERR532393

ftp://ftp.sra.ebi.ac.uk/vol1/fastq/ERR532/ERR532393/ERR532393_1.fastq.gz

ftp://ftp.sra.ebi.ac.uk/vol1/fastq/ERR532/ERR532393/ERR532393_2.fastq.gz

T. cacao - SRR870667 2

ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR870/SRR870667/SRR870667_2.fastq.gz

H. sapiens - ERP001775

ftp://ftp.sra.ebi.ac.uk/vol1/fastq/ERR174/ERR174324/ERR174324_1.fastq.gz

ftp://ftp.sra.ebi.ac.uk/vol1/fastq/ERR174/ERR174325/ERR174325_1.fastq.gz

ftp://ftp.sra.ebi.ac.uk/vol1/fastq/ERR174/ERR174324/ERR174324_2.fastq.gz

ftp://ftp.sra.ebi.ac.uk/vol1/fastq/ERR174/ERR174325/ERR174325_2.fastq.gz

The first two files were concatenated and the last two files were concatenated to obtain a 28x coverage
paired-end dataset.
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H. sapiens - NA12878 Rep 1, Lane 1

This dataset was downloaded from Illumina’s BaseSpace public data (https://basespace.illumina.com/
datacentral) from the project NovaSeq S2: Nextera DNA Flex (8 replicates of NA12878). The following
FASTQ files comprise this 25x paired-end dataset.

NA12878-Rep-1_S1_L001_R1_001.fastq

NA12878-Rep-1_S1_L001_R2_001.fastq

These datasets were variable length and were trimmed to 147bp for evaluation with FaStore. Trimming was
done using util/trimmer.cpp, available in the SPRING source code.

H. sapiens - NA12878 Rep 1 & 2

This dataset was downloaded from Illumina’s BaseSpace public data (https://basespace.illumina.com/
datacentral) from the project NovaSeq S2: Nextera DNA Flex (8 replicates of NA12878). The following
FASTQ files were downloaded.

NA12878-Rep-1_S1_L001_R1_001.fastq

NA12878-Rep-1_S1_L002_R1_001.fastq

NA12878-Rep-2_S2_L001_R1_001.fastq

NA12878-Rep-2_S2_L002_R1_001.fastq

NA12878-Rep-1_S1_L001_R2_001.fastq

NA12878-Rep-1_S1_L002_R2_001.fastq

NA12878-Rep-2_S2_L001_R2_001.fastq

NA12878-Rep-2_S2_L002_R2_001.fastq

The first four files were concatenated together and the last four files were concatenated together to obtain
100x paired-end data. These datasets were variable length and were trimmed to 147bp for evaluation with
FaStore. Trimming was done using util/trimmer.cpp, available in the SPRING source.

PhiX

This dataset was obtained directly from a sequencing facility. The losslessly compressed SPRING archive
can be downloaded from
https://web.stanford.edu/~schandak/PhiX_100M_lossless.spring

E. coli - SRR1284073

This was downloaded using the SRA toolkit (https://www.ncbi.nlm.nih.gov/sra/docs/toolkitsoft/)
by running the command
./fastq dump SRR1284073

E. coli - ERR637420

This was downloaded using the SRA toolkit (https://www.ncbi.nlm.nih.gov/sra/docs/toolkitsoft/)
by running the command
./fastq dump ERR637420

5 Installing and running tools

5.1 Installation

This section contains instructions for downloading and installing the tools that were tested in this work.
Instructions for installing them in different environments can be found in the README documents for the
tools.
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SPRING

Commit:
https://github.com/shubhamchandak94/Spring/commit/490494c7d5bd7c55751e305d9ec6caedc3b66af7

git clone https://github.com/shubhamchandak94/SPRING.git

cd SPRING

mkdir build

cd build

cmake ..

make

FaStore

Commit:
https://github.com/refresh-bio/FaStore/commit/e16dfa91577a21144ca97ade7c5772983044187d

git clone https://github.com/refresh-bio/FaStore.git

cd FaStore

make

DSRC 2

Boost should already be installed.
Commit:
https://github.com/refresh-bio/DSRC/commit/5eda82cb1546b71cd3480bc0aba1d321b52bd0b4

git clone https://github.com/refresh-bio/DSRC.git

cd DSRC

make

pigz

wget https://zlib.net/pigz/pigz-2.4.tar.gz

tar -xzvf pigz-2.4.tar.gz

cd pigz-2.4

make

5.2 Running compression algorithms

5.2.1 SPRING

General usage:

Allowed options:

-h [ --help ] produce help message

-c [ --compress ] compress

-d [ --decompress ] decompress

--decompress-range arg --decompress-range start end

(optional) decompress only reads (or read

pairs for PE datasets) from start to end

(both inclusive) (1 <= start <= end <=

num_reads (or num_read_pairs for PE)). If -r

was specified during compression, the range

of reads does not correspond to the original

order of reads in the FASTQ file.

-i [ --input-file ] arg input file name (two files for paired end)
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-o [ --output-file ] arg output file name (for paired end

decompression, if only one file is specified,

two output files will be created by suffixing

.1 and .2.)

-w [ --working-dir ] arg (=.) directory to create temporary files (default

current directory)

-t [ --num-threads ] arg (=8) number of threads (default 8)

-r [ --allow-read-reordering ] do not retain read order during compression

(paired reads still remain paired)

--no-quality do not retain quality values during

compression

--no-ids do not retain read identifiers during

compression

-q [ --quality-opts ] arg quality mode: possible modes are

1. -q lossless (default)

2. -q qvz qv_ratio (QVZ lossy compression,

parameter qv_ratio roughly corresponds to

bits used per quality value)

3. -q ill_bin (Illumina 8-level binning)

4. -q binary thr high low (binary (2-level)

thresholding, quality binned to high if >=

thr and to low if < thr)

-l [ --long ] Use for compression of arbitrarily long read

lengths. Can also provide better compression

for reads with significant number of indels.

-r disabled in this mode. For Illumina short

reads, compression is better without -l flag.

For compression in the lossless mode (lossless quality compression, read identifiers retained and read order
preserved), run

./spring -c -i in_1.fastq in_2.fastq -o compressed_file

For compression in the recommended lossy mode (Illumina binning of quality, read identifiers not retained
and read order not preserved), run

./spring -c -i in_1.fastq in_2.fastq -r --no-ids -q ill_bin -o compressed_file

For the NovaSeq datasets, Illumina binning is not performed, hence run

./spring -c -i in_1.fastq in_2.fastq -r --no-ids -o compressed_file

For long read compression (lossless), run

./spring -c -i in.fastq -l -o compressed_file

For decompression (in either mode), run,

./SPRING/spring -d compressed_file -o out.fastq

More examples for usage of SPRING with various options are available in the Github README (https:
//github.com/shubhamchandak94/SPRING/blob/master/README.md).

5.2.2 Other algorithms

FaStore

Since the lossy mode in FaStore does not match with the recommended lossy mode in this work, we modified
the compression script provided with FaStore. The modified script fastore compress.sh is available in the
util directory of SPRING repository.
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To compress in 1.fastq and in 2.fastq in the lossless mode (lossless quality compression and read identifiers
retained), run

./FaStore/scripts/fastore_compress.sh --lossless --threads 8 --in in_1.fastq\

--pair in_2.fastq --out compressed.fastore --verbose

The compressed files are compressed.fastore.cdata and compressed.fastore.cmeta.
In the recommended lossy mode (Illumina binning for quality and read identifiers not retained), run

./FaStore/scripts/fastore_compress.sh --lossy_old --threads 8 --in in_1.fastq\

--pair in_2.fastq --out compressed.fastore --verbose

For NovaSeq datasets, Illumina binning is not applied, so run

./FaStore/scripts/fastore_compress.sh --lossy_novaseq --threads 8 --in in_1.fastq\

--pair in_2.fastq --out compressed.fastore --verbose

In the fast mode, just add the --fast flag.
To decompress compressed.fastore to out 1.fastq and out 2.fastq, run

./FaStore/bin/fastore_pack d -z -t8 -icompressed.fastore -o"out_1.fastq out_2.fastq"

For single-end datasets, the -z flag should be removed.
In the lossless mode, FaStore retains the order of the reads through the read identifiers. However, on

decompression, the reads are not outputted in their original order. While it is possible to sort the FASTQ
file using the identifiers to get back the original order, we did not include this step when measuring the
decompression time/memory.

pigz

Compression:

./pigz-2.4/pigz -k -p 8 in_1.fastq in_2.fastq

Decompression:

./pigz-2.4/unpigz -k -p 8 in_1.fastq.gz in_2.fastq.gz

DSRC 2

Compression:

./DSRC/bin/dsrc -c -t8 -v in_1.fastq in_1.fastq.dsrc

./DSRC/bin/dsrc -c -t8 -v in_2.fastq in_2.fastq.dsrc

Decompression:

./DSRC/bin/dsrc -d -t8 -v in_1.fastq.dsrc out_1.fastq

./DSRC/bin/dsrc -d -t8 -v in_2.fastq.dsrc out_2.fastq

5.3 Alignment and SAM compression

Downloading and installing BWA-MEM and SAMtools (you may need to install libbzip2-dev and liblzma-dev
packages on Linux before this):

wget https://github.com/samtools/samtools/releases/download/1.9/samtools-1.9.tar.bz2

tar -xjf samtools-1.9.tar.bz2

cd samtools-1.9/

./configure

make
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cd ..

wget https://github.com/lh3/bwa/releases/download/v0.7.17/bwa-0.7.17.tar.bz2

tar -xjf bwa-0.7.17.tar.bz2

cd bwa-0.7.17/

make

cd ..

Downloading and indexing human genome:

wget ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/reference/human_g1k_v37.fasta.gz

gunzip human_g1k_v37.fasta.gz

./bwa-0.7.17/bwa index human_g1k_v37.fasta

./samtools-1.9/samtools faidx human_g1k_v37.fasta

Aligning reads in file 1.fastq and file 2.fastq to the reference:

./bwa-0.7.17/bwa mem -t 8 human_g1k_v37.fasta file_1.fastq file_2.fastq > file.sam

Removing optional fields in the SAM file and replacing MAPQ, RNEXT, PNEXT and TLEN by their “in-
formation unavailable” values (see SAM format specifications: https://samtools.github.io/hts-specs/
SAMv1.pdf):

cut -f1-11 < file.sam |\

awk -v OFS=’\t’ ’{if($0 ~ "^@") {print $0} \

else {$5 = 255; $7 = "*"; $8 = 0; $9 = 0; print}}’\

> file_reduced.sam

Sort SAM file using SAMtools (we allow maximum 100 GB RAM usage to speed up this step):

./samtools-1.9/samtools sort -m 100G -O SAM -o file_reduced_s.sam file_reduced.sam

Compressing with CRAM (unsorted SAM file):

./samtools-1.9/samtools view -C -o file_reduced.cram -T human_g1k_v37.fasta \

--output-fmt-option nthreads=8 --output-fmt-option level=9 \

--output-fmt-option use_lzma --output-fmt-option use_bzip2 file_reduced.sam

Compressing with CRAM (sorted SAM file, without embedding reference in the CRAM file):

./samtools-1.9/samtools view -C -o file_reduced_s.cram -T human_g1k_v37.fasta \

--output-fmt-option nthreads=8 --output-fmt-option level=9 \

--output-fmt-option use_lzma --output-fmt-option use_bzip2 file_reduced_s.sam

Compressing with CRAM (sorted SAM file, embedding reference in the CRAM file):

./samtools-1.9/samtools view -C -o file_reduced_s_embed.cram -T human_g1k_v37.fasta \

--output-fmt-option nthreads=8 --output-fmt-option level=9 \

--output-fmt-option embed_ref --output-fmt-option use_lzma --output-fmt-option use_bzip2 \

file_reduced_s.sam
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